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Featured Application: The authors have developed a spatial data-fusion algorithm to adjust and
effectively integrate data sets from total station and GNSS surveys with a universal EGM geoid
model. The solution’s high effectiveness can be applied to structural monitoring, risk manage-
ment, architectural designing, and building information modelling (BIM).

Abstract: During the dynamic development of modern technologies based on advanced algorithmic
and instrumental solutions, it is essential to integrate geospatial data efficiently. Such an approach
is applied in all geo-information services, especially mobile ones, and is helpful in, for example,
precise navigation or effective risk management. One leading application is deformation monitoring
(structural monitoring) and displacement control surveying. In addition, spatial data integration
methods are used in modern accessibility analysis, Smart City ideas, tracing utility networks, and
building information modelling (BIM). The last aforementioned technology plays a crucial role in
architectural design and construction. In this context, it is crucial to develop efficient and accurate
algorithms supporting data fusion, which do not strain the computing resources and operate ef-
ficiently online. This paper proposes an algorithm for real-time adjustment of integrated satellite
GNSS (global navigation satellite system), total station, and Earth Gravitational Model (EGM) vertical
direction data in a geocentric coordinate system based on a statistical general linear mixed model.
A numerical example shows that the proposed algorithm of the online adjustment works correctly.
The results of the online adjustment are the same as those of the offline adjustment. It is also shown
that the GNSS measurements are necessary only at the total station points in the spatial total station
traverse. There is no need to add additional merging points of the total station positions because the
differences between the results of the online adjustment, including and excluding the merging points,
are very small (around 1–2 mm in standard deviation).

Keywords: algorithms; data adjustment; data integration; integrated geodesy; structural monitoring

1. Introduction

Integrating geospatial measurements is essential in modern information services and
geoportals using precise navigation, inventory registries of technical infrastructure, and
studying the ongoing deformations of engineering objects. Such geo-information platforms
are now fundamental when conducting construction works on, e.g., subway lines, highway
tunnels, or other technical facilities. They enable effective risk management and structure
the work in progress. Nowadays, almost every civil investment uses geoportals and
advanced algorithms, allowing for real-time data fusion. Such effective management
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of spatial data has increasingly been involving mobile technologies. In such cases, the
activities of system analysts focus on the operation of smartphone or tablet devices, which
requires the optimization of algorithmic solutions, thereby ensuring efficient switching
between functions.

In the case of structural monitoring systems, notifications of potential threats in the
form of predefined alarm thresholds are generated based on previously captured and
properly integrated data. The user can receive such alerts in an ongoing form, except
for simple visualization on screens, also employing signals, text messages, or sound calls.
Reliable generation of the warnings mentioned above is required because property and
often human lives depend on the speed of response to appearing circumstances. Moreover,
such systems often use artificial intelligence and machine learning to initiate and aid
appropriate reactions. The topic currently belongs to the mature systems and is reflected in
many publications. For example, articles [1–4] present an overview of existing solutions
in this field, explaining the theoretical basis in detail. The cited works also include an
in-depth analysis of the available literature, considering new solutions and presenting
them as complementary. In the context of spatial data acquisition, photogrammetric
techniques—mainly images taken using UAVs (unmanned aerial vehicles) and close-range
photogrammetry [5]—are used to a remarkable extent. Data-driven applications are used
in mobile solutions, open visions, or complex services, e.g., Smart City concepts [6]. In
this context, it is worth mentioning the so-called Internet of Things (IoT), through which
multiple sources, especially mobile data, can be acquired and processed online [7,8].

However, this article focuses on analytical solutions to present a mechanism for ef-
fectively integrating spatial data obtained from different sensors, particularly geodetic
observables. Such an approach makes it possible to visualize and interpret the survey
results with millimeter accuracy. That, in turn, makes it possible to conduct assessments
of geometric changes in engineering structures while examining their displacements and
defining related risk management [9]. Numerous publications have also described re-
search on the development of computational algorithms and data adjustment in integrated
geodesy. Such works date even back to the late 1980s and early 1990s, for example [10,11].
In one author’s solution, which was the topic of a doctoral dissertation and the results of
which are presented in the article [12], a methodology was developed for the adjustment
and integration of spatial traverses surveyed using total stationtechniques with reference to
GNSS satellite measurements and the geoid. The measurement experiment was conducted
both in urban areas and in the mountains. The total stationand GNSS results were further
enriched by modelling the mutual plumb line arrangement in successive observation sta-
tions. Various polynomial functions were tested for this purpose, and numerical algorithms
were assessed, including Levenberg–Marquardt’s [13]. The use of numerical methods in
landslide monitoring is also described in the work [14]. Depending on the type of landslide
under study, an appropriate interpolation grid was defined in the test area, distinguishing
sectors of the phenomenon’s low, medium, and high activity. The level of activity then
determines the selection of appropriate modelling parameters. The method was developed
utilizing the total station data; however, it can be modified depending on other geodetic
measurement technologies. For example, such integration can be performed by employing
photogrammetric methods of correlating digital images [15].

