
Citation: Wolfmayr, M. Parameter

Optimization for Low-Rank Matrix

Recovery in Hyperspectral Imaging.

Appl. Sci. 2023, 13, 9373. https://

doi.org/10.3390/app13169373

Academic Editors: Dimitris Mourtzis

and Paul Geladi

Received: 14 May 2023

Revised: 4 August 2023

Accepted: 16 August 2023

Published: 18 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Parameter Optimization for Low-Rank Matrix Recovery
in Hyperspectral Imaging
Monika Wolfmayr 1,2

1 Institute of Information Technology, Jamk University of Applied Sciences, 40101 Jyväskylä, Finland;
monika.wolfmayr@jamk.fi

2 Faculty of Information Technology, University of Jyväskylä, 40014 Jyväskylä, Finland

Abstract: An approach to parameter optimization for the low-rank matrix recovery method in
hyperspectral imaging is discussed. We formulate an optimization problem with respect to the
initial parameters of the low-rank matrix recovery method. The performance for different parameter
settings is compared in terms of computational times and memory. The results are evaluated by
computing the peak signal-to-noise ratio as a quantitative measure. The potential improvement in
the performance of the noise reduction method is discussed when optimizing the choice of the initial
values. The optimization method is tested on standard and openly available hyperspectral data sets,
including Indian Pines, Pavia Centre, and Pavia University.

Keywords: noise reduction; nonlinear optimization; low-rank modeling; hyperspectral imaging;
signal-to-noise ratio improvement

1. Introduction

In hyperspectral imaging (HSI), spectral signatures of objects are recorded for each
image pixel. The spectral signature of an object is the reflectance variation or function
with respect to the wavelength. It is important for characterizing materials and their
properties. In HSI, different types of noise appear due to environmental or instrumental
influences. The noises include Gaussian noise [1], impulse noise [2], dead pixels or lines [3],
and stripes [4]. This has been recently discussed, for instance, in [5] and in the overview
articles [6,7]. HSI combines spatial and spectral information in a hyperspectral data cube,
as displayed in Figure 1. Naturally, the amount of generated data is huge, and an efficient
and reliable approach to noise reduction takes advantage of the internal dependencies
between the wavebands. HSI precision and reliability are essential for many applications,
including digitalization and robotization in Earth and space exploration. The applications
include agricultural monitoring [8], atmospheric science [9], geology [10], and space ex-
ploration [11]. Efficient and reliable noise reduction techniques are essential for image
processing in practice regarding real-time decision-making and automation. In [12], various
noise reduction techniques have been compared for hyperspectral image data in asteroid
imaging, including also low-rank matrix recovery (LRMR).

LRMR is a low-rank modeling approach [13] and has been discussed among other
advanced image processing methods in more detail in [6,7]. We use here LRMR together
with the Go Decomposition (GoDec) numerical optimization algorithm as presented in [14]
in the inner iteration steps of the approach for solving the restoration model. Parameter
optimization in advanced image processing can provide important indirect information
for control and real-time decision-making. The main idea here is to optimize the choice of
the algorithm’s initial values in order to improve the performance of the noise reduction.
We analyze the parameter choices, including applying nonlinear optimization methods
as derived in [15]. The open, available hyperspectral data sets Indian Pines [16], Pavia
Centre [17], and Pavia University [17] are used for the computational tests.

Appl. Sci. 2023, 13, 9373. https://doi.org/10.3390/app13169373 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13169373
https://doi.org/10.3390/app13169373
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-3548-8240
https://doi.org/10.3390/app13169373
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13169373?type=check_update&version=1

Appl. Sci. 2023, 13, 9373 2 of 15

Figure 1. An example of a hyperspectral data cube (courtesy of NASA/JPL-Caltech).

This work is part of the coADDVA—ADDing VAlue by Computing in Manufacturing
project funded by the Regional Council of Central Finland/Council of Tampere Region
and European Regional Development Fund. It supports the project’s goals to improve the
efficiency of robotics by developing optimal control methods leading to flexible imaging
and automation in image processing.

The article is organized as follows: In Section 2, the methods are discussed, including
LRMR and the optimization applied to its initial parameter settings. The used data sets
are presented. Section 3 presents the computational results. Section 4 discusses the results
according to the existing literature and possible future work. Finally, Section 5 presents the
main contributions of this work.

