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Abstract: Structural magnetic resonance imaging (sMRI) is widely used in the clinical diagnosis of
diseases due to its advantages: high-definition and noninvasive visualization. Therefore, computer-
aided diagnosis based on sMRI images is broadly applied in classifying Alzheimer’s disease (AD).
Due to the excellent performance of the Transformer in computer vision, the Vision Transformer (ViT)
has been employed for AD classification in recent years. The ViT relies on access to large datasets,
while the sample size of brain imaging datasets is relatively insufficient. Moreover, the preprocessing
procedures of brain sMRI images are complex and labor-intensive. To overcome the limitations
mentioned above, we propose the Resizer Swin Transformer (RST), a deep-learning model that can
extract information from brain sMRI images that are only briefly processed to achieve multi-scale
and cross-channel features. In addition, we pre-trained our RST on a natural image dataset and
obtained better performance. We achieved 99.59% and 94.01% average accuracy on the ADNI and
AIBL datasets, respectively. Importantly, the RST has a sensitivity of 99.59%, a specificity of 99.58%,
and a precision of 99.83% on the ADNI dataset, which are better than or comparable to state-of-the-art
approaches. The experimental results prove that RST can achieve better classification performance in
AD prediction compared with CNN-based and Transformer models.
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1. Introduction

In the past few decades, the field of medical and computer science research has
ushered in rapid developments. Therefore, more and more researchers are trying to
integrate computer technology into the medical process, providing valuable guidance for
improving the utilization rate of limited medical resources [1] and the timely diagnosis of
patients’ diseases. Among them, classification algorithms applied to medical imaging have
been a major field of research. The recent success of deep-learning techniques has inspired
new research and development efforts to improve classification performance and develop
novel models for various complex clinical tasks [2–5].

Alzheimer’s disease (AD) is an irreversible chronic neurodegenerative disease that
progressively impairs cognitive and behavioral functions. Numerous techniques, includ-
ing brain and spinal cord aspiration, genetic testing, and neuroimaging, can be used to
diagnose AD. Because of the high-definition and noninvasive visualization, structural
magnetic resonance imaging (sMRI) is one of the most common imaging techniques for AD
identification in both clinical and research settings [6]. Therefore, deep-learning algorithms
have been applied increasingly frequently for AD classification using sMRI images since
they can replace time- and labor-consuming procedures such as feature extraction. In
particular, there is no need for feature selection in the deep-learning model, but it can also
automatically learn sophisticated features by itself [7]. The recent rise of Transformer-based
deep models has also had a significant impact on the field of deep learning.

Furthermore, a majority of current AD-related classification methods require prepro-
cessing procedures like calibration, skull stripping, and alignment to standard templates [8].
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In particular, skull stripping is regarded as a crucial preprocessing step that cannot be
skipped since it can lessen the influence of irrelevant data on classification outcomes and
simplify the computing process of the model [9]. However, insufficient skull stripping or
over-processing caused by the toolkit might result in the loss of edge information, and the
data must then be manually checked after processing, which takes time and significantly
reduces the already-limited dataset relevant to AD. As an improvement of the Transformer,
the Swin Transformer [10] has been widely used since its introduction. Some studies have
added a time-attention block to the Swin Transformer to measure the feature changes in
longitudinal mild cognitive impairment (MCI) data. At the same time, the shifted-window
mechanism further integrates spatial features [11]. An adaptive resize-residual network
was proposed for formatting the shape and size of image data before feeding them into
the backbone model, which fully excavates the CNN’s powerful image feature extraction
ability [12].

In this study, we propose a deep-learning model for AD classification called the Resizer
Swin Transformer (RST) using sMRI images. The Resizer module creates learnable image
scaling, acquiring characteristics supporting Swin Transformer classification. The cross-
window connection realized by the moving-window mechanism of the Swin Transformer
and patch merging provides multi-scale learning. Additionally, a convolutional neural
network (CNN) model is employed to colorize the sMRI images to enable multi-channel
learning [13]. The RST can extract sufficient features and achieve the accurate classification
of AD with minimal data processing.

The rest of the contents of this paper are as follows: The RST model is briefly intro-
duced in Section 2, along with a summary of some of the relevant work on sMRI-based
categorization. The structure of the RST model is further explained in the third part. The
fourth part presents the findings of the experiment together with its specifics and pro-
vides an analysis of the results. The fifth section gives an overview of all the work in this
paper, suggests ways to fix the problems in this experiment, and offers a roadmap for
future research.