Research on integrating total station and GNSS satellite measurements is also a vibrant
subject amongst researchers. For example, the publication [16] presents and discusses
study results using the methods above for deformation surveys of a large dam, obtaining
promising results in the long-term evaluation of its technical condition. Article [17], on
the other hand, demonstrates the analysis of a mathematical model for the adjustment
and integration of geodetic measurements in the local spatial system, without the need
for prior projection of GNSS vectors onto a reference ellipsoid. The author proposed
a computational model that integrates data from two sources—total station and static
GNSS measurements—and their joint adjustment in a single, coherent coordinate system.
However, this approach considers any local geoid model. In addition, the implementation
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of GNSS measurements requires a maximally open horizon, and in the case of other than
static positioning methods (e.g., Real-Time), also the fulfillment other conditions such
as an adequate number of available satellites, reducing interfering elements (multipath
mitigation), and many more [18].

As previously mentioned, photogrammetric methods based on appropriate modelling
of the relative and absolute positions of image projection centers while ensuring adequate
coverage of the pictured object [19] are currently the subject of exciting research. Based
on many available studies in this area, the authors conducted research employing pho-
togrammetry in precise object dimensioning and structural monitoring [20]. In this case,
however, one can talk about pure local network-specific micro-grids with reference points
deployed directly on the examined object. Similar studies can also be found in [21]. Here,
for assessing the condition of historical objects, the authors proposed the integration of
multi-source photogrammetric data, including historical photographs. In this context, the
publication [22] is also noteworthy, in which the authors proposed using geomatics tech-
nologies for the digital reconstruction of historical objects currently undergoing renewal.

The above considerations motivated the authors to conduct studies on developing
computational methods for integrating multi-source data processing, significantly increas-
ing the accuracy and reliability of the results obtained. Due to the integration of GNSS
measurements given directly in the geocentric reference frame and the vertical directions
from the EGM model (also computed in the geocentric reference frame), this frame is used
in the joint adjustment of the total station and GNSS measurements.

The effects of the relevant research are summarized and organized as follows: the
literature review is provided in the Introduction, the theoretical basis of the conducted
research is presented in Materials and Methods and its subsequent sections, and the results
of experimental works are further discussed (Discussion) and concluded (Conclusions),
showing some propositions for further research.

2. Materials and Methods

Based on theoretical assumptions, in this section, we present the workflow of the
developed method.

2.1. General Assumptions

Three-dimensional models of terrestrial objects are built based on a set of points with
coordinates (X, Y, Z) obtained using direct (total station measurements, 3D laser scanning)
and indirect methods (close-range photogrammetry, remote sensing). The accuracy of the
constructed model depends on the quality of the coordinates obtained. In the case of direct
methods, the accuracy of a measured point Q (Figure 1) depends on sound knowledge of
six total station or laser scanner external orientation parameters:

• Xs, Ys, Zs, the geocentric GRS80 coordinates of the origin P of the total stationtotal
station or a terrestrial laser scanner (TLS) measuring frame (x, y, z);

• Σ, ξ, η, the orientation angles of the (x, y, z) measuring frame with respect to the
external reference frame (X, Y, Z).

The ξ and η orientation angles are the components of the total station or TLS vertical
axis deflection from the normal to the GRS80 ellipsoid. The directional horizontal angle S is
called the instrument orientation constant.

The coordinates x, y, z of the point Q measured by the total station can be expressed
using the known form [23,24]:

x = d·cosα·sinβ (1)

y = d·sinα·sinβ (2)

z = d·cosβ+ i− j (3)
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where d–spatial distance, α–horizontal direction, β–vertical angle (corrected due to refrac-
tion), i–the height of the total station above ground point P; and j–the reflector (surveying
prism)’s height above ground point Q.
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Figure 1. Geocentric vs. topocentric (instrumental) reference system: Xs, Ys, Zs, Σ, ξ, η are six pa-
rameters of the total station external orientation; ϕ, λ are geodetic latitude and longitude; α, β are
measured horizontal and vertical angles to the point Q(X, Y, Z); d is the measured distance to the
surveyed point Q; and i, j are the instrument and reflector heights.

The coordinates (x, y, z) are converted to the (X, Y, Z) external reference system of the
point Q, according to the well-known formula [25]:X

Y
Z

 =

Xs
Ys
Zs

+ (R(Σ)Q(ξ, η, ϕ)P(ϕ, λ))T ·

x
y
z

 (4)

where

P(ϕ, λ) =

− sin ϕ cos λ − sin ϕ sin λ cos ϕ
− sin λ cos λ 0

cos ϕ cos λ cos ϕ sin λ sin ϕ

 (5)

Q(ξ, η, φ) =

 1 −η tan φ −ξ
η tan φ 1 −η

ξ η 1

 (6)

R(Σ) =

 cos Σ sin Σ 0
− sin Σ cos Σ 0

0 0 1

 (7)

The five external total station orientation parameters (Xs, Ys, Zs, ξ, η) can be obtained
from GNSS measurements (Xs, Ys, Zs) and computed from the EGM gravity model [26].
The sixth parameter S can be determined by the solution of Equation (4) for the given total
station measurements (d, α, β, i, j) and the coordinates from GNSS measurements at the
total station point P(Xs, Ys, Zs) and the target point Q(X, Y, Z) using, e.g., the Levenberg–
Marquardt method of conjugate gradients [27].