2. Methods and Materials
2.1. Methods

The first LRMR model was proposed in [18] as a robust principle component analysis
approach. It was further developed in [13] for hyperspectral image restoration by com-
bining nonlinear optimization in the inner iteration loop in order to solve the restoration
model. In this work, we apply optimization with respect to the initial parameters in terms
of an outer iteration loop.

In the following, we present the LRMR model. Given the real matrix D of size m× n
containing the observed data and assuming corruption by the sparse error matrix S and
random Gaussian noise modeled by the matrix N, the goal is to recover the low-rank
matrix L with D = L + S + N, which are all real-number matrices of the same size: m× n.
The minimization problem

min
L,S
‖D− L− S‖2

F s.t. rank(L) ≤ r, card(S) ≤ p (1)

is solved, with r denoting the upper bound for the rank of L and p for the cardinality
of S, which is related to the estimation of noise corruption. The norm ‖ · ‖F denotes the
Frobenius-norm. The formulation (1) of LRMR can be found in [13,14]. Redundancies
between the wavebands yield the low-rank property required for LRMR. LRMR modeling
is then applied together with the GoDec algorithm [14] in order to solve the subproblems
exploiting the low-rank property of HSI. The subproblems are created by taking subcubes
centered at a pixel in the spatial dimension. Thus, if the whole data cube is of size m× n×w,
where w denotes the number of spectral reflectance bands, then the subcubes are of size
b× b× w, with b < m and b < n. We define the entries of the subcube’s spectral band
by the spectral band. The entries of each subcube band–by-band are then organized in
lexicographical order to obtain two-dimensional matrices of size b2 × w. The subcubes

Appl. Sci. 2023, 13, 9373 3 of 15

are then processed iteratively, providing local image restoration. We denote further the
iteration stepsize by s. More details on the specific LRMR model can be found in [13] and
on GoDec in [14].

The main focus of this work is the detailed investigation of the LRMR method with
respect to the starting values for its main variable parameters, including rank r and blocksize
of the subcubes b, estimation parameter for the percentage of noise corruption p, and
stepsize s of the inner iteration. In the following, we denote by r, p, b, and s the initial
settings. We apply nonlinear optimization in order to determine the best parameter values
for the parameter settings with respect to the peak signal-to-noise ratio (PSNR). We choose
the Nelder–Mead simplex algorithm as presented in [15] for the nonlinear optimization.
The PSNR is computed by

PSNR = 10 ∗ log10
max(C)2 ∗m ∗ n ∗ w

‖C− C̃‖2
, (2)

where C and C̃ denote the original and denoised data cube, respectively. The sizes of the
spatial and spectral dimensions are denoted by m, n, and w. The performance of LRMR
is analyzed in terms of computational efficiency and memory with regard to different
parameter choices. The computational time taken by the algorithm in MATLAB and
Python is compared in order to study the performance of LRMR and differences in the
implementation between the two programming languages. The goal is to investigate
possible difficulties with parameter optimization.

2.2. Materials

We present the data sets used in this work.

2.2.1. Indian Pines Data Set

The Indian Pines data set covers the Indian Pines test site, which is located in north-
western Indiana. It shows mainly agriculture and forest. The data set consists of 224 spectral
reflectance bands and is 145 × 145 pixels. The wavelength range lies between 0.4 and
2.5 × 10−6 m. The Indian Pines data set is openly available in [16].

Figure 2 shows the scene for six different spectral reflectance bands: 1, 50, 80, 130, 180,
and 220. Different bands show different layers of materials’ spectral signatures.

Figure 2. The Indian Pines data set displayed for six different spectral reflectance bands: 1, 50, 80,
130, 180, and 220.

Appl. Sci. 2023, 13, 9373 4 of 15

2.2.2. Pavia Centre Data Set

The data set contains scenes from the center of Pavia in northern Italy. It consists of
102 spectral reflectance bands and is 1096 × 1096 pixels. The set is openly available in [17].

Figure 3 shows the scene for three different spectral reflectance bands: 1, 50, and 102.

Figure 3. The Pavia Centre data set displayed for spectral reflectance bands 1, 50, and 102.

2.2.3. Pavia University Data Set

The data set contains scenes from the university in Pavia in northern Italy. It consists
of 103 spectral reflectance bands and is 610 × 610 pixels. The set is openly available in [17].

