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Abstract: The autonomous driving market has experienced rapid growth in recent times. From
systems that assist drivers in keeping within their lanes to systems that recognize obstacles using
sensors and then handle those obstacles, there are various types of systems in autonomous driving.
The sensors used in autonomous driving systems include infrared detection devices, lidar, ultrasonic
sensors, and cameras. Among these sensors, cameras are widely used. This paper proposes a method
for stable lane detection from images captured by camera sensors in diverse environments. First,
the system utilizes a bilateral filter and multiscale retinex (MSR) with experimentally optimized set
parameters to suppress image noise while increasing contrast. Subsequently, the Canny edge detector
is employed to detect the edges of the lane candidates, followed by utilizing the Hough transform
to make straight lines from the land candidate images. Then, using a proposed restriction system,
only the two lines that the current vehicle is actively driving within are detected from the candidate
lines. Furthermore, the lane position information from the previous frame is combined with the lane
information from the current frame to correct the current lane position. The Kalman filter is then used
to predict the lane position in the next frame. The proposed lane-detection method was evaluated in
various scenarios, including rainy conditions, low-light nighttime environments with minimal street
lighting, scenarios with interfering guidelines within the lane area, and scenarios with significant
noise caused by water droplets on the camera. Both qualitative and quantitative experimental results
demonstrate that the lane-detection method presented in this paper effectively suppresses noise and
accurately detects the two active lanes during driving.

Keywords: lane detection; multiscale retinex (MSR); restriction system; lane tracking

1. Introduction

Recently, extensive research has been conducted on autonomous driving systems,
which encompass a variety of types. For instance, the lane-change assist system utilizes
cameras for improved visibility, while the lane-departure warning system detects the
changes and alerts the driver, employing audible signals and steering wheel correction
when there is a risk of departing from the lane while driving. Furthermore, the lane-keeping
assist system (LKAS) helps maintain the vehicle within the lane during operation. Effec-
tively to assist the driver, these systems rely on accurate lane detection and identification to
determine the shape and position of the lanes.

Advanced driver-assistance systems technologies employ a range of sensors, including
cameras, ultrasonic sensors, and radars. Among these, cameras offer a cost-effective solu-
tion while providing a substantial amount of information. Additionally, when combined
with ultrasonic or radar sensors, cameras can serve as auxiliary sensors. Consequently,
cameras are extensively utilized in these systems. Lane detection from camera-captured
images can be achieved through two methods: the model-based method, which utilizes
mathematical models to detect and predict lane structures, and the feature-based method,
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which identifies lanes by analyzing pixel information such as patterns, colors, or gradients.
However, the emergence and widespread use of deep learning methods employing neural
networks has led to an increasing adoption of such techniques for lane detection across
various domains. Accordingly, this paper classifies the pre-deep learning methods as
tool-based methods, while methods employing neural networks are referred to as deep
learning methods, and appropriate explanations are provided accordingly.

One prominent method in the tool-based approach involves leveraging lane edges.
This method utilizes Canny edge detection to identify edges, followed by the application
of the Hough transform on the resulting edge image to detect straight lines. Another
approach involves utilizing random sample consensus (RANSAC) to eliminate outliers
or employing density-based spatial clustering of application with noise (DBSCAN) for
clustering on the edge image. Another avenue is the utilization of color for lane detection.
Several methods employ the RGB color space or employ color segmentation in color space
models such as HSV and Lab to differentiate pixels and classify them into respective classes.
The previously discussed methods primarily focus on lane detection and information
about other vehicles during driving. However, for autonomous driving, a comprehensive
approach is required, which encompasses not only lanes and other vehicles but also road
network topology, signal locations, signage, and buildings. A digital map system called
high-definition map (HD map) contains such detailed road information. HD maps are
created based on various sensor data, including cameras, lidar, and GPS. On the other hand,
in the deep learning-based approach, the U-Net ConvLSTM, a variation of U-Net with skip
connections, can be employed for pixel-level segmentation. Additionally, some methods
utilize generative adversarial network (GAN) models to generate lane-detection images
based on input frames.

As the interest in autonomous driving systems continues to increase, numerous com-
panies and countries are actively conducting research and pursuing commercialization
in this field. Given the variations in geography, laws, and regulations, road and natural
environments differ across different countries. Consequently, autonomous driving systems
must adapt and operate reliably in diverse environments. This paper presents a method
for robust lane detection in challenging environments where lane detection using cameras
becomes difficult. The proposed method involves several steps. First, the brightness of the
input image is analyzed to differentiate between day and night conditions. Next, noise is
suppressed, and contrast is optimized using carefully tuned parameters specific to each
time period. The Canny edge detector is then employed to detect lane candidates, and
the Hough transform is utilized to identify all lines present in the resulting lane-candidate
image. Subsequently, the proposed restriction system is employed to identify the two
lines with the highest probability of being lane lines. Finally, the positions of these two
lines are estimated and updated using the Kalman filter, enabling the final detection of the
lane lines.