The integrated total station/GNSS/EGM geocentric points’ positioning method can
be applied to measurements on a single total station position, as well as on a few merged
total station positions along a spatial traverse (Figure 2).
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Figure 2. The total station spatial traverse points: the station points 1, 2, 5, the station merging
points 3, 4, 6, 7, and the measured control points A, B, C, D, E, deployed on office buildings in
Wroclaw (Poland): arrow pointers indicate the measured spatial directions (d, α, β) (picture by E.
Osada, background: Google Maps). The station and merging points 1–7 are also measured using the
GNSS-RTK technique.

The offline adjustment algorithm and the significance of the deflection of the verti-
cal components (ξ, η) for the ultimate adjustment results are widely discussed in prior
papers [28–30]. In the current work, we focus on the online procedures of adjusting the
total station spatial traverse in real time. The GNSS and EGM data are used for spatial
orientation of the total station traverse with respect to the geocentric reference frame. The
online adjustment methods presented in this paper are based on the general linear–mixed
statistical model, e.g., [31]. It is defined based on linearized observational equations of the
integrated data, as explained in the following Section 2.2. Alternative formulations of the
real-time sequential adjustment algorithm can be found in papers showing applications of
the Kalman filter and sequential regularization methods, e.g., [9,32], and in the case of the
Moore–Penrose pseudo-inverse in [33].

2.2. The Observational Equations of the Integrated Data

The linear observational equation of the coordinates vector determined using total
station measurements (formulas (1)–(3)) is given byx + εx

y + εy
z + εz

 =

x0 + dx
y0 + dy
z0 + dz

 (8)

Hence, εx
εy
εz

 =

dx
dy
dz

−
x− xs

y− ys
z− zs

 (9)

where

• dx, dy, dz are differentials of the coordinates x, y, z;
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• εx, εy, εz are the measurement random errors with zero expected value and known
covariance matrix:  σ2

x σxy σxz
σxy σ2

y σyz

σxz σyz σ2
z

 (10)

• xs, ys, zs are approximate values of the measured coordinates:xs
ys
zs

 = R(Σ)Q(ξ, η, ϕ)P(ϕ, λ)·

Xc − X
Yc −Y
Zc − Z

 (11)

The elements of the covariance matrix (10), which stand for the functions of the direct
observables (1)–(3), are computed using the covariance propagation law [34]:

σx =
√

sin2 β cos2 α · σ2
d + d2cos2 β cos2 α ·σ2

β + d2sin2 β sin2 α ·σ2
α (12)

σy =
√

sin2 β sin2 α · σ2
d + d2cos2 β sin2 α ·σ2

β + d2sin2 β cos2 α ·σ2
α (13)

σz =
√

cos2 β·σ2
d + d2·sin2 β·σ2

β + σ2
i + σ2

j (14)

σxy =
1
2

sin 2α·
(

sin2 β·σ2
d + d2cos2 β·σ2

β − d2·sin2 β·σ2
α

)
(15)

σxz = sin βcos βcos α·
(

σ2
d − d2·σ2

β

)
(16)

σyz = sin βcos βsin α·
(

σ2
d − d2·σ2

β

)
(17)

where σd, σα, σβ, σi, σj are the standard deviations of the directly measured values d, α, β, i, j.
The differential change of the total station coordinates equal the following:x

y
z

 = R(Σ)Q(ξ, η, ϕ)P(ϕ, λ)·

Xc − X
Yc −Y
Zc − Z

 (18)

due to differential changes of the total station standpoint coordinates X, Y, Z, the target
point coordinates Xc, Yc, Zc and total station spatial orientation angles Σ, ξ, η are given bydx

dy
dz

 = R(Σ)Q(ξ, η, φ)P(φ, λ) ·

1
1

1

dXc − dX
dYc − dY
dZc − dZ

+ R(Σ)
∂Q(ξ,η,φ)

dξ P(φ, λ)

Xc − X
Yc −Y
Zc − Z

dξ

+R(Σ)
∂Q(ξ,η,φ)

dη P(φ, λ)

Xc − X
Yc −Y
Zc − Z

dη + ∂R(Σ)
∂Σ Q(ξ, η, φ)P(φ, λ)

Xc − X
Yc −Y
Zc − Z

dΣ

+R(Σ)
∂[Q(ξ,η,φ)P(φ,λ)]

dφ

Xc − X
Yc −Y
Zc − Z

dφ + R(Σ)
∂[Q(ξ,η,φ)P(φ,λ)]

dλ

Xc − X
Yc −Y
Zc − Z

dλ

(19)

where the differentials dϕ, dλ are functions of the differentials dX, dY, dZ [35]:dφ
dλ
dh

 =


1

M+h 0 0
0 1

(N+h) cos φ
0

0 0 1

P(φ, λ)

dX
dY
dZ

 (20)
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and M, N are the radii of curvature of the ellipsoid in the meridian and in the prime vertical,
respectively.