Figure 4 shows the scene for three different spectral reflectance bands: 1, 50, and 103.

Figure 4. The Pavia University data set displayed for spectral reflectance bands 1, 50, and 103.

3. Results

We analyze how different parameter settings affect the PSNR and computational times.
We are able to show that different parameter values and their combinations have an effect
on the PSNRs and computational times of the LRMR method. The initial parameter values

Appl. Sci. 2023, 13, 9373 5 of 15

are optimized with respect to PSNR and CPU time. The parameter value combinations are
studied in detail, and the results are presented visually.

We study the initial parameter value combinations for three integer-valued
parameters—r, s, and b—and one real-valued parameter p. We apply nonlinear opti-
mization with respect to the real-valued noise estimation parameter p, which results in an
improvement in PSNR. The integer parameters are analyzed on a series of test sets. The op-
timized values are chosen according to their best PSNR performance. For all analyzed
settings and resulting combinations, we show CPU times in MATLAB and Python. The
computational experiments are performed on a laptop with an Intel(R) Core(TM) i5-8250U
CPU @ 1.60 GHz 1.80 GHz processor and 16.0 GB RAM.

Figure 5 shows the performance of the method for a noise-corrupted waveband of the
Indian Pines data set [16] for the parameter settings r = 7, p = 0.15, b = 20, and s = 8.

Figure 5. The noise removal performance of LRMR on a noise-corrupted spectral band for the Indian
Pines data set. The image is restored efficiently.

3.1. Parameter Analysis for r

The rank parameter r describes the upper bound for the rank of the low-rank matrix
describing the noise-free signal of the data cube. The value should be as small as possible
while not underestimating the noise intensity of the image data. Small values provide shorter
computational times, while larger values provide higher PSNR values. We vary the starting
value for the rank parameter r between 1 and 20. The other parameters are kept at p = 0.15,
b = 20, and s = 8. Figure 6 shows the PSNR values for different values of r. In general, higher
values of r provide larger PSNR values. The analysis shows that a value of r ≥ 4 is sufficient.
The largest gradient step is already taken from r = 1 to r = 2. The computational times in
MATLAB are shown in Figure 7. A larger rank value r results in a larger computational time.
The computational tests were computed on the Indian Pines data set.

Figure 6. PSNR plot for different values of r.

Appl. Sci. 2023, 13, 9373 6 of 15

Figure 7. CPU time plot for different values of r.

In the following, we present the PSNR, the gradient of the PSNR denoted as ∇PSNR,
and computational times in seconds in MATLAB and Python, denoted as tMatlab and tPython,
respectively, in Table 1. Lower rank values are better in terms of computational effort.

Table 1. The PSNRs, gradients of PSNR, and the CPU times in seconds for computing the denoised
cubes for different values of r in MATLAB tMatlab and Python tPython.

r PSNR ∇PSNR tMatlab tPython

1 20.99 14.70 14.31 95.15
2 35.69 10.02 18.37 85.57
3 41.02 5.04 20.32 108.98
4 45.77 3.28 21.63 107.42
5 47.58 1.45 21.84 109.01
6 48.67 0.94 24.70 108.22
7 49.45 0.76 26.32 115.23
8 50.19 0.69 27.23 112.48
9 50.83 0.61 28.06 114.21
10 51.42 0.60 28.92 116.79
11 52.03 0.61 31.49 117.49
12 52.65 0.53 30.35 99.18
13 53.10 0.44 30.96 100.97
14 53.52 0.38 32.62 103.88
15 53.87 0.33 33.12 97.06
16 54.19 0.31 34.03 111.33
17 54.49 0.31 35.12 113.62
18 54.81 0.28 35.81 104.27
19 55.06 0.24 36.22 121.06
20 55.28 0.22 38.06 125.18

The computational effort is significantly more efficient in MATLAB. The analysis for
Indian Pines suggests choosing r = 5. This parameter choice provides a sufficient balance
between PSNR and computational time.

3.2. Parameter Analysis for s

The parameter s describes the iteration stepsize for processing the subcubes of LRMR’s
local image restoration. We vary the parameter value for the stepsize s between 1 and 20.
The other parameter values are kept at r = 7, p = 0.15, and b = 20. Figure 8 shows the
PSNR values for different values of s. The trend shows that larger values for the stepsize s
yield smaller PSNR values. Hence, smaller values for s are preferred, since we target a larger

Appl. Sci. 2023, 13, 9373 7 of 15

PSNR. The computational times in MATLAB are shown in Figure 9. The computational
times are smaller for larger stepsizes s. However, the CPU times decrease significantly
for stepsizes larger than 4. The computational tests were computed on the Indian Pines
data set.