2. Related Works
2.1. Tone Correction

Tone correction is a widely employed method for adapting the brightness of an image
to make it suitable for lane detection, achieved by adjusting the tone of the image [1,2].
Several approaches can be used to adjust the tone, including increasing the intensity value
of each pixel to brighten the image or stretching the dynamic range by creating a histogram
of the intensity values of all pixels in the image. Numerous techniques for tone control are
available, and the selection of a specific method depends on the unique characteristics of
the image and the requirements of the lane-detection algorithm.

Human vision is sensitive to the ratio of ambient brightness, which refers to the light
reflected by the surrounding environment rather than the actual brightness emitted by a
light source. To account for these characteristics, techniques such as histogram stretching
and histogram equalization are employed to enhance the input image. Histogram stretching
is a method that linearly expands the narrow dynamic range of the original image’s
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histogram. On the other hand, histogram equalization utilizes the cumulative density
function to achieve a uniform distribution across the entire image area [3]. The distinction
between these two methods can be observed in Figure 1. However, it is important to note
that these tone correction methods have limited effectiveness when the image contains
both dark and bright areas simultaneously. In environments where lanes are illuminated by
headlights in darkness, these tone correction methods may not be suitable for improving
image quality.
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Figure 1. Comparison of histogram equalization and histogram stretching.

The single-scale retinex method is employed to enhance the contrast or sharpness
of an image by eliminating background components present in the input image [4]. This
is achieved by applying a Gaussian filter of a single scale to remove the background
component. However, instead of using a single-scale Gaussian filter, the background
component can be effectively eliminated by employing a Gaussian filter with multiple
scales. This approach, known as the multiscale retinex (MSR) algorithm, generates an
output image by assigning appropriate weights to the filtered results [5].

2.2. Lane Detection
2.2.1. Tool-Based Methods

Vehicle-installed cameras often exhibit poor image quality due to cost constraints and
spatial environmental limitations. Consequently, the acquired images for lane detection
often contain various elements that interfere with accurate detection, such as noise in
low-luminance regions. To address this, a smoothing filter is applied to suppress noise and
enhance edge sharpness prior to optimal edge detection. Specifically, a bilateral filter is
commonly used, which reduces noise while preserving the lane edges [6]. The bilateral filter
employs two parameters, intensity sigma and space sigma, which can be adjusted to control
the level of edge preservation and smoothing based on the environmental information in
the image.

The Canny edge detector is a powerful method for edge detection, typically involving
four stages: noise reduction, edge gradient computation, nonmaximum suppression, and
double thresholding and edge tracking through hysteresis [7]. These four stages can be
observed in Figure 2. Although the Canny edge detector offers high detection performance,
its processing speed is relatively slow due to the division into multiple stages. As a result, in
cases where most lanes appear vertical in vehicle-installed cameras, an alternative approach
is to utilize the faster calculation of the Sobel operator [8,9].
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Figure 2. The four steps of Canny edge detection. (1) Noise Smoothing through Gaussian Fil-
tering. (2) Compute Gradient Magnitude and Orientation using the Sobel Edge Mask (Sky blue:
337.5~22.5 and 157.5~202.5 degrees, Red: 22.5~67.5 and 202.5~247.5 degrees, Blue: 67.5~112.5 and
247.5~292.5 degrees, Green: 112.5~157.5 and 292.5~337.5 degrees). (3) Non-maximum suppression.
(4) Hysteresis Thresholding step detection enhances weak edges near strong edges to form consistent
edges by distinguishing strong and weak edges.

The Hough transform is a highly effective method for detecting approximate straight
lines in edge images. It represents a straight line as a point in the domain of gradient
and y-intercept. In this representation, all possible straight lines that can pass through
a point are transformed into a single line in the gradient–y-intercept plane [10]. Due to
this property, the Hough transform is widely utilized in lane detection. Additionally,
another approach for detecting estimated lane lines in edge images involves using the
RANSAC algorithm [11,12]. RANSAC is commonly employed in regression problems
and consists of two steps: the hypothesis step and the verification step. The process is
iterated a specified number of times set by the user. In the hypothesis step, a set of n
sample data points is randomly selected from the entire dataset, and a model is predicted
based on these samples. In the verification step, the number of data points that match the
predicted model are counted, and the model with the maximum number of matches is
saved. Through this iterative process, a lane model can be identified in the edge image,
enabling lane estimation detection. Furthermore, the edge pixels in an edge image form
a point cloud, and DBSCAN can be utilized to group the points based on their density
in the point cloud image [13]. Several methods employ DBSCAN for lane detection in
edge images [12,14]. During the density-based grouping process, there is an approach
that incorporates directional information, known as directional DBSCAN (D-DBSCAN).
This technique is particularly useful for detecting parking slot lines [15]. Moreover, lane
detection can be performed by converting the input image into a bird’s-eye view after
acquiring the camera’s internal and external parameters through camera calibration [16,17].
This method is commonly used for detecting curved lanes that are relatively distant from
the camera. Autonomous driving systems not only rely on cameras but also actively
involve research utilizing distance-detection sensors such as lidar. Three-dimensional
lidar enables more precise distance measurements in three-dimensional space compared
to lidar, but it may encounter challenges such as occlusion and out-of-range issues when
reaching the sensing-range limitations of connected automated vehicles (CAV). To address
these problems, HYDRO-3D combines object detection and object tracking information
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to infer objects, and employs a novel spatial–temporal 3D neural network to enhance the
features of object detection [18]. There have been studies that contribute to the extraction,
reconstruction, and evaluation of vehicle trajectories based on the cooperative perception
of connected autonomous vehicles (CAV) by presenting data acquisition and analytics
platforms utilizing not only cameras but also LiDAR sensors, GPS, and communication
systems in autonomous driving systems [19].