The rotation (Σ, ξ, η) of the total station reference frame (x, y, z) due to differential
displacement dϕ, dλ of the total station point is very small and can be neglected. Thus, the
terms containing differentials dϕ, dλ can be omitted, and Equation (19) is reduced todx

dy
dz

 = R(Σ)Q(ξ, η, φ)P(φ, λ)

1
1

1

dXc − dX
dYc − dY
dZc − dZ

+ R(Σ)
∂Q(ξ,η,φ)

dξ

xg
yg
zg

dξ

+R(Σ)
∂Q(ξ,η,φ)

dη

xg
yg
zg

dη + ∂R(Σ)
∂Σ Q(ξ, η, φ)

xg
yg
zg

dΣ

(21)

where xg
yg
zg

 = P(ϕ, λ)

Xc − X
Yc −Y
Zc − Z

 (22)

and

∂Q(ξ, η, ϕ)

dξ
=

0 0 −1
0 0 0
1 0 0

 (23)

∂Q(ξ, η, ϕ)

dη
=

 0 − tan ϕ 0
tan ϕ 0 −1

0 1 0

 (24)

∂R(Σ)

∂Σ
=

− sin Σ cos Σ 0
− cos Σ − sin Σ 0

0 0 0

 (25)

Finally, the reduced linearized observational equation of the total station-measured
coordinates x, y, z (8) and (9) is given by the following formula:εx

εy
εz

 =

− sin λ sin Σ− sin φ cos λ cos Σ cos λ sin Σ− sin φ sin λ cos Σ cos φ cos Σ
− sin λ cos Σ + sin φ cos λ sin Σ cos λ cos Σ + sin φ sin λ sin Σ − cos φ sin Σ

cos φ cos λ cos φ sin λ sin φ

dXc − dX
dYc − dY
dZc − dZ



+

−zg cos Σ xg sin Σ tan φ− yg cos Σ tan φ− zg sin Σ −xg sin Σ + yg cos Σ
zg sin Σ xg cos Σ tan φ + yg sin Σ tan φ− zg cos Σ −xg cos Σ− yg sin Σ

xg yg 0

dξ
dη
dΣ

−
x− x0

y− y0
z− z0


(26)

The linear observational equation of the vector of geocentric coordinates X, Y, Z (ob-
tained from GNSS measurements) is given byX + εX

Y + εY
Z + εZ

 =

Xs + dX
Ys + dY
Zs + dZ

⇒
εX

εY
εZ

 =

dX
dY
dZ

−
X− X0

Y−Y0
Z− Z0

 (27)

where dX, dY, dZ are corrections of the coordinates X, Y, Z; Xs, Ys, Zs are their approximate
values, and εx, εy, εz are measurements random errors with zero expected value and a
known covariance matrix.  σ2

X σXY σXZ
σXY σ2

Y σYZ
σXZ σYZ σ2

Z

 (28)
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The linear observational equations of the vertical deflection components ξ, η are
given by (

ξ + εξ

η + εη

)
=

(
ξ0 + dξ
η0 + dη

)
⇒
(

εξ

εη

)
=

(
dξ
dη

)
−
(

ξ − ξ0
η − η0

)
(29)

where dξ, dη are corrections of the vertical component deflection ξ, η; ξ0, η0 are their ap-
proximate values, and εξ , εη are measurement random errors with zero expected value and
a covariance matrix: [

σ2
ξ σξη

σξη σ2
η

]
(30)

2.3. Adjustment of the Integrated Data at the Current Position of the Total Station Using the
Statistical General Linear Mixed Model

The statistical general linear mixed model (e.g., [31]) for all possible data measured at
the current total station position (d, α, β, X, Y, Z, ξ, η), represented by linear observational
Equations (8)–(17), including corrections to all the parameters adjusted at the previous total
station position, is defined as

ε = Xβ+ Uγ− y (31)

where [
γ

ε

]
~(
[

0
0

]
,
[

Σγ 0
0 Σε

])
(32)

In this model, X and U are known design matrices, y is a known data vector, β is a
vector of unknown corrections to all new parameters included at the current position of the
total station, γ ∼ (0, Σγ) is a vector of unknown corrections to all parameters adjusted at
previous total-station positions with zero expected value, and the known covariance matrix
Σγ, ε ∼ (0, Σε) is a vector of unknown observational residuals with zero-expected value
and a known covariance matrix Σε.

The least squares solution εΣ−1
ε ε

T + γΣ−1
γ γ

T = min of the mixed model ε = Xβ+
Uγ− y (31) is given by [31]

β̂ = (XTΣy
−1X)

−1
XTΣy

−1y (33)

γ̂ = ΣγUTΣy
−1(y− Xβ̂) (34)

where
Σy = Σε + UΣγUT (35)

Or, in a block matrix notation:[
β̂

γ̂

]
=

[
Σβ̂ Σβ̂γ̂

ΣT
β̂γ̂

Σγ̂

][
XTΣ−1

ε y
UTΣ−1

ε y

]
(36)

where [
Σβ̂ Σβ̂γ̂

ΣT
β̂γ̂

Σγ̂

]
=

[
XTΣ−1

ε X XTΣ−1
ε U

UTΣ−1
ε X UTΣ−1

ε U + Σ−1
γ

]−1

(37)

Σβ̂ = (XTΣ−1
y X)

−1
(38)

Σβ̂γ̂ = −Σβ̂XTΣ−1
y UΣγ (39)

Σγ̂ = (UTΣ−1
ε U + Σ−1

γ )
−1 − ΣT

β̂γ̂
XTΣ−1

y UΣγ (40)

is the covariance matrix of the adjusted parameters β̂ and γ̂.
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2.4. Experimental Works