Figure 8. PSNR plot for different values of s.

Figure 9. CPU time plot for different values of s.

In the following, we present the computational times in seconds in MATLAB and
Python in Table 2. Also, the gradient values for the computational times in MATLAB
∇tMatlab are presented. The result is that a balance between smaller stepsizes that produce
better PSNRs and larger stepsizes that are better in terms of computational time and effort
has to be achieved. However, note that the difference in PSNR values is not significant, as
Figure 8 shows. Figure 9 and the gradient values for the CPU times in Table 2 show clearly
that a stepsize s ≥ 4 provides significant improvement regarding computational times.

Appl. Sci. 2023, 13, 9373 8 of 15

Table 2. The PSNR, the CPU times in seconds, and the gradient of CPU times for computing the
denoised cubes for different values of s in MATLAB tMatlab as well as the CPU times in Python tPython.

s PSNR tMatlab ∇tMatlab tPython

1 49.61 951.11 −706.38 3793.27
2 49.62 244.72 −420.41 1007.87
3 49.56 110.29 −90.82 481.01
4 49.58 63.09 −30.02 301.01
5 49.61 50.24 −16.93 193.88
6 49.57 29.22 −10.62 178.32
7 49.46 29.00 −1.63 114.31
8 49.48 25.96 −7.63 100.41
9 49.45 13.74 1.54 139.66

10 49.40 29.04 7.71 112.07
11 49.47 29.16 −10.48 111.66
12 49.19 8.08 −7.71 137.42
13 49.34 13.74 9.01 53.73
14 49.23 26.11 −1.90 100.47
15 49.17 9.94 1.53 38.31
16 49.24 29.18 1.85 111.84
17 49.17 13.63 −12.60 52.35
18 48.97 3.98 7.81 178.98
19 49.05 29.25 5.95 114.47
20 48.83 15.88 −13.36 60.94

As for the rank value r, the computational effort is significantly better in MATLAB
than in Python.

3.3. Parameter Analysis for r and s

In this parameter analysis, we study how the parameter choices for r and s influence
each other. Figure 10 shows the PSNRs for different rank r and stepsize s values, whereas
the other parameter values b and p are set as b = 20 and p = 0.15. The point of intersection
is marked and corresponds to r = 7 and to values for s ∈ [1, 20]. Again, r = 7 is shown to
be the optimized parameter choice, whereas values for s show no significant difference in
PSNRs. The tests were computed on the Indian Pines data set.

Figure 10. PSNR surface plots for different r and s intersects.

Appl. Sci. 2023, 13, 9373 9 of 15

3.4. Parameter Analysis for b

The blocksize of the subcubes for local restoration of LRMR is denoted by b. The pa-
rameter choice is significant, since naturally, the size of the subcubes provides accuracy and
computational effort to the restoration. We vary the starting value for the blocksize parameter
b between 15 and 25. Smaller values for b have not provided successful computations and
errors in PSNR. The other parameters are kept as r = 7, p = 0.15, and s = 8. Figure 11
shows the PSNR values for different values of b. The PSNR values are linearly decreasing
with respect to increasing blocksize. Figure 12 shows the computational times in seconds in
MATLAB. Apart from the large leap at the end and the smaller leap at the beginning, the
computational time regarding the change in blocksize seems not to be affected significantly,
although a weak trend towards increasing PSNR with increasing blocksize seems to be visible.
We present the computational results for the Indian Pines data set.

Figure 11. PSNR plot for different values of b.

Figure 12. CPU time plot for different values of b.

Appl. Sci. 2023, 13, 9373 10 of 15

In the following, we present the computational times in seconds in MATLAB and
Python in Table 3.

Table 3. The CPU times in seconds for computing the denoised cubes for different values of b in
MATLAB tMatlab and Python tPython.

b PSNR tMatlab tPython

15 50.14 11.01 48.13
16 49.96 11.58 83.56
17 49.87 26.39 102.33
18 49.73 26.41 124.62
19 49.62 26.23 122.86
20 49.42 24.71 127.33
21 49.36 24.29 97.29
22 49.23 23.37 92.63
23 49.16 23.04 102.33
24 49.07 21.16 179.84
25 48.88 127.72 257.69

Again, the computational effort is better in MATLAB R2022a.