The Kalman filter is a commonly employed technique for tracking lanes in successive
frames after lane detection in an initial frame. It utilizes the newly obtained lane information
in the current frame to correct and update the accumulated lane information from the
previous frames. By leveraging this information, the Kalman filter estimates the position of
the lane in the next frame [20]. Another approach for lane tracking is to utilize a particle
filter [21]. This method employs a set of particles to represent the possible positions and
characteristics of the continuous lanes. By iteratively updating and resampling the particles
based on the observed lane information, the particle filter can track the lane across multiple
frames. Furthermore, there exists a fusion method that combines both the Kalman filter
and the particle filter for lane tracking [22]. This hybrid approach leverages the strengths
of both filters to improve the accuracy and robustness of the lane tracking process. Kalman
filters can be utilized not only for lane tracking in video but also for estimating errors in a
reduced inertial navigation system (R-INS) by incorporating information from an inertial
measurement unit (IMU). The IMU provides acceleration and angular rate measurements,
which can be used to estimate velocity and heading errors in the R-INS. By combining
these IMU measurements with velocity error measurements between R-INS and the global
navigation satellite system (GNSS), a velocity-based Kalman filter can accurately estimate
the errors in R-INS, including velocity and heading. This integrated approach, leveraging
both visual data and GNSS measurements, enhances the accuracy of position and heading
estimation in autonomous driving systems. Therefore, Kalman filters not only facilitate
lane tracking but also enable the estimation of velocity and heading errors, improving the
overall navigation and perception capabilities in autonomous driving systems [23–25].

2.2.2. Deep Learning-Based Methods

Deep learning has gained significant traction across various fields, including lane detec-
tion. Recent advancements in deep learning-based lane-detection methods can be systemati-
cally classified and presented based on different criteria. Here are two main categories:

(1) Encoder–decoder segmentation: In this approach, encoder–decoder convolutional
neural networks (CNNs) are commonly used for pixelwise segmentation. SegNet
is a deep fully convolutional neural network architecture specifically designed for
semantic pixelwise segmentation [26,27]. LaneNet is another model that focuses on
end-to-end lane detection and consists of two decoders: a segmentation branch for
lane detection in a binary mask and an embedding branch for road segmentation [28].
Another variant replaces the skip connection in U-Net with a long short-term memory
(LSTM) layer, shown in Figure 3 [29]. LSTM is a type of recurrent neural network
(RNN) that addresses the challenge of modeling long dependencies in sequential
data [30,31]. By incorporating an LSTM layer, this method effectively preserves high-
dimensional information from the encoder and transmits it to the decoder. Also,
there is a method to replace the standard convolution layer in the traditional U-Net
with depthwise and pointwise convolutions to reduce computational complexity
while maintaining the detection rate. This U-Net structure is referred to as DSUNet
(depthwise and pointwise U-Net) [32].

(2) GAN model: The GAN is composed of a generator and a discriminator [33]. Lane
detection can be performed using GAN-based models [34]. One specific method
proposed the embedding-loss GAN (EL-GAN) for semantic segmentation. The gen-
erator predicts lanes based on input images, while the discriminator determines the
quality of the predicted lane using shared weights. This approach produces thinner
lane predictions compared to regular CNN results, allowing for more accurate lane
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observation. It also performs well in scenarios where lanes are obscured by obstacles
such as vehicles.
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3. Proposed Method

The proposed lane-detection system as shown in Figure 4 consists of three stages: noise-
reduction processing, lane-candidate grouping, and optimal lane detection and tracking.
In the noise-reduction processing stage, techniques such as discrimination between day
and night, region of interest (ROI), and a surround-dependent bilateral filter are used to
reduce noise according to the input image. The lane-candidate grouping stage includes
the adjusted MSR representation to optimize the tone mapping for easier lane detection.
Additionally, Canny edge detection is utilized to identify edges, and the Hough transform
is employed to group potential lane candidates. Finally, in the optimal lane detection
and tracking stage, a restriction system is proposed to identify the actual lane within the
candidate group. The Kalman filter is used to track the lane detected in the previous
frame, ensuring consistent lane tracking. By following these three stages, the proposed
lane-detection system aims to environment-adaptively reduce noise, group lane candidates,
and accurately detect and track the optimal lane under varying driving conditions.
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3.1. Noise-Reduction Processing

The objective of this part is to reduce noise and enhance contrast in the input image.
The process begins by dividing the image into two regions: an upper region used to
determine the time period of the image, and a lower region where the actual lane detection
takes place. Specific parameters corresponding to the time period are applied to process
the images. This differentiation between daytime and nighttime enables noise suppression
and contrast enhancement tailored to each specific time period.