2. Background and Related Work
2.1. CNN-Based Classification for AD

The main types of existing AD classification techniques based on the CNN model
include the region of interest (ROI), voxel, patch, and attention mechanism. Notably, this cat-
egorization does not imply that the four approaches mentioned above are entirely distinct.

ROI-based methods require the pre-segmentation of brain regions based on prior
knowledge, such as brain atlases. For instance, Wang et al. segmented the hippocampal
area, one of the most AD-sensitive regions, and employed a dense convolutional neural
network (Dense CNN) model to classify normal control (NC) and AD samples [14]. On
the other hand, one study tried each brain region when training a 3D-CNN ensemble
model [15].

The voxel-based technique, which does not require any prior knowledge or laborious
preparation, obtains features directly from sMRI images and fully exploits the global
characteristics [16]. For instance, Hazarika et al. employed LeNet, AlexNet, VGG, DenseNet,
and other models to classify AD while evaluating their effectiveness [17]. In addition, the
classification accuracy may be increased by combining the CNN model with transfer
learning [18] and data augmentation [19].

Others noticed that only localized brain areas in early AD patients exhibit minor
structural abnormalities, which leads to a possibility that features obtained at the voxel or
region level cannot contribute to AD identification completely. Patch, the intermediate level
between voxel and region, has gained more attention. With flexibility in size and location,
patch-based models improve classification accuracy and avoid laborious preprocessing pro-
cedures. However, the choice of patches significantly impacts the categorization outcomes.
By using anatomical marker detectors, Liu et al. first identified the patches discriminative
of AD and then trained a CNN model to learn from those patches [20]. The landmark-based
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deep multi-instance learning (LDMIL) system was introduced the following year to learn
local patch information as well as global information from all patches [21].

Another frequently employed module recently is the attention mechanism, which
is quite useful for pinpointing AD-sensitive areas. For example, Zhang et al. added the
attention mechanism to the ResNet framework, which effectively enhances the gray matter
feature information and increases the accuracy of AD diagnosis [22].

2.2. Transformer-Based Classification for AD

One of the strongest deep-learning models available today is the Transformer, and
a key component is the attention mechanism [23]. Despite the original purpose of the
Transformer being for natural language processing (NLP), abundant studies have since
demonstrated that Transformer-based models may reach superior performance in computer
vision (Vision Transformer, ViT). Because of the multi-head attention mechanism of the ViT,
Li et al. integrated a CNN to capture the relationships between distant brain areas. In this
study, the ViT received input from feature maps extracted using the convolutional layer [24].
Another approach proposed by Jang et al. combined the ViT with a CNN structure that
has an inductive bias, and the feature maps were generated using 3D ResNet. The 3D
information provided by sMRI images can efficiently assess local aberrant characteristics
associated with AD and link markers from multiplanar and multilayer slices to gather
distant details [25]. Due to the inherent lack of inductive bias in the ViT-related study, a
significant quantity of data is needed to train the model. Natural images share similar
fundamental properties with brain sMRI images, including texture, edges, shape, etc.
Hence, Lyu et al. applied the ImageNet [26] dataset to pre-train the ViT model using joint
transfer learning first to address the limited brain imaging data [27].

2.3. Limitations of Current Methods

1. ImageNet is a natural image dataset in which each image contains three colors,
although the coronal slices taken from 3D sMRI images are only gray-scale. Therefore, using
sMRI images directly as the input of the ViT model implies delivering the same images
into all three channels, which is a total waste of computational resources. In addition, the
gray-scale image deviates significantly from the original RGB color image in each channel.

2. The majority of the current methods demand strict procedures for sMRI image
preparation. Skull stripping is one of the crucial components. However, there are still some
issues with employing SPM12 for skull stripping, such as partial stripping or loss of edge
information due to over-processing. Therefore, the data must be visually checked and
manually selected afterward. While eliminating the background (black region) of sMRI
images has also become a critical step of preprocessing, the capacity of the deep-learning
models is hampered by the growing complexity of the preprocessing process.

3. The ViT model can only extract features at the same scale because its computational
complexity is proportional to the square of the image size. In addition, it can only extract
features on one scale at a time. However, the damaged brain areas of AD patients are
typically subtle, making it possible to overlook some regionally specific details.