The experimental works were performed in Wrocław, Poland. The proposed al-
gorithms were tested on data obtained during measurements at the points of the spa-
tial traverse (Figure 2). At the total station traverse positions 1, 2, 5, there were spa-
tial distances s, horizontal and vertical angles α, β (Figure 1), surveyed with standard
deviations σd = 0.006 m, σα = σβ = 0.0010 grad, and the instrument height i and re-
flector (prism) height j, with σi = σj = 0.002 m. Measurements were performed with
the use of the Leica FlexLine TS02 total station [36]. The X, Y, Z coordinates of the
station points 1, 2, 5 and merging points 3, 4, 6, 7 were measured with a Leica GS10
GNSS receiver [37] with standard deviations σX = σY = σZ = 0.008 m. At each point,
we performed real-time kinematic (RTK) GNSS surveys with direct differential correc-
tions broadcast by the GNSS permanent station WROC, located at the Wrocław Uni-
versity of Environmental and Life Sciences. The observation data can be downloaded
from http://www.asgeupos.pl/index.php?wpg_type=syst_descr&sub=ref_st&st_id=wroc
(accessed on 18 July 2023). The distance from the mobile receiver to the reference station
WROC was less than 250 m.

The northern ξ and eastern η components of the deflection of the total station vertical
axis from normal to the GRS80 ellipsoid were computed at the points 1, 2, 5 from the
EGM2008 geoid model data, available from https://www.usna.edu/Users/oceano/pguth/
md_help/html/egm96.htm (accessed on 18 July 2023) and presented in Table 1.

Table 1. Northern and eastern components of the plumb line deviations in the total station stand
points (EGM2008), see Figure 1.

Point No. ξ-Component
[arc sec ′′]

η-Component
[arc sec ′′] ∑ [grad]

1 5.9926 6.2033 209.0750
2 5.9852 6.1967 296.7144
5 5.9775 6.1896 50.2572

The approximate value Σ1 was computed by solving Equation (4) for GNSS-surveyed
point coordinates X, Y, Z of the points 1 and 2, and x, y, z coordinates of the point 2 mea-
sured using total station set up in point 1. Analogically, we computed the values Σ2
and Σ5.

According to information from total station manufacturers, the direction of the vertical
axis of an instrument is consistent with the real plumb line direction to the order of 0.5′′–2.0′′

[arc seconds]. So, in the adjustment process, the standard deviations of the components of
deflection of the vertical are assumed to be 1′′ (σξ = ση = 0.0003 [grad]). The covariance
σξη is unknown; it is assumed as 0 in the matrix (31). Research has shown [38] that in
mountainous areas, in the Alps, the actual direction of the vertical can differ up to 3.5′′

from the direction of the vertical computed in the EGM2008 model. This error is similar to
the accuracy of the vertical angles used in the experiment’s total-station instrument (3.0′′).
In the case of unique high-accuracy measurements using total stations in mountain areas,
the accuracy of the vertical deflection computed from EGM2008 model can be improved up
to 0.8′′ using a correction computed from the numerical terrain model [38].

An alternative method of joint total station and GPS positioning with the use of digital
terrain and gravity models is given in the paper [39]. In this case, the spherical model of the
local vertical distribution is extended using local digital models of the terrain and gravity.
Then, the residual field of the vertical deflection, based on spherical harmonic polynomials’
expansion, is determined via real-time adjustment of the total station and GPS data.

A method of adjustment of the total station data in real-time, assuming the spherical
distribution of the local vertical, is given in [33]. In this case, the relative position vectors
and height differences measured with total station along a traverse are adjusted in real-
time in three independent modes: spatial, planar, and height adjustment. If there are

http://www.asgeupos.pl/index.php?wpg_type=syst_descr&sub=ref_st&st_id=wroc
https://www.usna.edu/Users/oceano/pguth/md_help/html/egm96.htm
https://www.usna.edu/Users/oceano/pguth/md_help/html/egm96.htm
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some relative position GPS vectors, GPS ellipsoidal height differences, and leveling height
differences, they are included in the adjusting processes at the current position of the total
station. In the case of the height adjustment, it is assumed that the equipotential surfaces
are spherical in the local area. The adjustments are made using a recursive formulation of
the least squares method featuring the Moore–Penrose pseudoinverse.

In the method considered in this article, the accuracy and spatial orientation of the total
station traverse can also be improved, including additional measured height differences
between the traverse points using a leveling instrument. The relationship between ellip-
soidal and leveling orthometric or normal heights, which has been studied and developed
in many publications, e.g., [40–47], should be considered.

2.4.1. Classical Offline Adjustment

The classical offline adjustment of the total station traverse is performed, having
completed all measurements. In our numerical experiment, it has been performed in two
variants: by “including” and “excluding” the merging points 3, 4, 6, 7 (Figure 2). In the
first case, the traverse consists of three stations (1, 2, and 5) and four merging points (3, 4,
6, and 7), with coordinates determined using a GNSS receiver, and five measured control
points on the high buildings A, B, C, D, and E. In the second case, the traverse consists
of only three station points (1, 2, and 5), as determined by the GNSS receiver, and five
measured control points (A, B, C, D, and E).