3.1.1. Discrimination between Day and Night

The input image is divided into two regions, the upper area and the lower area, known
as the ROI, illustrated in Figure 5. The upper area is utilized to determine the time period
of the input image, while the lower area is dedicated to lane detection.
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Lane detection can be challenging due to variations in lighting conditions particular
to day and to night. At night, factors such as dark surroundings, vehicle headlights, and
backlights of cars ahead can hinder lane detection. During the day, lanes are generally
easier to detect, but excessive sunlight can lead to blurred lane markings. Figure 6a,c
demonstrate the disappearance of lanes due to inappropriate parameters, while Figure 6b,d
show the benefits of using appropriate parameters for lane detection. Increasing contrast is
advantageous for lane detection, especially in bright daytime conditions. However, in low-
light conditions at night, the presence of oversaturated areas caused by vehicle headlights
can obscure lane markings. Therefore, increasing contrast can sometimes eliminate lanes in
these oversaturated regions. The parameters used in the system are specifically designed
to preserve detailed edge information, which is crucial for accurate lane detection.

To distinguish between daytime and nighttime in the upper area of the image, a
criterion was established based on experimentation. A total of 1800 daytime images
and 1740 nighttime images were used in this experiment. The goal was to determine an
appropriate threshold that can effectively differentiate between the two conditions. In
order to measure brightness in the area on the road, there are numerous variables that
can affect the measurement. To mitigate this, we calculated the average pixel value in
the sky area of the image, as this region tends to have fewer variables. Figure 7 depicts
a histogram showing the average brightness values in the sky area of each grayscale
image. By cropping the sky area of the input image and calculating the average brightness,
this paper determined that a value over 80 indicates a daytime condition, while a value
below 80 suggests a nighttime condition. This threshold value serves as the criterion for
distinguishing between day and night in the upper area of the image.
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3.1.2. Suppression of Noise and Contrast Enhancement

The bilateral filter is usually used to address the concern of amplifying severe noise in
the low-intensity region when applying gamma modulation for brightness improvement [6].
This part aims to environment-adaptively preserve the edge of the lane while suppressing
noise before enhancing brightness. To optimize the parameters of the bilateral filter, such as
the spatial sigma (σs) and intensity sigma (σi) in Equation (1), the line profile information
in Figure 8 is utilized. By analyzing the line profile, the optimal values of σs and σi can
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be determined, ensuring a balance between noise suppression and edge preservation for
accurate lane detection.

I′(x, y) = ∑y∈N(x) e
−‖y−x‖2

2σ2
s e

−‖I(y)−I(x)‖2

2σ2
i I(x, y) (1)

where σs and σi are the parameters controlling the fall-off of weights in spatial and intensity
domains, respectively. N(x) is a spatial neighborhood of pixel I(x). σs is the geometric
spread parameter that is to be chosen based on the extent of low-pass filtering required.
A large value of σs implies a combination of values from farther distances in the image.
Similarly, σi is the parametric spread that is set to achieve the desired amount of the
combination of pixel values.
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Figure 8. Comparison of the line profiles for noise reduction (The green line indicates the position of
the line profile): (a) cropped image; (b) cropped image’s line profile; (c) image with suppressed noise
using a bilateral filter; and (d) bilateral image’s line profile.

This study sets the parameters of the bilateral filter according to the time of the input
image. For daytime, the focus was on enhancing the edges and improving the details
of the image, as the image already included sufficient illumination components due to
sunlight. The images shown in Figure 9a,c have been passed through a bilateral filter with
different parameters. Figure 9a is the image obtained by setting σs and σi to 15/255 and 2,
respectively, as expressed in Equation (1). Furthermore, the image shown in Figure 9c was
obtained by setting the values of σs and σi to 3/255 and 12, respectively. Figure 9b,d are
the line profiles of the lanes in each image of Figure 9a,c, respectively. By comparing the
edge gap between Figure 9c,d, the edge gap in Figure 9d is confirmed to be larger. Based
on this, the parameters of the bilateral filter were set to high values for images acquired
during the day.