3.5. Parameter Analysis for p

The parameter p describes an initial estimation of the amount of noise corruption in the
data cube. It is the only real-valued parameter of LRMR’s initial parameters. Hence, non-
linear optimization can be applied to determine the optimal initial value for p. We present
results for the nonlinear optimization method: the direct search method (i.e., the Nelder–
Mead simplex algorithm [15]). We applied the method on the different test sets and varied
the starting value for p. The other parameters were set as r = 7, b = 20, and s = 8.
We computed the optimization results of this section in MATLAB. In Figure 13, the negative
PSNR values of the iteration steps of the nonlinear minimization method, the Nelder–Mead
simplex algorithm, computed with respect to p are presented. We present the results for
the Indian Pines data set. The starting value p = 0.15 was chosen.

Figure 13. The function values of the iteration steps of the nonlinear optimization Nelder–Mead
simplex algorithm with respect to p for the Indian Pines data set and starting value p = 0.15.

Appl. Sci. 2023, 13, 9373 11 of 15

The results in Figure 13 show convergence towards a local minimum. The value yields
an improvement in PSNR. The computational tests show proper performance applying
the Nelder–Mead simplex algorithm, including convergence and computational effort.
However, the method is searching for a local optimum and, hence, has its limitations.
The starting value is crucial. We include a table of final minimization function values and
values for p for different starting values (Table 4). The stopping criteria were chosen as
follows: the error in the function value is smaller than 10−15, the error in the optimization
parameter value is smaller than 10−9, the maximum of function evaluations in one iteration
step equals 20, and the overall maximum number of outer iteration steps equals 20.

We propose the choice of p = 0.15 for further computations on the data sets used in
this work. It is numerically stable and provides sufficient PSNR values. Higher starting
values than 1e + 1 have not provided sufficient convergence.

As a second test, we computed the PSNR and computational times for different values
of p ∈ [0, 0.2] to test different starting values. The Indian Pines test set was used again for
a qualitative parameter analysis. Figure 14 shows the PSNR values for different p values.
The figure suggests choosing a smaller starting value for p, which coincides with Table 4.
Figure 15 shows the CPU times for different p values. The CPU times seem not to be
significantly affected in this range of p.

Figure 14. PSNR plot for analyzing different starting values of p.

Figure 15. CPU time plot for different values of p.

Appl. Sci. 2023, 13, 9373 12 of 15

Table 4. The final function values for the minimization problem (the negative PSNR values) and
the corresponding parameter value pfinal for different starting values p0. Clearly, local minima are
approached. Based on the Indian Pines data set.

p0 −PSNR pfinal

0.015 −49.990256 0.014977
0.05 −49.887782 0.047813
0.15 −49.503483 0.143438
0.5 −49.476512 0.596875
1. −49.616882 0.975000

1.5 −49.750781 1.818750

3.6. Optimized Parameter Choice

Combining the results of the previous subsections, we present the resulting images
for the optimized values. We propose the following settings: r = 7, s = 8, b = 20, and
p = 0.15.

3.6.1. Indian Pines Data Set

The result of applying LRMR with the optimized parameter setting is shown in
Figure 16.

Figure 16. LRMR result computed on the Indian Pines data set for the optimized parameter settings.

3.6.2. Pavia Centre Data Set

The result of applying LRMR with the optimized parameter setting is shown in
Figure 17.

Figure 17. LRMR result computed on the Pavia Centre data set for the optimized parameter settings.

Appl. Sci. 2023, 13, 9373 13 of 15

3.6.3. Pavia University Data Set

The result of applying LRMR with the optimized parameter setting is shown in
Figure 18.

Figure 18. LRMR result computed on the Pavia University data set for the optimized parameter settings.

4. Discussion

We note that parameter tests on other different hyperspectral image data sets may
provide different parameter settings. Hence, we advise researchers to perform a parameter
study for the initial values in the LRMR method setup for a new test set. A problem-specific
parameter configuration is suggested, and it was a goal of this work to highlight and
provide a sample analysis as a model for other tests.

