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Featured Application: The structural design is the main application of the visual programming
discussed in the paper.

Abstract: This study is dedicated to technology based on visual programming as a modern tool to
support the design of building structures. It provides a brief background describing the computeriza-
tion of design and discusses design-aided systems and the concept and tools of visual programming.
The principles of the Visual Programming Language (VPL) are presented in detail. The programming
and design environments used in the architecture and construction industry are presented. Dynamo,
one of the VPL-based programs applicable to structural design, was used in the study. In order to best
demonstrate and explore the capabilities of this environment, examples of the practical application of
visual programming in structural design are presented. Both simple and more complex structures
have been designed and discussed in detail. The integration of Dynamo with computational systems
is also presented. A broad discussion was held on the possibilities of using visual programming
in structural design, the problems and challenges, and the directions of its development in the
architecture and construction industry.
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1. Introduction

The dynamic development of technology since the end of the 18th century has led to
the creation and implementation of many different and increasingly sophisticated devices
and technologies. In the broad field of engineering, the development, construction, and,
above all, the general use of computers have been of fundamental importance [1].

Computerization has, of course, also entered the broad field of engineering design.
Furthermore, in addition to its fundamental application in architectural and construction
design, there is a notable focus on utilizing diverse methods and models to manage the
design process, as well as the implementation of various construction projects, even under
challenging conditions [2–5].

The basic issue here was the possibility of programming, which made it possible
to create advanced procedures for carrying out simulations of the processes being an-
alyzed. Another extremely important factor was the ability to perform complex and
time-consuming calculations.

Engineers directly involved in production are particularly interested in the Computer-
Aided Design (CAD) system because it provides tools for automating a range of processes
and activities. In short, the CAD idea is based on the concept of digital representation
of the project being created [6]. The fundamental is digital geometric modeling based on
elementary objects such as points, lines, curves, etc. Each of the elements representing the
designed product is made up of the aforementioned geometric components and is defined
graphically, specific to a given program. The designed structural element actually contains
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three basic pieces of information regarding its geometric, dynamic, and material or broader
technological characteristics.

However, for some time now, the CAD concept based on 2D and 3D graphics has been
somewhat burnt out, as the programs have reached their maximum level of functionality
and it is difficult to expect any innovation in this area.

The new idea was to find a way of defining an element that would be simple, fast, and
accurate on the one hand and would achieve broad universality in terms of the types of
elements modeled on the other [7]. It was then devised that the individual components
of the building object would be modeled directly in the form of three-dimensional objects
corresponding to the geometry of the given element, thus having the appropriate cross-
section, length, and characteristic geometric attributes (e.g., holes, cuts, etc.) and being
defined in a simplified manner. This simplification involves defining characteristic points
of the modeled object in the model’s workspace, such as the start and end, and loading a
finished object from a database that is a model of the element being designed. This model
also contains a set of information defining parameters of the element other than geometric
ones, which is the first innovative functionality of the new idea described above [8]. This
new modeling concept took the form of Building Information Modelling (BIM) technology,
which is referred to as modeling information about the building, although it actually
includes modeling the entire construction investment [9–11].

The widespread use of computer technology to support the design process has not only
led to the creation of the systems presented above. An important and very interesting path
is the development of many specific design methods based on the use of computerization.
Furthermore, it is necessary to distinguish architectural ideas and concepts that are related
and based on the use of these systems. Several types of computer-aided design can be
distinguished, based on the use of computers and numerical methods. The main concepts
and types relevant to this study are as follows:

• Computational Design, which covers the design process in its broadest sense, including
both the use of the computing power of equipment and methods and the design of
products and simulation processes based on computer programs.

• Algorithmic Design, where the design process is carried out using specially prepared
computer algorithms. The essence here is the ability to perform operations on input
datasets of a wide and diverse nature in order to achieve a specific effect, e.g., in the
form of the geometry of the designed object.

• Parametric Design, where the design process or the designed product is described by
parameterized rules. The designer has the ability to flexibly manipulate the parameters
to achieve a specific goal.

• Generative Design, which is a kind of derivative and the next stage in the evolution of
the methods described above. By using intelligent numerical algorithms, it is possible
to achieve multi-variability, leading to the optimization of the designed product. This
process is based on elements such as initial conditions and parameters defining the
task, boundary conditions, a control mechanism (algorithm), and the selection of the
optimal solution obtained on the range of prepared (generated) variants.

At this point, it should be noted that there are many ways to search for sources of
shapes of designed objects, and consequently, to find algorithms describing them.

Computational approaches to building design are highly relevant and have been
extensively researched in the field of architecture. The most common applications include
parametric design [12–14] and algorithmic-parametric design [15,16]. Some approaches
explicitly incorporate a mathematical framework to design architecture [17], which can be
easily programmed [18]. In addition, the digitization of fabrication processes in architecture,
engineering, and construction [19] is an interesting avenue for exploration.

The construction industry has been an early adopter of computerization, which for
a long time mainly covered the design phase but now encompasses the entire process of
construction investment implementation. The fundamental issue in the types of design
described above is the use of a dynamic description to flexibly control the parameters of
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the designed object. The best way to achieve this is through a mathematical description.
This works particularly well for describing the geometry of the designed structure. To
achieve this, the geometry should be represented using mathematical functions. In addition
to standard and already-established design support systems, an interesting tool in this
area is the use of programming environments. Unfortunately, their use by designers is
still marginal, mainly due to the barrier that programming itself represents for a civil
engineer. From an engineering point of view, the fundamental problem is to use a suitable
programming environment in which such a procedure can be created. The use of classical
programming languages such as C++ is rather ineffective in this case. A different approach
based on visual programming is currently being used.