In contrast to daytime images, nighttime images present different challenges, includ-
ing the absence of sunlight and the presence of severe noise caused by headlights from
other vehicles and streetlights. Therefore, the focus in nighttime image processing is on
suppressing noise around the lane. In Figure 10, different bilateral filter parameters are
applied to the images shown in Figure 10a,c. The images shown in Figure 10b,d represent
the line profiles corresponding to Figure 10a,c respectively. By comparing the two profiles,
it can be observed that the noise is effectively suppressed and the edge gaps are preserved
in Figure 10b. This demonstrates the effectiveness of the chosen bilateral filter parameters
in suppressing noise while maintaining edge information in nighttime images.
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Figure 9. A comparison for determining the appropriate parameters of a bilateral filter during
daytime (The red lines indicate the position of the lane profile, and the red dots represent the
boundary of the lane edge): (a) high bilateral filter parameters and MSR with uniform weight on
sigma; (b) image (a)’s lane-line profile; (c) low bilateral filter parameters and MSR with uniform
weight on sigma; and (d) image (c)’s lane-line profile.
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Figure 10. A comparison for determining the appropriate parameters of a bilateral filter at nighttime
(The red lines indicate the position of the lane profile, and the red dots represent the boundary of the
lane edge): (a) high bilateral filter parameters and MSR with uniform weight on sigma; (b) image
(a)’s lane-line profile; (c) low bilateral filter parameters and MSR with uniform weight on sigma; and
(d) image (c)’s lane-line profile.

In this study, the MSR algorithm is adjusted to optimize the tone mapping for the
enhanced lane detection in challenging harsh environments where lane identification is dif-
ficult. This processing is applied prior to the edge-detection step. Retinex image processing
assumes that an image consists of a background illumination component and a reflection
component. By using a Gaussian filter, the algorithm separates the illumination component
from the original image and subtracts it, thus enhancing the reflection component. This can
be expressed as Equation (2). To perform retinex at multiple scales, the sigma value of the
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Gaussian filter is varied. By selecting and combining appropriate sigma values based on
the image environment, the edge components of the lanes can be effectively emphasized.
Mathematically, this can be represented by Equation (3). To improve processing speed, the
convolution operation of the Gaussian filter with each frame and sigma is replaced with a
multiplication process in the fast Fourier transform (FFT) domain. Overall, the application
of the MSR algorithm with multiple scales and the use of FFT-based processing contribute
to enhancing lane edge components and improving the efficiency of lane detection in
challenging dark environments.

SSRi(x, y) = log(Ii(x, y))− log(Ii(x, y) ∗ Gσi (x, y)), (2)

MSR(x, y) = ∑n
i=1 ωiSSRi(x, y), (3)

where Ii(x, y) is the input image, Gσi (x, y) is a Gaussian filter, and σi is the i th sigma; convo-
lution Ii(x, y) and Gσi (x, y) background components can be obtained, and the background
components can be subtracted from the original image.

We can obtain an image in which the reflection component is emphasized. This
process is performed at multiple scales n with the weight of each scale; finally, we sum
them together. In this experiment, uniform weight is ensured. The lane in Figure 11 is
emphasized to facilitate detection of the line profile.
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In the experimental determination of the MSR parameters, the focus was on enhancing
the edge gap in daytime images where there is sufficient lighting and less noise. Figure 12
illustrates the results of this experiment. The experiment involved setting each single-scale
sigma value in Equation (2) to different values: 10, 90, and 200. The resulting images shown
in Figure 12a,c,e were created by assigning equal weight to each ωi in Equation (3), with
higher weights given to lower sigma values and lower weights given to higher sigma
values. By analyzing the line profiles shown in Figure 12b,d,f, it can be observed that the
line profile of Figure 12f exhibits the largest edge gap. This indicates that by assigning
higher weights to lower sigma values, the MSR algorithm effectively enhances the edge
gap in daytime images. Through these experimental results, the optimal parameters for
the MSR algorithm in daytime images were determined, enabling the enhancement of lane
edge gaps for improved lane detection.
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In nighttime images, where illumination is lower and noise is more pronounced, this
paper aims to maintain the maximum edge gap while suppressing noise. Figure 13a,c,d
illustrate the experimental results obtained by setting different weights for each single-scale
sigma value (10, 90, and 200). Figure 13a represents the result obtained using the MSR
algorithm with uniform sigma values for the parameters of the bilateral filter. Figure 13c
shows the result when a higher weight is assigned to the lower sigma value of 10, while
Figure 13e displays the result when a higher weight is assigned to the larger sigma value of
200. By analyzing the line profiles shown in Figure 13d, it can be observed that the profile
with a higher weight on the lower sigma value exhibits the best noise suppression while
maintaining the edge gap. This indicates that by assigning higher weights to lower sigma
values, the MSR algorithm effectively suppresses noise in nighttime images, contributing
to improved lane detection. Through these experimental results, the optimal weights for
different sigma values in the MSR algorithm were determined, enabling effective noise
suppression while preserving the maximum edge gap in nighttime images.
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3.2. Lane-Candidate Grouping and Optimal Lane Detection and Tracking
3.2.1. Determination of the Edge and Straight Line

In the preprocessed image with noise suppression and enhanced contrast, the Canny
edge detector is employed to detect the edges [7]. As the Gaussian blur step of the Canny
edge detection has already been replaced during the noise-reduction process, it is omitted.
In the hysteresis thresholding stage, the high thresholding is set to a low value, while the
low thresholding is set to a high value, aiming to detect a maximum number of edges while
eliminating small ones. These threshold values were determined through experimental
analysis. Subsequently, the Hough transform is applied to detect candidate lines from the
edge image, as illustrated in Figure 14 [10].