The differences between the geocentric coordinates of all points obtained from the
“including” and “excluding” computation modes are not greater than 4.2 mm, with a mean
value of 1.0 mm and a standard deviation of ±1.4 mm. Comparing these with the accuracy
of the total station and GNSS measurements, we can conclude that the merging points
are not necessary for the spatial orientation of the total station traverse. As we can see,
the spatial orientation is very well provided by only the GNSS-measured coordinates of
the total station points 1, 2, and 5, and the deflections of the vertical obtained from the
EGM model.

The algorithms and results of the classical offline adjustment obtained via the measured
data in the same experiment shown in Figure 2 are presented in the article [28].

An alternative to the offline adjustment of all observations after making measure-
ments is to adjust the observations online directly during measurements, in real-time,
and sequentially.

In Section 2.4.2, we present the online algorithm for sequential adjustment of the sets
of observations performed at successive total station positions.

In Section 2.4.3, we present the online algorithm for sequential adjustment of the direct
observations performed at successive total station positions.

Online adjustment of observations provides real-time information about the accuracy
of the currently measured point, and about improving the accuracy of all previously
surveyed points. Thus, it is possible to conduct additional observations in real-time, and
select new total station positions to increase the accuracy of the measured points. These
are the main practical advantages of the real-time online sequential adjustment method, in
comparison with the offline method.

2.4.2. Sequential Online Adjustments of Total Station Positions

At the first total station position over the point 1 (see Figures 2 and 3), the observational–
mixed model is given by the equation

ε=Xβ − y (41)
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εTS1
εTS2
εTS3
εTS4
εTS5

———
εGPS1
εGPS2
εGPS3
εGPS4
———
εEGM1



= X



d1
d2
d3
d4
dA
dB

——
dξ1
dη1
dΣ1


− y (42)

where

• β =
[
dT

1 dT
2 dT

3 dT
4 dT

A dT
B | dξ1 dη1 dΣ1

]T
is the vector of corrections

to the approximate geocentric coordinates X, Y, Z of the points 1, 2, 3, 4, A, B (e.g.,
dT

1 =
[
dX1 dY1 dZ1

]
) and corrections dξ1, dη1, dΣ1 to the approximate orientation

angles of the total station ξ1, η1, Σ1,
• ε =

[
εT

TS1 εT
TS2 εT

TS3 εT
TS4 εT

TS5 | εT
GPS1 εT

GPS2 εT
GPS3 εT

GPS4 | εT
EGM1

]T

is the vector of total station measurement random errors εx, εy, εz of the x, y, z coordi-
nates of the points 2, 3, 4, B, A, respectively (e.g., εT

TS1 =
[
εx1 εy1 εz1

]
); the GNSS

measurements’ random errors εX , εY, εZ of the X, Y, Z coordinates of the points 1, 2,
3, 4, respectively (e.g., εT

GPS1 =
[
εX1 εY1 εZ1

]
); and the random errors εξ , εη of the

deflection of the vertical components ξ1, η1 at the first total station position (at point 1):
εT

EGM1 =
[
εξ1 εη1

]
.

• X, y is the known design matrix and free terms’ vector.

The solution β̂, Σβ̂ of the observational model ε = Xβ − y is given by
Equations (33)–(40).

In the next total station standpoint 2 (see Figures 2 and 4), the observational–mixed
model ε = Xβ+ Uγ− y is given by
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= X



d5
d6
d7
dC
dD

——
dξ2
dη2
dΣ2


+ U



d1
d2
d3
d4
dA
dB

——
dξ1
dη1
dΣ1


− y (43)

where

• γ =
[
dT

1 dT
2 dT

3 dT
4 dT

A dT
B | dξ1 dη1 dΣ1

]T
is the vector of unknown

corrections to all parameters adjusted on the first total station position, with zero
expected value and a known covariance matrix Σγ = Σβ̂.

• β =
[
dT

5 dT
6 dT

7 dT
C dT

D | dξ2 dη2 dΣ2

]T
is the vector of corrections dX, dY,

dZ to the approximate geocentric coordinates X, Y, Z of the new points 5, 6, 7, C, D
included in the model at the second total station position, and corrections dξ2, dη2, dΣ2
to the total station orientation angles;

• ε =
[
εT

TS6 εT
TS7 · · · εT

TS13 | εT
GPS5 εT

GPS6 εT
GPS7 | εT

EGM3
]T is the vector of

total station measurement random errors εx, εy, εz of the x, y, z coordinates of the
points 1, 3, 4, 6, 7, 5, C, D, respectively; the GNSS measurement’s random errors
εX , εY, εZ of the X, Y, Z coordinates of the points 5, 6, 7, respectively; and the random
errors εξ , εη of the deflection of the vertical components ξ2, η2 at the second total station
position (at point 2): εT

EGM2 =
[
εξ2 εη2

]
;

• X, y is the known design matrix and the free terms vector.

The solution of the observational–mixed model at the second total station position
ε = Xβ+ Uγ− y is given by Equations (33)–(40).