Visual code-based programming addresses this issue, as it does not require the de-
signer to have the specialist knowledge necessary to create traditional text scripts. In
addition, visual programming environments used in the architecture and construction
industry are equipped with a number of options and tools that significantly automate,
simplify, and speed up the design process and even investment management.

Today, visual programming is gaining significant traction in various sectors of the
construction industry, particularly in design. Notable examples include its application
to structural design [20], infrastructure projects [21], and the assessment of the structural
integrity of historic buildings [22]. However, particularly intriguing work involves the use
of VPL for the optimization of building structures based on genetic algorithms [23] and
the planning of construction site layouts, particularly through the use of generative design
techniques [24].

To date, there has been considerable documentation and discourse surrounding VPL
technology and computer-aided design within the broader design and architecture literature.
In contrast, concise and comprehensive publications that focus specifically on the application
of visual programming in structural design, similar to those available for BIM, for example,
are still rare. Few comprehensive textbooks deal exclusively with the design of structures
using VPL tools. It is clear that such publications are needed in this particular area.

In this paper, the concept of Visual Programming Language (VPL) is thoroughly ex-
amined, with a comprehensive exploration of the programming and design environments
employed in the field of architecture and construction. This study focuses specifically
on Dynamo, a VPL-based design platform. The topic discussed in this paper is closely
related to algorithmic-parametric design, specifically the use of existing programming
environments in engineering design. To effectively showcase the capabilities of this en-
vironment, practical instances of visual programming’s application in the design of both
simple and intricate structures, as well as its integration with computational systems, have
been meticulously prepared and extensively discussed. In addition, an extensive discourse
has taken place regarding the potential applications of visual programming in structural
design, along with the associated challenges and obstacles, as well as the future directions
of its advancement within the architecture and construction industry.

Based on the Dynamo application, this study is devoted to exploring the utilization
of visual programming as a contemporary tool to enhance the design process of building
structures. It attempts to provide a reasonably broad overview of the current possibilities
for the application of VPL in structural design, along with a critical analysis of related
problems. It serves to complement existing works in this field, providing insight into the
current practical applications of VPL technology in structural design. Moreover, it delves
into various theoretical aspects pertaining to its utilization.

2. Methodology

Generally, the study is based on the Dynamo visual programming environment, which
is used in the design industry to date. The Dynamo system uses the DesignScript VPL-class
language. Due to the development of this program, it has been implemented and integrated
with other environments for quite some time. Dynamo has been available in three versions,
as a standalone Dynamo Sandbox environment, as an Autodesk product called Dynamo



Appl. Sci. 2023, 13, 9298 4 of 28

Studio (currently not developed), and as a plug-in to the Revit design environment. This
makes it possible to use it in different areas and stages of design. Dynamo is used for
calculations, creating shapes and geometry of building objects, managing BIM information,
and creating technical documentation, including detailing structural elements for design-
build projects. Dynamo’s visual coding system is based on two anatomical elements, nodes
and wires, such as other VPL-class environments and languages.

The methodology of the research includes the presentation and analysis of examples
of the practical application of the VPL system using scripts prepared in Dynamo, as well
as a critical analysis of various aspects of the implementation of visual programming in
structural design.

In particular, the general concept of creating visual scripts is presented, as well as
examples of their practical application. These will allow a detailed analysis of the VPL-
based design process, to evaluate its evolution in the creation of increasingly complex
structural forms, and learn about the possibilities of integrating the modeling environment
with computational programs. In the following section, research on current possibilities for
the application of visual programming in structural design in its broadest sense is given,
together with an analysis of the problems, challenges, and likely directions of development
of this technology.

3. Concept of Visual Programming

The idea of visual programming is based on solutions that rely on non-textual pro-
gramming but use intelligent graphical elements with certain capabilities. This is expressed
in the ability of graphical objects to perform certain operations on datasets—the procedures
and commands for processing the data are encoded in graphical blocks. These blocks
must form a larger whole, a population of blocks when given a larger task to perform.
This is the general idea behind programming based on the so-called Visual Programming
Languages (VPL). This is simply a large group of programming languages based on intelli-
gent blocks capable of processing data that can be linked together to transfer the data for
further processing. As a result of this connection, the user creates an algorithm that forms a
graphical code that is a fully functional program. The only difference is that in classical
programming, the programmer writes a script, whereas in visual programming, a structure
of interconnected graphical objects is created that reflects the syntax elements of a given
programming language. The graphical code that works in VPL languages is also known as
a visual script.

As mentioned above, the general idea of VPL languages is to replace textual syntax
with graphical objects in which individual commands or contained data are encoded
and create graphical connections between them. Therefore, the basic elements of a VPL
language and programming environment are command blocks called nodes and connectors
called wires. They take a suitable form, such as nodes and wires, which create the structure
of the script and are responsible for data processing and flow. Figure 1 shows an example
of a visual script prepared in the Dynamo Sandbox environment.

As we can see, creating the above program in a visual way is very simple, as it is
enough to connect a few nodes to process and flow data and obtain the desired result.

Of course, VPL languages reflect textual syntax, which could be prepared in the
traditional way by simply writing a script. However, this is often a tedious process as
the visual script is designed to be simple, clear, and fast, whereas the textual syntax of
a given VPL language can be very complicated. An example of this is the miniscript in
the Dynamo environment, where the task is to calculate the square root of the number 4.
Figure 2a shows the visual script, while Figure 2b shows a fragment of the script written in
the DesignScript language, which is the programming engine of the Dynamo environment.
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the DesignScript text script.