We computed the nonlinear optimization and the main analysis results in MATLAB.
A comparison between the computational costs of MATLAB and Python was presented
for the integer-valued parameters. The overall behavior of the algorithms is the same in
MATLAB and Python. However, the computational times are significantly larger in Python.
The reason is the efficient storing and processing of matrix–vector operations in MATLAB.
The analysis of computational times is important for applications where the data budget
is limited or where the data have to be processed in real-time (therefore, for real-time
decision making). It was important to show the similar behavior in relative terms for both
implementations—MATLAB and Python—and to discuss the implementation issues that
may occur. We observed stable behavior for each implementation, and the relative behavior
was the same.

Regarding future work, other optimization methods can be applied in order to select
the optimized initial values for p. We have applied the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) quasi-Newton method [19–22] as an alternative to nonlinear optimization. However,
the method always stopped after two iteration steps. Alternatively, the use of a machine
learning approach might provide additional parameter optimization results and a more
efficient optimization approach to choosing p. This would require access to or the creation
of a large data set in order to secure efficient training and testing of the machine learning
algorithm. However, this is beyond the scope of this article and is ongoing work of
the author.

Appl. Sci. 2023, 13, 9373 14 of 15

5. Conclusions

We address parameter analysis and optimization yield improvement of hyperspectral
images with regard to the PSNR. We present a detailed analysis with respect to the initial
parameters of the LRMR method for different data test sets; however, we focus on the Indian
Pines data set. The approach of this work studying parameter optimization for LRMR’s
initial parameters is new and has not been presented in this way earlier. The analysis
provides new insights into the flexibility and boundaries of the method.

Funding: This research was funded by the Regional Council of Central Finland/Council of Tampere
Region and European Regional Development Fund as part of the coADDVA—ADDing VAlue by
Computing in Manufacturing projects of Jamk University of Applied Sciences.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data sets are openly available: Indian Pines [16], Pavia Centre [17],
and Pavia University [17].

Conflicts of Interest: The author declares no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

HSI hyperspectral imaging
LRMR low-rank matrix recovery
GoDec Go Decomposition
PSNR peak signal-to-noise ratio
BFGS Broyden–Fletcher–Goldfarb–Shanno

References
1. Mandelbrot, B.B. A fast fractional Gaussian noise generator. Water Resour. Res. 1971, 7, 543–553. [CrossRef]
2. Majumdar, A.; Ansari, N.; Aggarwal, H.; Biyani, P. Impulse denoising for hyper-spectral images: A blind compressed sensing

approach. Signal Process. 2016, 119, 136–141. [CrossRef]
3. Shen, H.; Zhang, L. A MAP-based algorithm for destriping and inpainting of remotely sensed images. IEEE Trans. Geosci. Remote

Sens. 2009, 47, 1492–1502. [CrossRef]
4. Rogass, C.; Mielke, C.; Scheffler, D.; Boesche, N.K.; Lausch, A.; Lubitz, C.; Guanter, L. Reduction of uncorrelated striping

noise—Applications for hyperspectral pushbroom acquisitions. Remote Sens. 2014, 6, 11082–11106. [CrossRef]
5. Sun, L.; Cao, Q.; YChen, Y.; Zheng, Y.; Wu, Z. Mixed Noise Removal for Hyperspectral Images Based on Global Tensor Low-

Rankness and Nonlocal SVD-Aided Group Sparsity. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–17. [CrossRef]
6. Ghamisi, P.; Yokoya, N.; Li, J.; Liao, W.; Liu, S.; Plaza, J.; Rasti, B.; Plaza, A. Advances in hyperspectral image and signal processing:

A comprehensive overview of the state of the art. IEEE Geosci. Remote Sens. Mag. 2017, 5, 37–78. [CrossRef]
7. Rasti, B.; Scheunders, P.; Ghamisi, P.; Licciardi, G.; Chanussot, J. Noise reduction in hyperspectral imagery: Overview and

application. Remote Sens. 2018, 10, 482. [CrossRef]
8. Singh, S.; Suresh B. Role of hyperspectral imaging for precision agriculture monitoring. ADBU J. Eng. Technol. 2022, 11, 1–5.
9. Calin, M.A.; Calin, A.C.; Nicolae, D.N. Application of airborne and spaceborne hyperspectral imaging techniques for atmospheric

research: Past, present, and future. Appl. Spectrosc. Rev. 2021, 56, 289–323. [CrossRef]
10. Peyghambari, S.; Zhang, Y. Hyperspectral remote sensing in lithological mapping, mineral exploration, and environmental

geology: An updated review. J. Appl. Remote Sens. 2021, 15, 031501. [CrossRef]
11. Qian, S.E. Hyperspectral satellites, evolution, and development history. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021,