At the third total station position over the point 5 (see Figures 2 and 5), the observational-
mixed model ε = Xβ+ Uγ− y is given by
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d2
d3
d4
dA
dB

——
dξ1
dη1
dΣ1
——
d5
d6
d7
dC
dD

——
dξ2
dη2
dΣ2



− y (44)

where

• γ = [dT
1 dT

2 dT
3 dT

4 dT
A dT

B | dξ1 dη1 dΣ1
... dT

5 dT
6 dT

7 dT
C dT

D |
dξ2 dη2 dΣ2]

T is the vector of unknown corrections to all parameters adjusted on
the second total station position, with zero expected value and a known covariance
matrix:

Σγ =

[
Σβ̂ Σβ̂γ̂

Σβ̂γ̂
T Σγ̂

]
(45)

• β =
[
dT

E | dξ3 dη3 dΣ3

]T
is the vector of corrections dX, dY, dZ to the approxi-

mate geocentric coordinates X, Y, Z of the new point E included in the model at the
third total station position, and corrections dξ3, dη3, dΣ3 to the total station orienta-
tion angles;

• ε =
[
εT

TS14 εT
TS15 εT

TS16 εT
TS17 | εT

EGM3
]T is the vector of total station measure-

ment random errors εx, εy, εz of the x, y, z coordinates of the points 2, 6, 7, E, respec-
tively; and random errors εξ , εη of the deflection of the vertical components ξ3, η3 at
the third total station position (at point 5): εT

EGM3 =
[
εξ3 εη3

]
;

• X, y is the known design matrix and free terms vector.

The solution of the observational–mixed model at the third total station position
ε = Xβ+ Uγ− y is given by Equations (33)–(40).
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The results of the sequential online adjustments of the total station positions were
compared to those of the aforementioned classical offline adjustment of the total station
traverse, including the merging points, as presented in the paper [28]. The obtained
extremal coordinates’ differences are only 10−6 m. That technically means that the proposed
method and algorithm of the sequential online adjustment of the total station positions
work correctly, and give the same results as the classical offline adjustment of the traverse,
including the merging points, as expected.

2.4.3. Sequential Online Adjustments of the Total Station Observations

At the first total station position, the coordinate vectors of the station 1-point GPS1 =[
X1 Y1 Z1

]T and the target 2-point GPS2 =
[
X2 Y2 Z2

]T have to be determined via
a GNSS receiver. These position vectors and the vertical deflection components vector
EGM1 =

[
ξ1 η1

]T are used for computation of the approximate value of the horizontal
angle Σ1. The observational mixed model ε = Xβ + Uγ − y for the first total station
observation TS1 =

[
x1 y1 z1

]T , including the GPS1, GPS2 and EGM1 data, is given by


εTS1
εGPS1
εGPS2
εEGM1

 = X[dΣ1] + U


d1
d2

——
dξ1
dη1

− y (46)

where the covariance matrices Σε,Σγ of the vectors ε,γ are known a priori.
The solution of the mixed model is given by following Equations (33)–(40).
For the second total station observation TS2, the mixed model is defined as

εTS2 = Xd3 + U



d1
d2

——
dξ1
dη1
dΣ1

− y (47)

where γ =
[
dT

1 dT
2 | dξ1 dη1 dΣ1

]T
is the vector of unknown corrections to all

parameters adjusted previously, with zero expected value and a known covariance matrix:

Σγ =

[
Σβ̂ Σβ̂γ̂

Σβ̂γ̂
T Σγ̂

]
(48)

Its solution is given by Equations (33)–(40).
The next total station observation vectors TS4, TS5, . . . are included in the model and

adjusted in the same way. The GPS3, GPS4, . . . vectors can be included and adjusted after
measurements at any time. For example, if the GPS3 vector is included after adjustment
of the second total station observation TS2, the mixed model does not contain the new
parameters’ vector β:

εGPS3 = U



d1
d2

——
dξ1
dη1
dΣ1
——
d2


− y (49)
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where γ =
[
dT

1 dT
2 dT

3 | dξ1 dη1 dΣ1

]T
is the vector of unknown corrections to all

parameters adjusted previously, with zero expected value and a known covariance matrix:

Σγ =

[
Σβ̂ Σβ̂γ̂

Σβ̂γ̂
T Σγ̂

]
(50)

After measuring and adjusting all vectors at the first total station position, for example,
in the sequence {TS1+ GPS1+ GPS2+ EGM1}, TS2, GPS3, TS3, TS4, TS5, GPS4, the adjusted
sequential process is continued on the second position of the total station. Firstly, the
previously adjusted position vectors GPS1, GPS2 and vector of the vertical deflection
components EGM2 =

[
ξ2 η2

]T are used for computing the approximate value of the
horizontal angle Σ2. The observational–mixed model ε = Xβ+ Uγ− y for the first total
station observation on the second position TS6 =

[
x1 y1 z1

]T is defined by

[
εTS1
εEGM1

]
= X[dΣ2] + U



d1
d2

——
dξ1
dη1
dΣ1
——
d3
d4
dA
dB

——
dξ2
dη2



− y (51)

where the covariance matrices Σε,Σγ of the vectors are known a priori.
The solution of the mixed model is provided by solving Equations (33)–(40). Next,

data obtained from the measurements at station 2 are included in the model and adjusted
in the same way as the first total station position.

The adjusted sequential process is continued on the third position of the total station
in the same way.