At this point, it would be necessary to define what VPL class languages are. According
to the definition given in the FolDoc online dictionary, “a Visual Programming Language
(VPL) is any programming language that allows the user to specify a program in a two-
(or more) dimensional way” [25]. Therefore, a VPL is any programming language that
allows the user to define a program in two or more dimensions. In the case of conven-
tional programming languages, there is a collision with one-dimensional processing since
compilers or interpreters process one-dimensional character streams.

An important feature in the classification of VPLs is their visual expression, including
graphical elements that constitute their ‘visual syntax’, such as icons, forms, diagrams, etc.
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It should also be noted that some languages that use graphical environments are not VPLs
because they only use a graphical GUI interface to facilitate programming.

Visual programming languages have been developed and implemented for quite
some time, as their history goes back several decades. Their development, or perhaps
more accurately their popularization, is to some extent related to the development of
graphical environments, which were closely related to the development of computer
systems, including the development of Windows systems. Visual programming languages
have been implemented in many different areas. They can be divided into groups that
include the following applications:

• Education.
• Multimedia.
• Video games.
• Systems/simulations.
• Automation.
• Data warehousing/business intelligence.
• Legacy.
• Miscellaneous.

Currently, there are several visual programming environments whose main area of
activity is embedded in the broadly understood computer modeling of building objects.
Their scope is very broad, covering basic design-related industries such as architecture,
construction, and systems, but due to the openness of the philosophy adopted, there
are no restrictions on applying them to other more specialized industries or specialties.
This is gradually being implemented as visual programming is applied in other areas. It
also applies to other stages of construction investment not related to design, such as the
implementation or operating phases. The most important VPL design environments are
Rhinoceros-Grasshopper, Dynamo, Vectorworks-Marionette, and GenerativeComponents.

4. Structural Design Based on VPL

At present, there are several visual programming environments whose basic area of
operation is embedded in the broadly understood computer modeling of construction
objects. Their scope is very wide, as it includes the basic industries related to design,
namely architecture, construction, and building systems. The subject of this paper is related
to structural design, and information is presented on the visual programming-based system
Dynamo that is currently in use in this area.

The possibilities to design different types of building structures in the VPL Dynamo
Sandbox environment are presented below. They focus on form generation, primarily.
Other possibilities, such as VPL-based structural analyses, are presented last.

4.1. Basic Structures—Flat Truss

The simplest type of building structure that can be used to illustrate the general
concept of geometry modeling in the Dynamo environment is a flat frame. It is still one of
the most basic and popular structural systems, used for example in industrial construction
to form hall objects. The supporting structure here consists of transverse systems of flat
frames composed of columns and beams.

A more complex type of structure than a frame, both geometrically and statically,
is the flat truss. It is also one of the most basic and popular structural elements used
in construction. Due to their more efficient statics compared to frames, trusses are used
to form roofs of objects with larger spans. A truss system is also one of the basic types
of bridge and viaduct structures. The standard truss consists of top and bottom chords,
diagonals, and, optionally, verticals (Figure 3).
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The geometry of a truss is more complex than that of a flat frame because of the greater
number of components and their different and alternative placement and arrangement.
The general idea of creating a visual script to generate a truss is that, as in the case of a flat
frame, the component elements of the truss are spanned on a grid of characteristic points.
To simplify the problem, the left half of the element is generated and then mirrored relative
to the plane of symmetry. In order to achieve flexibility in modeling the geometry of the
truss, including its types, a dynamic definition of the feature points and a number of fields
has been applied using Number Slider nodes, as well as settings of truss diagonals based
on logical True/False functions. Due to the specific nature of the truss geometry, the first
step is to define the crucial points that define the lower and upper chords (Figure 4). This
will enable the geometry of the entire truss to be changed dynamically, allowing it to be
modified flexibly.
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The points that define the arrangement of the diagonals and verticals were generated
using the Curve.PointAtParameter node, which allows this operation to be performed on a
curve according to specified rules. In this script, the syntax used to define the points on the
upper and lower chords has been used, which also defines the division of the truss into a
certain number of fields using the range definition in the form of 0..1..#(n + 2)/2 (Figure 5).

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 28 
 

 

a curve according to specified rules. In this script, the syntax used to define the points on 
the upper and lower chords has been used, which also defines the division of the truss 
into a certain number of fields using the range definition in the form of 0..1..#(n + 2)/2 
(Figure 5). 

 
Figure 5. Discretization of chords and definition of verticals. 

The next step was to create verticals, which are lines connecting opposite points cre-
ated on the chords using the procedure described above. Next, diagonals were defined, 
which, similar to verticals, are lines connecting points on the chords, with the difference 
that they are not opposite points but shifted relative to each other. To do this, new point 
lists were created using nodes of type List.RestOfItem. In addition, the True/False logical 
operator was used to select the tilt of the crosses to the left or right. 

The prepared half of the truss was subjected to a mirror reflexion operation. As a 
result, it was possible to create a flat truss with parallel chords, as shown in Figure 6. 

 
Figure 6. A truss with parallel chords. 

The functionality of the script allows for easy generation, even in real time, of other 
typical truss geometries. By increasing the height, for example, we can generate a vaulted 
parallel chord truss (Figure 7). 

 
Figure 7. Vaulted truss with parallel chords. 