3. Methodology
3.1. Slice Options

The center slices of the sMRI images were chosen for this study because they contain
most of the brain information. The classification effect of the coronal plane was found to be
slightly inferior to that of the sagittal and axial planes in the comparison experiments. Still,
the classification performance of the sagittal and axial planes was not significantly different.
Therefore, 30 consecutive 2D slices of size 127 × 181 in the axial plane were employed in
this study.
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3.2. Model Structure
3.2.1. Overview of Resizer Swin Transformer Network

Li et al. applied joint transfer learning approaches to classify AD by first using 3D gray
matter volume images as input, extracting local information via ResNet to generate feature
maps, and finally adding location encoding to the maps that were input to the ViT [25].
The Swin Transformer performs multi-scale learning through cross-window connection
and patch merging, as well as decreases the computational complexity of the ViT from the
square level to the linear level [28]. Therefore, this study proposes the ReSwin Transformer
(RST), a novel network structure that combines a CNN and the Swin Transformer to realize
AD classification using sMRI images.

The RST model proposed in this study is shown in Figure 1. Axial-plane sMRI slices X
are the input to the RST. A CNN model is first utilized to map the gray-scale image from
one channel to three channels to generate color images. The Resizer module then scales
the input image proportionally and accentuates the information essential to classification
according to the Swin Transformer during the training procedure. The images are separated
into non-overlapping patches using the patch-splitting module. Each patch is regarded as
a separate token. A linear embedding layer then maps the token to a size C channel as the
Swin Transformer input. Finally, a Softmax layer summarizes the AD and NC classification
predictions from all the slices. The RST uses cross-entropy losses during network training,
as follows:

Lloss = −
1
N

N

∑
i=1

yilog(p(yi)) + (1− yi)log(1− yi) (1)
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Figure 1. The overall structure of the proposed model. The CNN module is used to convert a single-
channel gray-scale image of the axial sMRI slices into a three-channel RGB image. The Resizer mod-
ule resizes the input image and removes invalid parts. The Swin Transformer identifies features that 
are useful for classification. Finally, the Softmax layer generates classification scores for each slice. 

3.2.2. CNN Module 
sMRI scans only contain gray-scale information, so sMRI is generally known as a 

single-channel imaging technique. On the other side, various widely used CNN models, 
such as AlexNet [29], ResNet [30], and EfficientNet [31], are three-channel models. Hence, 
the single-channel gray-scale images are often repeated three times as input when the joint 
transfer learning algorithms are involved. Inspired by the colorization of lung MRI images 
to restore the color images of lungs observed by human eyes proposed in [32] and to ad-
dress the issue of wasted computational resources, our method converts brain sMRI im-
ages to color images using the CNN to achieve cross-channel learning from single-channel 
to three-channel imaging [13]. Figure 2 illustrates the CNN structure. 

Figure 1. The overall structure of the proposed model. The CNN module is used to convert a single-
channel gray-scale image of the axial sMRI slices into a three-channel RGB image. The Resizer module
resizes the input image and removes invalid parts. The Swin Transformer identifies features that are
useful for classification. Finally, the Softmax layer generates classification scores for each slice.

3.2.2. CNN Module

sMRI scans only contain gray-scale information, so sMRI is generally known as a
single-channel imaging technique. On the other side, various widely used CNN models,
such as AlexNet [29], ResNet [30], and EfficientNet [31], are three-channel models. Hence,
the single-channel gray-scale images are often repeated three times as input when the joint
transfer learning algorithms are involved. Inspired by the colorization of lung MRI images
to restore the color images of lungs observed by human eyes proposed in [32] and to address
the issue of wasted computational resources, our method converts brain sMRI images to
color images using the CNN to achieve cross-channel learning from single-channel to
three-channel imaging [13]. Figure 2 illustrates the CNN structure.
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the sMRI slices need to be resized to fit as input to the network. In actuality, this modifi-
cation does not improve the image of the network and even somewhat reduces the per-
formance of the model [33]. Therefore, this experiment substitutes the learnable Resizer 
module for the original linear interpolation after the CNN transfers the single-channel to 
the three-channel color space. Resizer seeks to significantly improve the classification per-
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Figure 2. Colorization CNN network structure. The numbers and cubes of different colors are the
feature map and C× H ×W of the feature map after a series of convolution operations; Blocks 1, 2,
and 3 show the specific details of the convolution operation corresponding to the blue, yellow, and
orange feature maps, respectively. Given the lightness channel L of a gray-scale image, this model
predicts the corresponding a and b color channels of the image in the CIE Lab color space. Finally, it
is converted to the RGB color space, and the image is output.