The results of the sequential online adjustments of the total station observations
were compared to the classical offline adjustment of the total station traverse mentioned
earlier, excluding the merging points presented in the paper [28]. The obtained extremal
coordinates’ differences are only in the order of 10−6 m. This technically means that the
proposed method and algorithm of the sequential online adjustments of the total station
observations work correctly, and give the same results as the classical offline adjustment of
the traverse without merging points, as expected.

3. Discussion

In our studies, we have presented the algorithm for real-time adjustment of the
integrated GNSS, total station, and EGM vertical direction data in the geocentric coordinate
system. The proposed method has two modes: sequential online adjustment of the total
station positions and online adjustment of the total station observations. Both modes
have been tested on data from the spatial total station traverse measurements. In order
to verify the correctness of the online algorithm, the total station traverse data were also
adjusted using the offline algorithm. The offline adjustment was conducted with and
without including the merging points.

Online and offline adjustment computation should be considered complementary
approaches. They are an essential aspect of the assessment of surveying results, especially
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in issues related to displacement measurements and deformation monitoring. As demon-
strated in the previous section, the accuracies offered by both procedures are comparable
and utterly applicable to field measurements. Nevertheless, the main advantages of online
adjustment are the ability to conduct reliable deformation monitoring and the ongoing
fulfillment of the obtained measurement results for risk management purposes. In this
context, attention should be paid to the problem of notifying users of risks arising from the
construction and exploitation of the monitored object, as well as from various natural phe-
nomena affecting changes in its structural geometry. Defining safety thresholds (so-called
“limit checks”) is not straightforward. This is primarily caused by the need to correctly
identify a specific object and its surroundings, which in turn requires a reasonably long
observation period and using multi-source data. Its integration in a standardized manner
is one of the most significant theoretical challenges posed by modern geodesy.

Moreover, ongoing technological advancement influences the constant modification
of once-accepted assumptions. As a rule, data sets representing surveying results captured
continuously or quasi-continuously onsite must reliably identify outlier observations and
determine the influence of other error sources, be they systematic, personal, or instrumental.
To this end, complementary methods using estimation and optimization procedures are
becoming increasingly important. As discussed in our paper, such a need to work online
encourages the development of appropriate procedures and algorithms.

As demonstrated in the conducted studies, including information regarding the local
distribution of plumb line parameters in total station surveying is expedient and desirable.
To this end, total station and GNSS satellite measurements were concatenated within the
EGM2008 geoid model. Such an approach unifies operating surveying instruments, driving
them to be used precisely and universally. However, in the general assessment process, one
should consider the specifics of the developed test network. After all, the object reveals
specific features (urban, intensively built-up, and used areas) and geometrical features; the
network is regular, set up following the art of measurement. We realize that depending on
the altering conditions of surveys, the results may somewhat differ from those obtained in
our experiment.

Nevertheless, as already shown in the literature review, similar work has been carried
out in other conditions—for example, in the mountains—giving similar results. Addi-
tionally, incorporating further data sources into the observational system should not pose
significant concerns. In such a case, the vectors of unknowns and the corresponding coeffi-
cient matrices will be modified, generally increasing the size of the corresponding arrays.
Theoretically, this will cause increased demand for computer processing power; how-
ever, with the current parameters of available machines and computational optimization
methods, this should be a manageable challenge.

4. Conclusions

In conclusion, we have formulated some closing statements and tracked the progress
of further research in relevant fields. First, it should be noted that despite the many
studies conducted worldwide on the integration and standardization of spatial data, the
issue of effective data fusion still needs to be solved. This will mainly be achieved by
the continuous development of measurement methods and surveying instruments, as
well as by incorporating multi-source data into newly constructed surveying systems.
Examples include numerous attempts to combine spatial (geometric) data with physical
data. Secondly, scientific progress includes working on new geoid models and continuously
improving existing ones. Such studies transform into continuous precision and accuracy
validation of local plumb line parameters within the EGM framework. Undoubtedly, this
requires ongoing test work using current data sources.

The results of our study can be summarized as follows:

• The total station traverse is very well spatially oriented by using the total station
vertical axe deflection from normal to GRS 80 ellipsoid components obtained from
EGM, and by measuring the coordinates of the total station standpoint using a GNSS
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receiver. There is no need to carry out GNSS measurements at any additional merging
total station traverse points.

• The proposed methods and algorithms of the sequential online adjustment of the total
station positions and the sequential adjustment of the single total station vector of
observations, including the GNSS and EGM data in both cases, work correctly. They
deliver the same results as the classical offline adjustment of the total station traverse.

The proposed algorithms allow for real-time surveying with the online adjustment
of the observations in the geocentric coordinate system, providing current control of the
adjustment results. Our online computation methodology, applied to the discussed surveys
(total station/GNSS/EGM), can be used to directly model 3D objects in real time with high
spatial accuracy in a geocentric coordinate system. It can also be applied to measure control
points for further use in close-range photogrammetry (aerial and terrestrial). The procedure
can be applied while defining reliable tie points for merging point clouds in laser scanning
(both terrestrial and performed using UAVs). Such an approach is beneficial in BIM while
constructing and updating relevant 3D data models.

As our survey network was near the GNSS reference station (at a distance not exceed-
ing 250 m), we also acknowledge the need to test the solution for other-longer distances.
Our future works also encompass testing and improving new, multi-source data algorithms
for object diagnostic purposes.
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