Another possibility is to model the double howe truss, as shown in Figure 8. 

Figure 5. Discretization of chords and definition of verticals.

The next step was to create verticals, which are lines connecting opposite points
created on the chords using the procedure described above. Next, diagonals were defined,
which, similar to verticals, are lines connecting points on the chords, with the difference
that they are not opposite points but shifted relative to each other. To do this, new point
lists were created using nodes of type List.RestOfItem. In addition, the True/False logical
operator was used to select the tilt of the crosses to the left or right.

The prepared half of the truss was subjected to a mirror reflexion operation. As a
result, it was possible to create a flat truss with parallel chords, as shown in Figure 6.
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The functionality of the script allows for easy generation, even in real time, of other
typical truss geometries. By increasing the height, for example, we can generate a vaulted
parallel chord truss (Figure 7).
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Another possibility is to model the double howe truss, as shown in Figure 8.
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As can be seen from the examples presented, a single script allows a variety of roof
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A further development of the flat truss concept is the space truss. It is used when it
is necessary to cover objects with significant spans or for architectural reasons (Figure 9).
Various geometric solutions and arrangements are used in the formation of space trusses,
characterized by a specific arrangement of the elements of a single module, from which the
given structure is composed. In principle, these are spatial chords and diagonals.
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Figure 9. Space truss [27].

An example of a highly efficient script used to create a structurally complex roof is
shown below. Note the use of the external LunchBox library, which provides many nodes
that significantly shorten and automate the designer’s work.

The first step was to prepare a surface using the Surface.ByLoft node, this time defined
by two identical boundary elements—arcs (Figure 10).

The WireSpaceTruss node (Figure 11), available in the aforementioned LunchBox
library installed in the standard Dynamo environment, was used to define the structural
shell. It allows the automatic generation of a spatial truss system in the form of regular
pyramidal trusses with a square base. The user can control the division of the structure
using the U and V parameters, as well as its height. Importantly, by relying on the structural
design, specifically the code of the WireSpaceTruss node on the surface, it is possible to
model roofs with a high degree of curvature and waving in a very flexible manner.
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Finally, the structural roof was generated in the form of a space truss shown in
Figure 12.

The shape and form of the roof structure, shown in Figure 13, is relatively simple. A
key benefit of using a parametric approach is that the geometry of this type of object can be
described using curves and arbitrary B-spline surfaces. This is demonstrated below with an
example of the use of B-spline curves only. In this case, the definition of bounding curves
has been changed from curves to B-splines (Figure 13).
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This allowed free curves to be modeled in a free form. Thanks to the control points,
it is possible to create a strongly wavy surface, resulting in the structural roof shown in
Figure 14.
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The greatest efficiency here is the automatic generation of the spatial truss, which
is the supporting structure. Defining its geometry in the traditional way seems almost
impossible. Of course, a further modification would be to define the other two bounding
curves in the same way. This would allow the creation of an arbitrary structure in two
directions, resembling, for example, a shell floating in the wind.

4.3. Free-Geometry Structures—Described by Trigonometric Functions

The parametric description of geometry that has been used in the modeling of struc-
tural systems is based on the description of component elements using basic geometric
shapes such as lines, arcs, circles, ellipses, etc. Their shape and placement are controlled by
changing the parameters describing their function, and although this had the character-
istics of mathematical parameterization, in practice, it was implemented implicitly. The
user manually or smoothly changed the characteristic points using number slider nodes,
effectively causing a change in the functions that describe the above elements.

The parametric design gives designers possibilities limited only by the mathematical
apparatus. Examples of interesting objects are those where the shape or geometry of the
component elements is described by more specific functions than, for example, a parabola,
ellipse, or exponential function.

In the Dynamo environment, as in other text-based programming languages, the user
has the ability to define his own equation describing the geometry of the structure. This
example shows how this can be used in practice. Below is a script that allows the generation
of an organically shaped roof, the geometry of which is described by trigonometric func-
tions. By skillfully adjusting their course, it is possible to generate a structure reminiscent
of the South Pond Pavilion in Chicago (Figure 15).
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Figure 15. South Pond Pavilion in Chicago [28].

The skeleton of the structure is the outline of its section generated by an arc. It was
defined on the basis of three characteristic points using the Arc.ByThreePoints node. The
designed structure is stretched between two curves created by copying the first curve to
a given length. The roof is closed by a SurfaceByLoft type surface defined using NURBS
cross-section curves (Figure 16).
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Figure 16. Definition of the roof structure.

The second part of the script is the layout of the definition of the elements that fill the
walls of the roof. The following formula was used to describe their geometry:

u = 0..1..#x,

i = 0..x − 1,

arc1 = (1/a) + (1/a) × Math.Cos(i × π × 360/(x − 1)),

arc2 = (3/a) − (1/a) × Math.Cos(i × π × 360/(x − 1)).

As you can see, trigonometric functions can be used to shape real shapes and profiles of
structural elements. Points were extracted from these defined curves for specific parameters
u and v using the Surface.PointAtParameter node (Figure 17).
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In the final stage, B-spline curves were generated between the aforementioned char-
acteristic points using the NURBSCurve.ByControlPoints node. Their cross-sections were
given using the Solid.BySweep and Rectangle.ByWidthLength functions. As a result, a
roof with a shape similar to that of the South Pond Pavilion in Chicago was generated
(Figure 18).
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Of course, other mathematical functions can also be used to describe the waves of
individual beams, yielding other interesting shapes.