According to the given brightness Y on the gray-scale image, two chroma channels,
a and b, were generated based on the CIE Lab color space. Then, the brightness-chroma
color space was transformed into an RGB color space using the image and OpenCV library.
For a given brightness channel X ∈ RH×W×1, we converted it to Y ∈ RH×W×2 via the map
Ŷ = F (X), where H and W are the dimensions of the image. In addition, for a given X,
its probability distribution was also obtained: Ẑ = H(X), where Ẑ ∈ [0, 1]HxWxQ and Q
represent the number of output spaces from channels a and b. The following equation
compares the true value with Ẑ through polynomial cross-entropy loss Lcl(·, ·):

Lcl
(
Ẑ, Z

)
= −∑

h,w
v(Zh,w)∑

q
Zh,w,qlog

(
Ẑh,w,q

)
(2)

In particular, the real color Y is converted into a vector Z via Z = ℊ−1
gt (Y), and v(·) is

the weight that measures the rarity of the color class and thus rebalances the loss. Finally,
the probability distribution Ẑ is mapped to color values by the function Ŷ = ℊ

(
Ẑ
)
.

3.2.3. Resizer Module

In the field of deep learning for image processing, the input image size is typically
scaled to 224 × 224, and both training and inference are carried out at that resolution.
Currently, image scaling often uses both bilinear and trilinear interpolation. At the same
time, the sMRI slices need to be resized to fit as input to the network. In actuality, this
modification does not improve the image of the network and even somewhat reduces the
performance of the model [33]. Therefore, this experiment substitutes the learnable Resizer
module for the original linear interpolation after the CNN transfers the single-channel to
the three-channel color space. Resizer seeks to significantly improve the classification per-
formance by learning attributes favorable to Swin categorization by collaborative training
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with the backbone network, in contrast to other approaches that resize images to enhance
human eye perception. The Resizer module is shown in Figure 3. The bilinear Resizer
model allows features calculated at the original resolution to be incorporated into the model.
It acts as an inverse bottleneck (up-scaling). The skip connection in Figure 3 combines the
bilinearly resized image with the CNN features.
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Swin Transformer.

3.2.4. Swin Transformer

The Swin Transformer utilizes the within-window calculation of self-attention to
increase modeling efficiency. Beginning in the top-left corner, the window evenly and non-
overlappingly divides the image into sections. Assuming that there are M×M patches in
a window, the next module utilizes a different window than the previous layer and moves
an (

∣∣∣ M
2

∣∣∣, ∣∣∣ M
2

∣∣∣) patch from the original window when the window-based self-attention
module completes its computation. The calculation process of the Swin Transformer block
is as follows:

Ẑl
=W-MSA

(
LN

(
Zl−1

))
+

(
Zl−1

)
,

Zl =MLP
(

LN
(

Ẑl
))

+ Ẑl ,
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Ẑl+1
=SW-MSA

(
LN

(
Zl
))

+ Zl ,

Zl+1 = MLP
(

LN
(

Ẑl+1
))

+ Ẑl+1 (3)

where Ẑl and Zl are multi-headed self-attentive based on the window and shifted window,
respectively, and characterized by the output of the multilayer perceptron (MLP) module.
Window movement enables the reciprocal learning of patches between several windows,
thus achieving the goal of global modeling. Figure 4 depicts the model of the Swin
Transformer structure as well as the calculation procedure of the block.
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shown in (b).

Window multi-head self-attention (W-MSA) adds a relative position bias B ∈ RM2×M2

for each head in the calculation of multi-headed self-attention as follows:

Attention(Q, K, V) = Softmax
(

Q
KT
√

d
+ B

)
V (4)

where Q, K, and V ∈ RM2×d are the query, key, and value matrices, respectively. d is the
dimension of the key. The number of patches in the window is M2. Given that the relative
location is within [−M + 1, M− 1], the bias matrix B̂ ∈ R(2M−1)×(2M−1) is set. The values
of B are derived from B̂. Q, K, and V are calculated from WQ, WK, and Wv by applying a
linear transformation of Zl−1.