3.2.2. Restriction System and Lane Tracking

As the subsequent step, the final lane is determined through the process depicted in
Figure 15, starting from the lane-candidate group obtained using the Hough transform.
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sigma; and (f) image (e)’s lane-line profile. 

3.2. Lane-Candidate Grouping and Optimal Lane Detection and Tracking 
3.2.1. Determination of the Edge and Straight Line 

In the preprocessed image with noise suppression and enhanced contrast, the Canny 
edge detector is employed to detect the edges [7]. As the Gaussian blur step of the Canny 
edge detection has already been replaced during the noise-reduction process, it is omitted. 
In the hysteresis thresholding stage, the high thresholding is set to a low value, while the 
low thresholding is set to a high value, aiming to detect a maximum number of edges 
while eliminating small ones. These threshold values were determined through experi-
mental analysis. Subsequently, the Hough transform is applied to detect candidate lines 
from the edge image, as illustrated in Figure 14 [10]. 

  
(a) (b) 

Figure 14. The image created by applying the Canny edge detection to generate an edge image and 
detecting lane candidates using the Hough transform: (a) a sample with no interfering factors pre-
sent in the driving area; and (b) a sample with interfering factors present in the driving area. 

3.2.2. Restriction System and Lane Tracking 
As the subsequent step, the final lane is determined through the process depicted in 

Figure 15, starting from the lane-candidate group obtained using the Hough transform. 
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red line: Selected lane from lane candidates, green line: Lane initially selected from lane candidates
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The angle and distance restrictions in this paper are determined based on the ex-
perimental results shown in Figure 16. The experiment involved analyzing 1000 images.
Figure 16 displays the outcome of applying k-means clustering to the point cloud repre-
senting the detected lanes. The scattered points represent the angles and distances of the
lanes detected by this method without the restriction system. The angle (θ) and distance
(Ddist) are calculated using Equations (4) and (5), respectively.

θ = ‖ tan−1 yline
xline
‖, (4)

Ddist = ‖
Cline − Cimg

Wimg
‖, (5)

where ylane is the line height, xline is the line width, Cline is the coordinate of the line’s center
point, Cimg is the coordinate of the image’s center point, wimg is the image’s width length,
and Ddist indicates the distance of the lane from the center of the image.
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Figure 16. Experiments for determining the Distance factor and Theta factor (result of k-means
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Theta of the lanes (Blue, red, and yellow: information about lines other than the lanes. Green:
lane information).

The k-means clustering algorithm is used in this study to group the data into k clusters
based on minimizing the variance of the distance between each cluster [35]. The light-green
cluster in the k-means clustering result is considered as the lane distribution. To improve
the lane-detection rate, the angle (θ) and distance (Ddist) are restricted to a range of 0.4 to
0.8 and 0.06 to 0.4, respectively. These constraints increase the probability of detecting the
actual lanes among the detected lines. While these restrictions are stringent, it is possible
that a lane may not be detected in a single frame. However, the Kalman filter is used to
estimate the lane based on the information from previous frames.

In the previous step, two lanes are obtained and updated using the Kalman filter. This
lane information is used for the Kalman prediction in the next frame. The lane information
also corrects the estimated lane from the previous frame using the currently observed
information [11]. In cases where an appropriate lane is not detected in the current frame
due to strong external light interference, the Kalman tracking result from the previous
frame is used. When the Kalman filter is updated and lane information is not detected in
the current frame, the lane of the current frame is estimated using only the previous data
without a correction value. However, due to the robustness of the Kalman filter, stable
detection and tracking are possible under certain frame conditions as long as the lane does
not change abruptly. Overall, this approach prevents the degradation of the Kalman filter’s
performance by avoiding false information about the lane during the prediction phase.

4. Simulations
4.1. Experimental Results

The proposed method was implemented on a PC with the following specifications:
an Intel i5-6500 processor, 8GB RAM, running Python version 3.9.12 on Windows 10.
Additionally, the U-Net ConvLSTM and DSUNet methods for comparisons have been
trained and executed in a different computer environment. This environment consisted of
an Intel i9-11900K processor, 32 GB RAM, and an RTX 4090 GPU. The U-Net ConvLSTM and
DSUNet implementation utilized Python version 3.9.12 on Linux Ubuntu version 22.0.4.s.