4.4. Structural Analysis

An example of the integration of the Dynamo visual programming environment is
the aforementioned inclusion of it as an add-on to one of the widely used programs for
engineering calculations Autodesk Robot Structural Analysis 2022. This integration demon-
strates both the search for ways to develop integrated design and the increasing awareness
of designers in parametric design. Analogous to the case of the Revit environment, the user
has the ability to work in parallel in Dynamo and Robot and interact between the script
(model generated in Dynamo) and the numerical model in Robot.

As an example, a script will be presented, with the help of which a load-bearing arch
model, its computational model (FEM), including boundary conditions (supports), cases
and loads, and cross-sections, was generated, and its static analysis was run. The whole
thing is coded in a vision script and generated directly in Robot after running.

The first step is to model the arc using the Arc.ByThreePoints node. Split points were
generated using the Curve.PointAtPArameter option so that FEA computational elements
were modeled between them (Figure 19).

Generated elements—the individual sections of the curve allow one to begin defining
their numerical properties, i.e., finite element parameters. To this end, they were first
given computational element attributes using the AnalyticalBar.ByCurves node (Figure 20).
The material attributes and cross-sections of the elements were specified using, respec-
tively, the options AnalyticalBar.SetMaterialByName and AnalyticalBar SetSectionByName
(Figure 21).
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Figure 21. Definition of the FEM properties of arc elements.

Similarly, other elements of the FEM model are defined, such as supports, releases,
loads (Figures 21 and 22), etc.

The last phase is to run the calculation. This is performed using the ElementsComposer
node ByElements (Figure 23). This node collects all the batch information necessary to
merge the modeled structure into the FEM model and run the calculation.

Ultimately, the user is provided with a model in the Robot environment, shown in
Figure 24, where the static analysis of the designed structure can be performed based on
the current calculations, as well as its structural verifications.
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5. Opportunities, Challenges, and Future Developments of VPL-Based Design
5.1. VPL-Based Design—Opportunities
5.1.1. Form Creation in General

At present, it seems that application in modeling the geometry of building objects is the
greatest advantage of visual programming-based design environments. It is a very useful
tool to design all those geometries that, on the one hand, can be easily described—broken
down into simple shapes and geometric elements—but on the other hand, shapes that
are so arbitrary that such a description is very complicated. As explained in the previous
section and illustrated with examples, geometric elements such as splines and NURBS have
very broad applications here, as they allow any editing of the final geometry using control
points. The ease and dynamism of this editing allow for the creation of many variants of
the designed objects.

A separate category is the design of organic forms. This applies not only to buildings,
as many engineering objects such as bridges and footbridges have a bionic form, but also
often refers to the plant or animal world, and even to the deepest layers of tissue structure,
such as DNA. A good example is the Helix Bridge footbridge in Singapore (Figure 25),
whose structure is described by two helical curves. A helix is a surface formed by the
uniform rotation of a straight line about a fixed axis while moving parallel to that axis.
Such a surface models well the shape of a human DNA spiral.
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Figure 25. The Helix Bridge pedestrian walkway in Singapore [29].

The description of such structures can be continuous, using mathematical functions,
or fluid and flexible, using splines or NURBS surfaces. Therefore, a very good solution is
to use visual programming-based modeling, which offers all these possibilities. Figure 26
shows the model of the Helix Bridge walkway created in the Dynamo environment.
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Design of the shape of objects using visual programming is also effective in designing
repeating fills that function modularly within the designed structure of the object.

5.1.2. Modelling the Structure

The use of visual programming to create an object’s form is also effective in the design
of repetitive infills that function modularly within the object’s structure. In the case of a
designed object with a stable shape, it must of course be based on a load-bearing structure
that serves as its skeleton. In this case, visual programming can be used to model the
structure itself. The designer has a range of options that allow for the definition of both
basic elements and entire structural systems. Packages are available that automate the
modeling of the most commonly used structures.

Once the structural system of the designed object has been selected, the fundamental
advantage of visual programming is the ability to model and adjust the geometry of the
structure almost at will. The modeling method is similar to that used in the design of the
general shape of the object. However, the supporting structure of the object often uses
protective elements such as walls, roofs, etc., to generate individual structural elements. In
such situations, structural elements are modeled in subsequent stages rather than initially.
Objects that form the “shell” of the designed object are used, allowing the definition of
structural elements by operations performed on the already defined elements. This is a
significant advantage as it allows the structure to be arranged and adapted to the geometry
of often asymmetric and irregular surfaces.

Another possibility used here is the dynamic generation of different support systems,
for example, by using the possibility of flexibly changing construction dimensions or
modular subdivisions. In general, basing the geometry of the designed object on a mesh
of nodes and using a dynamic approach represents a fundamental difference from the
classical concept and capabilities of CAD.

5.1.3. Structural Analysis

The possibility of direct integration of the VPL design programs is a very important
direction in the development of visual programming. As a result, for some time now, it
has been possible to observe a closer and wider integration of parametric programming
environments (Dynamo, Grasshopper) with programs or even platforms for modeling and
computational analysis of construction objects, and thus their structures. Analyzing the
evolution of the Dynamo environment, which has been available as a standalone program
for many years, starting with its release as an Autodesk product under the name Dynamo
Studio 2017, then through its introduction as a permanent part of the main Revit BIM
environment and its addition to Robot 2022, one can conclude that the direction in this
regard has long been set. With the continuous development and increasing dissemination
of BIM technology, tools are sought that allow for more and more automation of the process
of not only design but in fact handling the entire process of investment implementation.
Hence, among other things, the introduction of visual programming as an add-on to the
central BIM information management program Revit.