On the other hand, shifted-window multi-head self-attention (SW-MSA) uses the
circular window movement rule to compute the multi-headed self-attentiveness.
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4. Evaluation
4.1. Introduction of the Datasets

The Australian Imaging, Biomarker & Lifestyle (AIBL, aibl.csiro.au) [34] and the
Alzheimer’s Disease Neuroimaging Initiative (ADNI, adni.loni.usc.edu) [35] were used in
this study. The National Institutes of Health and the National Institute on Aging provided
funds to establish the ADNI, the premier data center for AD research. Both datasets gather
sMRI, fMRI (functional MRI), and positron emission computed tomography (PET) from
AD and NC participants.

The data used in the study were collected from an MRI scanner built by the MRI
manufacturer SIEMENS. The slice thickness is 1.2 mm; the field strength is 3.0 Tesla. All
the sMRI images were downloaded from ADNI-GO, ADNI1, and AIBL. Standard sMRI
image preprocessing was conducted using SPM12 (fil.ion.ucl.ac.uk) on Matlab (R2022a),
including format conversion, AC-PC correction, non-parametric non-uniform intensity
normalization (N3), and alignment to the MNI standard template. The reconstructed images
are 181 × 217 × 217, the voxel size is 1 × 1 × 1 mm3, and normalized intensity values are
in the range of [0,1]. Table 1 displays the demographic information of the datasets.

Table 1. Demographic information of ADNI and AIBL datasets.

Image Dataset AD NC Age Sex (F/M)

ADNI
(N = 1188) 388 800 75.76 ± 6.75

[56–96] 574/614

AIBL
(N = 847) 196 651 74.56 ± 6.88

[52–96] 463/384

ADNI: Alzheimer’s Disease Neuroimaging Initiative; AIBL: Australian Imaging Biomarker & Lifestyle; AD:
Alzheimer’s disease; NC: normal control; F: female; M: male.

The ADNI and AIBL datasets are openly accessible, but access to the information still
needs official authorization. Additionally, no data may be shared without consent, and
only approved researchers may utilize it for studies. The summary of the demographics of
the dataset is illustrated in Table 1.

4.2. Training Setup

This experiment used the PyTorch deep-learning framework to construct the proposed
network model. Two NVIDIA 3080 TI GPUs were implemented on a server for training
the classification task. The model was first transferred to the sMRI dataset after being pre-
trained on the ImageNet-1K dataset. Since the Resizer module may shrink the images to
eliminate a tiny amount of incorrect information (dark parts of sMRI images), cropping the
input images is unnecessary. We tested various batch sizes and learning rates to determine
the settings that would produce the best experimental results. The experimental outcomes
are displayed in Figure 5. Most curves are generally stable at epoch = 50, yet some still
vary remarkably. It is the most stable when the batch size is 16 and the learning rate is
5 × 10−5. Therefore, the batch size was set to 16, and the learning rate was set at 5 × 10−5,
considering parameters like processing speed and classification performance. With a patch
size of 4 × 4, and using cross-entropy loss as a loss function, all networks were trained
using the Adam optimizer. The training for each stage was performed up to 50 epochs
on 70% of randomly selected data, and the best model was selected based on separate
randomly selected 10% of the data for validation. The results of this study are based on the
remaining unseen test set of 20% with the epoch.
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Figure 5. (a–c) The variation in ACC with epoch for different batch sizes with learning rates of
1 × 10−5, 5 × 10−5, and 1 × 10−6, respectively. (d) Comparison of the two curves with the optimal
variation in ACC.

4.3. Experimental Results

The classification performance was assessed using the following four common speci-
ficity indicators: accuracy (ACC), sensitivity (SEN), specificity (SPE), and precision (PRE).
True positive, true negative, false positive, and false negative are labeled TP, TN, FP, and
FN. Then, ACC, SEN, SPE, and PRE can be expressed as

ACC =
TP + TN

TP + FP + TN + FN

SEN =
TP

TP + FN

SPE =
TN

TN + FP

PRE =
TP

TP + FP
(5)

In order to demonstrate the superiority of this method, we compared various studies
of different types in this field on ADNI public datasets, as shown in Table 2. Experimental
results show that our method has excellent performance. At the same time, we compared
studies based on Transformers. These studies also performed well, benefiting from the
ability of Transformers to capture distant information. Compared with the research in [21],
which also combines transfer learning technology, the performance of the RST architecture
is significantly improved. It can be seen that our proposed RST architecture can effectively
classify AD and NC.
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Table 2. Comparison of our proposed model with related studies.