Figures 17–20 present the comparison results among various lane-detection methods
including the U-Net ConvLSTM and DSUNet neural network architectures. The DSUNet is
a modification of the U-Net architecture, where all layers except the first layer are replaced
with depthwise and pointwise convolution layers from the standard convolution layer
structure. Additionally, drop-out is incorporated to prevent overfitting. The conventional
method incorporates the Gaussian filter, Canny edge, Hough transform, and Kalman
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filter [2,10,11]. Furthermore, the U-Net ConvLSTM is a neural network architecture that
replaces the skip connection part of the U-Net with long short-term memory (LSTM) [29].
The neural network was trained using a dataset comprising 401,052 images. As mentioned
earlier, the experiments were conducted by comparing different environments. These
environments can be broadly categorized as follows: cases where the image contains a
wiper, cases where the lane markings on the road are not clearly visible due to rainwater,
cases where there are obstructions such as guidelines in the road area, and cases where the
road area is overexposed by headlights from vehicles and other factors during nighttime.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 22 
 

pedestrian crossings or windshield wipers. The conventional method achieves relatively 
successful lane detection. However, in videos where the windshield wiper is constantly 
moving, the detection results are not satisfactory due to wiper interference. In contrast, 
the proposed method performs well in both scenarios, accurately detecting the lanes even 
when rainwater reflection or wiper interference is present. Figure 18 shows the results of 
lane detection in the case where the road area is heavily reflected due to rainwater. In this 
case, where the reflection is severe, other methods fail to detect the lane markings, while 
the proposed method successfully identifies the lane markings. 

Figure 19 displays the results of lane detection in the case where there are lines other 
than lane markings present in the road area, causing interference with the detection pro-
cess. DSUNet shows a better performance compared to U-Net ConvLSTM as it avoids 
detecting irrelevant lines and provides more accurate lane detection. Figure 20 demon-
strates the challenges posed by dark environments where there is no sunlight and the lane 
area is overexposed by headlights from vehicles and streetlights. DSUNet demonstrates a 
certain level of robust detection even under challenging conditions. On the other hand, 
the U-Net ConvLSTM method, due to severe noise, fails to detect lanes in several areas. 
Additionally, the conventional method struggles to properly detect the lanes when they 
are obstructed by guidelines before entering tollgates. In contrast, the proposed method 
consistently and reliably detects the lanes in all situations, overcoming these challenges 
effectively. 

(a) (b) (c) (d) 

Figure 17. Experimental results in the case where the wiper obstructs the image: (a) conventional;
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Figure 17 demonstrates the results of the lane detection when a wiper is present in
the image. The U-Net ConvLSTM method struggles to detect the lanes accurately. In the
case of the DSUNet method, it increases the number of unnecessary detections, such as
pedestrian crossings or windshield wipers. The conventional method achieves relatively
successful lane detection. However, in videos where the windshield wiper is constantly
moving, the detection results are not satisfactory due to wiper interference. In contrast,
the proposed method performs well in both scenarios, accurately detecting the lanes even
when rainwater reflection or wiper interference is present. Figure 18 shows the results of
lane detection in the case where the road area is heavily reflected due to rainwater. In this
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case, where the reflection is severe, other methods fail to detect the lane markings, while
the proposed method successfully identifies the lane markings.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 17 of 22 
 

Figure 17. Experimental results in the case where the wiper obstructs the image: (a) conventional; 
(b) DSUNet; (c) U-Net ConvLSTM; and (d) proposed method. 

 
(a) (b) (c) (d) 

Figure 18. Experimental results in the case where the road is heavily reflected due to rainwater: (a) 
conventional; (b) DSUNet; (c) U-Net ConvLSTM; and (d) proposed method. 
Figure 18. Experimental results in the case where the road is heavily reflected due to rainwater:
(a) conventional; (b) DSUNet; (c) U-Net ConvLSTM; and (d) proposed method.

Figure 19 displays the results of lane detection in the case where there are lines other
than lane markings present in the road area, causing interference with the detection process.
DSUNet shows a better performance compared to U-Net ConvLSTM as it avoids detecting
irrelevant lines and provides more accurate lane detection. Figure 20 demonstrates the
challenges posed by dark environments where there is no sunlight and the lane area is
overexposed by headlights from vehicles and streetlights. DSUNet demonstrates a certain
level of robust detection even under challenging conditions. On the other hand, the U-Net
ConvLSTM method, due to severe noise, fails to detect lanes in several areas. Additionally,
the conventional method struggles to properly detect the lanes when they are obstructed
by guidelines before entering tollgates. In contrast, the proposed method consistently and
reliably detects the lanes in all situations, overcoming these challenges effectively.
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Figure 19. Experimental results in the case where there are obstructions such as lines other than
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posed method.

4.2. Objective Assessment

To evaluate the performance of the proposed method quantitatively, we measured
the detection rate. We conducted the evaluation in four different scenarios: cases where
the front view was obstructed by the wiper, cases where the road area was reflected by
rainwater, cases where there were other lines present in the road area, and cases where
the road area was overexposed by multiple light sources. In each scenario, we evaluated
the detection of both left and right lanes, resulting in a total of 400 images (100 images for
each scenario). The evaluation method involved comparing the detected lanes with the
actual lanes. If the detected lanes closely matched the actual lanes, they were considered
true; otherwise, they were considered false. The evaluation criteria are the same as in
Figure 21. We separately evaluated the left and right lanes and then combined them to
assess if they correctly represented the direction of the actual vehicle. The evaluation results
are presented in Table 1. In the results, compared to the U-Net-based method, about 34%
in the left-lane case and about 30% in the right-lane case were observed. In the case of
DSUNet, there is little difference compared to the proposed method in the score, and in
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some cases, even better results can be observed. However, the proposed method is more
suitable for the goal of detecting only the lanes present in the driving road area.
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Table 1. Comparison of lane-detection rate.