In conclusion, while there are currently opportunities for engineering computing
based on the integration of VPL and computing systems, there is much to improve and
develop. It seems that one direction should be the implementation of intelligent algorithms
for structural optimization.

5.1.4. BIM Applications, Interoperability

As described in the Introduction, visual programming is one of the fundamental tools
of BIM technology. It is gradually being introduced into successive modeling environments
and related programs (detailing, calculations, etc.) and is beginning to become one of their
basic add-ons and components. In this respect, VPL programs offer basic functionality that
is fully compliant with the BIM standard. With the ability to create scripts independently
within the available nodes and packages, VPL programs allow the creation and manage-
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ment of BIM models in multiple dimensions, 4D, 5D, and beyond. Today, two main areas
of VPL-based design programs in function and integration with BIM are:

• Modeling the geometry of objects.
• Information management.

These two areas are more or less integrated, depending on the specific nature of the
object being designed. For example, in the case of a building, this integration may be
greater because of the ability to shape the geometry and manage the key parameters of the
object. In the case of an isolated structure, such as a support structure, visual programming
will provide greater support for shaping the geometry.

As mentioned above, Dynamo is integrated into the Revit environment as a plug-in.
It largely supports the core BIM functionality of this environment. The Dynamo node
library includes the following categories: Analysis, application, elements, filters, geometry
references, schedules, steel connections, transactions, and views. As you can see, Dynamo’s
level of integration and functionality allows you to do more than just create and manage
the geometry of designed objects. For example, it is possible to create schedules, provide
BIM 5D-level functionality, and detail steel connections. Importing data into Revit and
then exporting to other parts of the system is also essential. These functionalities go much
further [30] as energy and sensitivity analyses are performed [31]. Specialized applications
of VPL in BIM are also of interest, such as bird collisions on building facades [32] or the
Parametric Adaptive Skin System (PASS), which consists of kinetic facade components [33].

The capabilities of the VPL tools described here are nothing more than one of the core
functionalities of BIM technology, i.e., interoperability. When linked together and meeting
the requirements of certain standards, these tools can operate at the highest level of BIM
technology, Level 3, known as iBIM.

5.1.5. Parametric Design

Although the idea of visual programming is based on parameterization, it can be
implemented to a greater or lesser extent. A given structure can be described by the coordi-
nates of points entered manually or by a mathematical description where the coordinates
of these points are generated according to a given formula. The latter approach offers a
very wide range of possibilities for creating the shape of the designed object, as well as
all its components, including, of course, the structure. Parameterization, as shown in the
examples, allows the engineer to use a discrete description, where the structure is divided
into primitive geometries, but a continuous description can also be used, using a very large
database of mathematical functions. This is, in a sense, an attempt to describe the world
through mathematics, where for each geometry, a function can be defined that describes
it. This feature is important both from a utilitarian, purely technical point of view and
from a conceptual point of view, where a given structure reflects a non-physical world that
is a strictly abstract description. It is worth remembering this when applying parametric
design, which is being developed by many creators, designers, and architects.

5.1.6. Generative Design

The possibilities offered by the computerization of the design process naturally open
up a wider range of possibilities, allowing the preparation of many variants and the analysis
of their advantages and disadvantages. Generative design is a natural evolution in this
area, successfully complementing and extending the possibilities of engineering design [34].
It covers more and more areas of application, including architecture and, more importantly,
structural design [35].

The optimization problem can be described by a visual script, which is then executed
and used by programs designed specifically for this purpose. For example, Revit offers an
option called Generative Design. This allows the user to optimize the design process in the
areas described, as well as to create their own scripts and adapt them to their individual
needs. There are many examples in Revit documentation of the use of this optimization
tool, such as route analysis to understand the paths of travel or evacuation in a building,
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the layout of a workspace in terms of the arrangement of desks, and several others. It
seems that generative programming may soon become one of the basic tools of ordinary
engineering practice, alongside strictly conceptual work and studies. This depends largely
on the inclusion of these tools in the most popular design environments, as well as on the
awareness and education levels of the engineering designers, which are discussed below.

5.1.7. Possibilities for Other Applications of VPL Systems

The areas of visual programming support for design described in this section are
currently the most developed. Of course, they are not the only ones. Visual programming
environments are used wherever you can observe and capture the dependencies between
the constituent elements of the object being studied. In fact, visual programming can be
used wherever a given problem can be described in a more or less parameterized way.
It can be said that the whole world can be described mathematically, and therefore the
whole world can be parameterized. In reality, it is only up to the engineer, designer, or
programmer to decide where and how to use tools such as Grasshopper, Dynamo, or
similar. Just as music can be created based on the Fibonacci sequence, any physical object,
process, or phenomenon can be encoded. This can be seen by looking at case studies in
visual programming, not necessarily from the architecture or construction industry.

5.2. VPL Design—Challenges

Although VPL environments have existed in design for many years, several aspects
remain challenging. Currently, the most relevant of these are:

• Education at the elementary and university level.
• Integration of programming and design environments.
• Few concise and comprehensive publications.

5.2.1. Education at the Elementary and University Level

Having observed the development of computerized and digitized design technology
for many decades, it is impossible to begin a discussion on this topic without mentioning
education in this area. Although it may not seem to be closely related to the topic at hand, it
is the awareness and level of education of engineers from various industries that determine
the prevalence of design support systems such as CAD, which has become an unwritten
standard, as well as currently developed and gradually implemented environments and
systems such as BIM technology. The development and popularization of modern design
support technologies in engineering practice depend on the level of education in their
implementation.