14, 7032–7056. [CrossRef]
12. Wolfmayr, M.; Pölönen, I.; Lind, L.; Kašpárek, T.; Penttilä, A.; Kohout, T. Noise reduction in asteroid imaging using a miniaturized

spectral imager. SPIE Sensors Syst. Next-Gener. Satell. XXV 2021, 11858, 121–133.
13. Zhang, H.; He, W.; Zhang, L.; Shen, H.; Yuan, Q. Hyperspectral image restoration using low-rank matrix recovery. IEEE Trans.

Geosci. Remote Sens. 2013, 52, 4729–4743. [CrossRef]
14. Zhou, T.; Tao, D. Godec: Randomized low-rank & sparse matrix decomposition in noisy case. In Proceedings of the 28th

International Conference on Machine Learning, ICML 2011, Bellevue, WA, USA, 28 June–2 July 2011; pp. 33–40.
15. Lagarias, J.C.; Reeds, J.A.; Wright, M.H.; Wright, P.E. Convergence Properties of the Nelder-Mead Simplex Method in Low

Dimensions. SIAM J. Optim. 1998, 9, 112–147. [CrossRef]

http://doi.org/10.1029/WR007i003p00543
http://dx.doi.org/10.1016/j.sigpro.2015.07.019
http://dx.doi.org/10.1109/TGRS.2008.2005780
http://dx.doi.org/10.3390/rs61111082
http://dx.doi.org/10.1109/TGRS.2023.3257851
http://dx.doi.org/10.1109/MGRS.2017.2762087
http://dx.doi.org/10.3390/rs10030482
http://dx.doi.org/10.1080/05704928.2020.1774381
http://dx.doi.org/10.1117/1.JRS.15.031501
http://dx.doi.org/10.1109/JSTARS.2021.3090256
http://dx.doi.org/10.1109/TGRS.2013.2284280
http://dx.doi.org/10.1137/S1052623496303470

Appl. Sci. 2023, 13, 9373 15 of 15

16. Purdue University Research Repository. Indian Pines Data Set. Available online: https://purr.purdue.edu/publications/1947/1
(accessed on 12 December 2022).

17. Pavia Centre and University Data Sets; Gamba, P. Telecommunications and Remote Sensing Laboratory, Pavia University. Avail-
able online https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#Pavia_Centre_and_University
(accessed on 12 December 2022).

18. Wright, J.; Ganesh, A.; Rao, S.; Peng, Y.; Ma, Y. Robust principal component analysis: Exact recovery of corrupted low-rank
matrices via convex optimization. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC,
Canada, 7–10 December 2009; p. 22.

19. Broyden, C.G. The Convergence of a Class of Double-Rank Minimization Algorithms. IMA J. Appl. Math. 1970, 6, 76–90. [CrossRef]
20. Fletcher, R. A New Approach to Variable Metric Algorithms. Comput. J. 1970, 13, 317–322. [CrossRef]
21. Goldfarb, D. A Family of Variable Metric Updates Derived by Variational Means. Math. Comput. 1970, 24, 23–26. [CrossRef]
22. Shanno, D.F. Conditioning of Quasi-Newton Methods for Function Minimization. Math. Comput. 1970, 24, 647–656. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://purr.purdue.edu/publications/1947/1
https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#Pavia_Centre_and_University
http://dx.doi.org/10.1093/imamat/6.1.76
http://dx.doi.org/10.1093/comjnl/13.3.317
http://dx.doi.org/10.1090/S0025-5718-1970-0258249-6
http://dx.doi.org/10.1090/S0025-5718-1970-0274029-X

	Introduction
	Methods and Materials
	Methods
	Materials
	Indian Pines Data Set
	Pavia Centre Data Set
	Pavia University Data Set

	Results
	Parameter Analysis for r
	Parameter Analysis for s
	Parameter Analysis for r and s
	Parameter Analysis for b
	Parameter Analysis for p
	Optimized Parameter Choice
	Indian Pines Data Set
	Pavia Centre Data Set
	Pavia University Data Set

	Discussion
	Conclusions
	References