Left Lane
(Conv/DSUNet/LSTM/Prop)

Right Lane
(Conv/DSUNet/LSTM/Prop)

Wiper 0.49/0.72/0.57/0.65 0.40/0.63/0.54/0.69
Rainy surface 0.33/0.51/0.50/0.54 0.26/0.70/0.74/0.73
Overexposed 0.64/0.82/0.55/0.94 0.61/0.88/0.50/0.93

Guideline 0.35/0.86/0.59/0.84 0.03/0.75/0.65/0.70



Appl. Sci. 2023, 13, 9313 20 of 22Appl. Sci. 2023, 13, x FOR PEER REVIEW 20 of 22 
 

(a) (b) (c) (d) 

Figure 21. Examples of evaluation criteria for lane detection (Yellow: conventional, Purple: DSUNet, 
Red: U-Net ConvLSTM, Green: proposed method). (a) An example of correctly detecting the left 
lane; (b) an example of failing to detect both lanes; (c) an example of correctly detecting the right 
lane; and (d) an example of correctly detecting both lanes. 

Table 1. Comparison of lane-detection rate. 

 Left Lane 
(Conv/DSUNet/LSTM/Prop) 

Right Lane 
(Conv/DSUNet/LSTM/Prop) 

Wiper 0.49/0.72/0.57/0.65 0.40/0.63/0.54/0.69 
Rainy surface 0.33/0.51/0.50/0.54 0.26/0.70/0.74/0.73 
Overexposed 0.64/0.82/0.55/0.94 0.61/0.88/0.50/0.93 

Guideline 0.35/0.86/0.59/0.84 0.03/0.75/0.65/0.70 

5. Conclusions 
This paper aimed to identify daytime and nighttime periods in video footage and set 

optimal parameters for lane detection under challenging conditions. The proposed ap-
proach involved utilizing the restriction system to determine the most probable lane lines 
from the detected candidates in the edge image. The position information was then up-
dated using the Kalman filter to predict the lane position in the next frame.  

In the experiments, it was observed that the proposed approach exhibited slightly 
more stability compared to conventional methods, U-Net ConvLSTM, and DSUNet. This 
confirms the effectiveness of distinguishing between daytime and nighttime periods, set-
ting appropriate parameters, maximizing contrast using MSR, and selecting lanes with 
the proposed restriction system, achieving successful and stable lane detection in chal-
lenging conditions. 

However, the proposed approach in this paper has limitations in detecting curved 
lanes, as the Hough transform used can only identify straight lines in the edge image. To 
address this limitation, this paper suggests exploring pixel-level segmentation techniques 
for accurate detection of curved lanes. This can involve subdividing the lane-detection 
area into smaller segments and representing curves using multiple lines or adopting al-
ternative approaches.  

Figure 21. Examples of evaluation criteria for lane detection (Yellow: conventional, Purple: DSUNet,
Red: U-Net ConvLSTM, Green: proposed method). (a) An example of correctly detecting the left lane;
(b) an example of failing to detect both lanes; (c) an example of correctly detecting the right lane; and
(d) an example of correctly detecting both lanes.

5. Conclusions

This paper aimed to identify daytime and nighttime periods in video footage and
set optimal parameters for lane detection under challenging conditions. The proposed
approach involved utilizing the restriction system to determine the most probable lane
lines from the detected candidates in the edge image. The position information was then
updated using the Kalman filter to predict the lane position in the next frame.

In the experiments, it was observed that the proposed approach exhibited slightly
more stability compared to conventional methods, U-Net ConvLSTM, and DSUNet. This
confirms the effectiveness of distinguishing between daytime and nighttime periods, set-
ting appropriate parameters, maximizing contrast using MSR, and selecting lanes with
the proposed restriction system, achieving successful and stable lane detection in challeng-
ing conditions.

However, the proposed approach in this paper has limitations in detecting curved
lanes, as the Hough transform used can only identify straight lines in the edge image. To
address this limitation, this paper suggests exploring pixel-level segmentation techniques
for accurate detection of curved lanes. This can involve subdividing the lane-detection
area into smaller segments and representing curves using multiple lines or adopting
alternative approaches.

As demonstrated in this paper, deep learning is not always superior in all scenarios.
The experiments revealed that while deep learning requires powerful GPUs, extensive
datasets (400,000 images), and long training times, the proposed approach achieved compa-
rable or even better results without the need for dedicated GPU devices, large datasets, or
extensive training time. This highlights the practicality and effectiveness of the proposed
approach in challenging lane-detection scenarios.
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