With regard to visual programming, it should be noted that it is not a common
and easily implemented subject in some national educational systems adopted by the
faculties that train civil engineers. The main problem is the fact that it does not work in
all educational pathways, but only in selected ones, usually related to BIM technology or
related fields. Another problem is a kind of substantive or perhaps more mental barrier
related to the approach of civil engineering students to programming as such. Although
learning one of the basic programming languages in the first semester is common practice,
a civil engineering student who is also a programmer is a rarity. At this point, another
phenomenon and a kind of contradiction should be noted, because programming is taught
at the primary school level, in high schools as part of the computer science subject, and
students are introduced to the C++ programming language at an early age. However,
it seems that the teaching of programming should be implemented during the studies
in construction to a greater extent. In conclusion, the problems discussed above are the
basic barriers that effectively limit the future possibilities of using visual programming in
engineering practice.

These obstacles can certainly be overcome. What is necessary for the development of
visual programming is its widespread adoption in the environment of future and practicing
engineers. This process may be slow, but it is happening, as at least in some universities
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the subject of visual programming application in design and practical exercises to learn
this technology are being taught.

Another way of learning is through training. Recently, there has been an increase in
activity in this area. First of all, the range of training courses covering many areas of what
is conventionally called computer-aided design is gradually expanding. At the same time,
there is an increasing number of companies or institutions offering training that includes the
topic of visual programming, mainly in the Dynamo environment with integration into the
Revit environment. Online forums and video sites are also important sources of manuals
and instructional videos. These are increasingly being incorporated into training. Many
examples, such as the construction of trusses or complex bridges (e.g., the Helix Bridge) and
the corresponding dynamo scripts, are available online free of charge and can be adapted for
personal use. All this applies both to the idea of visual programming orientated towards the
modeling of building objects and to the “programming” of subbranches, e.g., infrastructure.
With regard to the development of this field, the issue of continuous training, not only for
designers but also for engineers already working in the profession, should be highlighted
in a positive way. Such a path of competence development is in line with the trend of the
Western model, where an engineer (and not only) acquires his or her competences through
self-improvement in the form of training courses, postgraduate studies, complementary
studies, or even studies in other fields, or even pursuing a doctorate. This is another area
and direction in which the development and popularization of visual programming as
such is heading. As mentioned earlier, the basis of any development is, among other
things, the awareness and dissemination of modern and innovative technological tools, in
this case, the efficient support and automation of the process of design, implementation,
investment service, and object management throughout its life cycle. As already mentioned,
parametric programming, which will also be discussed in the following section in the
context of the development direction, offers completely new, often abstract possibilities that
go far beyond engineering design. Therefore, the training process should not be forgotten
as an important aspect.

5.2.2. Integration of Programming and Design Environments

The natural consequence of developing programming environments, including enrich-
ing them with new features, is the ability to use them directly in other programs. This is
a very important direction for the development of visual programming. As a result, for
some time now, we have seen a closer and wider integration of parametric programming
environments (Dynamo, Grasshopper) with programs or even platforms for modeling and
computational analysis of building objects and their structures. If we analyze the evolution
of the Dynamo environment, which has been available for many years as a standalone
program, starting with its release as an Autodesk product called Dynamo Studio 2017,
then its permanent integration into the main BIM Revit environment and its inclusion in
Robot Structural Analysis 2022, we can conclude that the direction in this field has long
been established. As BIM technology continues to develop and become more widespread,
tools that will allow greater automation not only of the design process but also of the
entire investment implementation process are being explored. This has led, among other
things, to the introduction of visual programming as an add-on to the core BIM information
management program Revit.

The implementation of visual programming in other environments facilitates the
design process on several levels, not just object modeling. An engineer no longer needs to
export the results of his work via intermediate means, such as universal formats, because
the output of the script is automatically present in the given model. Of course, the process
of creating a script is the same as creating a standalone application and requires the same
programming skills as the engineer. However, simply incorporating a visual programming
language into a design environment makes the work easier and faster, and also encourages
people who have no previous experience to try creating visual scripts.
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Another area of discussion is the integration of programming environments with
design environments. At this point, it seems that the modeling of geometry and its man-
agement are the most effective aspects. The latter is fundamental considering the concept
of BIM technology, where the management of information about the model is crucial. The
operations that can be performed using visual scripts offer great possibilities in terms of
editing, developing, or organizing the BIM model. As a result, the process of automating
BIM modeling is accelerated and simplified. The designer can perform operations on data
contained in the model, as well as on external data. The latter option is widely used in
the implementation of engineering objects that can be modeled and located based on the
real coordinates of characteristic points surveyed in nature. Another category of such
operations is working on a cloud of points obtained by 3D scanning, which is becoming
the basic method for even building inventory. The database operations that can be per-
formed based on visual scripts are much broader than the possibilities of the modeling
environment alone.

As far as integration of visual programming with other environments is concerned,
packages containing programming options prepared with a specific scope, as described
above, are also an important element. This is an important direction and element in the
development of programming environments, without which it is difficult to imagine the
simplification of the designer’s work today.