Models Types
Classification Results

ACC% SEN% SPE% PRE%

DenseCNN [12] ROI 89.80 98.50 85.20 --
CNN [17] Whole 93.00 92.00 94.00 --

LDMIL [19] Patch 92.02 ± 0.93 90.76 ± 2.72 92.40 ± 1.10 --
ResNet+Attention [20] Attention 90.00 92.80 87.50 --

ResNet+ViT [22] Transformer 92.26 88.98 94.04 --
CNN+ViT [23] Transformer 90.58 -- -- --
CNN+ViT [24] Transformer 96.80 -- -- 97.20

Ours Transformer 99.59 99.58 99.59 99.83
The abbreviations of the models are taken from the corresponding research. ROI means the model is based on the
region of interest (ROI), and the rest are similar. Accuracy (ACC), sensitivity (SEN), specificity (SPE), and precision
(PRE) are the four indicators used to assess the classification performance. The bold denotes our method.

4.4. Ablation Experiments

We carried out several ablation experiments to maximize the experimental outcomes.
Experiment 1: We used sMRI slices in three different orientations. In Table 3, the

experimental findings are displayed. The worst result was obtained when using the coronal
plane slice without the skull-stripping preprocessing procedure, which differed greatly
from the findings of the other two orientations. Since most experiments were centered
on the axial plane and the differences between the experimental outcomes in the axial
and sagittal planes were not particularly apparent, axial plane slices were employed in
this experiment.

Table 3. Comparisons of three directional slices using RST model.

Types
Classification Results

ACC% SEN% SPE% PRE%

Sagittal 99.69 99.74 99.67 99.54
Coronal 99.07 99.46 98.79 98.50

Axial 99.59 99.58 99.59 99.83

Experiment 2: Tests were run to show how well the various parts of our proposed
RST model worked together. The test results are listed in Table 4. The RST model, as
implemented by a CNN, performs noticeably better than the other experiments, as shown
in the table. In contrast, the step of skull stripping only slightly improves the performance
of the RST model and is not proportional to the additional expense it incurs. We used
sMRI’s axial, sagittal, and coronal slices as the three input channels of the RST model, but
surprisingly, the RST model did not perform well on 2.5D image data. Our analysis results
may be due to 2.5D images containing more information, and the model cannot effectively
extract features from them. At the same time, we also conducted a comparison with the
Swin Transformer, and the experimental results show that the RST is still superior to the
Swin Transformer on the ADNI dataset.

Experiment 3: Investigations were carried out on several datasets to confirm the
robustness of our proposed model. The outcomes of our trials are shown in Figure 6. The
table illustrates that our model performs better for various datasets. The analysis results
may be caused by the unevenness of the datasets and the image discrepancies between the
datasets because the findings of AIBL, on the other hand, are worse than those of ADNI.
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Table 4. Comparison of different data types and network structures.

Models Data ACC

RST No skull stripping 98.74%
RST 2.5D skull stripping 96.36%
RST Skull stripping 98.99%

CNN+RST Skull stripping 99.98%
ST No skull stripping 95.87%

CNN+ST No skull stripping 98.87%
CNN+RST No skull stripping 99.62%

RST: ReSwin Transformer; ST: Swin Transformer. The input consists of axial, sagittal, and coronal sMRI slices,
called 2.5D data. The bold denotes the best results.
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5. Conclusions and Future Work

This paper presents a Resizer Swin Transformer architecture that combines cross-
channel learning with a CNN and extracts features from two-dimensional axial-plane slices
of brain MRI. The analysis and visualization of the experimental data demonstrated the
accuracy with which the RST architecture can accomplish the categorization of AD, as well
as its strong adaptability to various datasets. This experiment does still have some flaws,
though. The RST model has comparatively high model parameters, and cross-channel
learning in conjunction with the CNN enhances the classification performance using the
model. Meanwhile, we discovered that the accuracy of the experimental findings is lower
than 85% when the model trained on ADNI is directly assessed using AIBL. The model may
undergo further development to overcome these problems and provide a lighter and more
scalable model. And we hope that in the future, we can better connect image preprocessing
with the deep-learning model to construct an end-to-end model that can actually be used
in clinical diagnosis.
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