5.2.3. Publications

The main deficiency, however, is the fact that there are few coherent scientific or
scientific-didactic publications in the form of academic textbooks that would comprehen-
sively present the idea of visual programming itself, its practical applications in structural
design, and also present at least a few elementary examples of scripts on the basis of which
a lay engineer could start working in a given environment. These are still rare. This fact,
among others, became the main impetus for writing a certain book [36], which the author
hopes will be developed and expanded in the future. In the specialist literature, there are
compilations such as [37,38], but their form and scope are not adequate from the point of
view presented above. However, the manual [39] is one of the most interesting in this area.
Regarding the use of visual programming in architecture, as well as the idea of parametric
and algorithmic architectural design, very good publications, namely [12] and [16], should
be mentioned. As already mentioned, there is a need for publications related to the design
and modeling of the structures of constructions based on visual programming. Therefore,
this is one of the directions for future work.

5.3. VPL Design—Future Developments
5.3.1. Development of Software Environments

The development of visual programming tools, which can be used for more than
just civil engineering, is one of the factors that contributes to their widespread use. The
environments and interfaces required for programming are constantly being developed
and updated. Suffice it to mention, for example, the number of development versions of
the Dynamo SandBox program, which is updated monthly at the level of several stable
versions and even dozens of development versions [40].

This development occurs in several ways. New procedures (nodes) are developed
and updated to extend functionality in many different areas. This applies both to the
modification or creation of new options and the creation of nodes. The latter area mainly
concerns the preparation of packages containing nodes intended for narrow, specialized use
in particular industries or even their parts. An example of this is the Structural Analysis for
Dynamo package, which makes it possible to prepare a script in a standalone installation
of Dynamo SandBox that allows a parameterized computational model of a structure to
be run, launched, and the results obtained in the Robot Structural Analysis Professional
program. Regarding this package specifically, there is a need for its development due to
the very fact of integrating these two environments, as well as functional deficiencies in
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the package itself. This is a natural direction for the development of visual programming.
There are many other purpose-built packages that are continually updated (often with
several updates per year), and new packages are being designed. In this respect, it seems
that this will be the main direction of development for visual programming environments
in the next few years, extending functionality and programming-specific problems.

Another direction of development for programming environments is their integration
and implementation into other design environments or platforms. This process is gradual,
and in recent years, we have seen the introduction and coupling of programming software
with BIM or FEM environments. As mentioned above, the Dynamo system has become a
component of environments such as Robot Structural Analysis and Revit and has also been
incorporated into generative design tools.

One of the effects of the above development work is the simplification of the program-
ming process itself through the creation and improvement of programming environments.
Users are provided with increasingly powerful tools that can significantly shorten and
simplify the design process.

Another extremely important element in relation to the popularization of the technol-
ogy of visual programming for engineering applications is access to documentation. This
includes issues related to program support, such as installation, operation, and extension
of functionality (e.g., installation of add-ons), as well as knowledge of visual programming
itself. It should be noted that the documentation available in these areas is quite extensive,
and a person who has the ability to independently search for information, apply it, and
verify it in practice should be able to handle the correct operation of environments and
prepare basic scripts. Basic knowledge is usually provided free of charge by software
vendors, e.g., [41–43]. Since the environments discussed here have primarily utilitarian
applications, sample files—scripts, commonly referred to as samples—are an essential part
of the documentation. The database of available examples is constantly being expanded by
scripts created by users, either privately or by commercial companies. In the latter case,
there is, unfortunately, a cost involved, as they are sometimes made available for a fee. In
addition to the free knowledgebase, instructional videos are prepared and shared on the
most popular video services available on the Internet. At the same time, there is a market
for training courses offered by commercial companies, which sometimes organize free,
usually short training sessions, such as webinars.

5.3.2. Design Automation

A natural benefit of using any software in engineering design is the degree of au-
tomation it brings to the process. The same is true for visual programming, which, if used
properly, can increase efficiency in this area to an extent that cannot be matched even by
CAD or even BIM systems. The natural direction of development for this environment is
therefore the development of the parameterization of the entire object design process and
even the implementation of the entire investment. Section 4 presents three examples of
the use of scripts to model parametric structures, from the simplest to the most complex,
showing the evolution of this process. Visual programming seems to offer the greatest
potential for application in this area. Creating complex, asymmetric, and nonmodular
geometries is one of the biggest problems designers face. Global architectural trends have
been moving toward the design of organic, bionic forms for some time now, as evidenced
by the structures of various built objects such as buildings or bridges designed by architects
such as Santiago Calatrava [44] or Zaha Hadid [45]. It seems that the intensification of
activities in the field of parameterization of an increasing number of already typical struc-
tures should take place precisely in this area. Therefore, the use of parameterization in the
design process itself is one of the basic directions in which the visual programming trend
should develop more intensively. Although this direction has already been established
quite some time ago in the field of programs and now applications not necessarily intended
for computers, it seems that it should be significantly developed and orientated in the field
of visual programming.
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5.3.3. Application of Artificial Intelligence in Engineering Design

In recent years, certain software producers and, more generally, companies that de-
velop IT technologies and products, have stepped up their efforts to develop and dissemi-
nate the technology commonly known as artificial intelligence (AI). In fact, AI is already
being used in everyday life, often without people realizing it. Unlocking a smartphone with
a fingerprint or using facial or iris scanning as a unique way to secure devices seems imper-
fect because an AI-based application that can generate a so-called universal fingerprint was
developed fairly quickly. In the next few years, AI will become increasingly involved in
our lives, trying to relieve us of many activities that require more or less intellectual effort.

So why not use AI in design? Work in this area has been going on for some time,
and one of the results is the development of generative design tools for engineers. In this
case, AI does not take the work out of our hands but allows us to perform work that is
impossible to do manually. Just as it is impossible to compare the computing power of
a well-equipped computer with the capabilities of cloud computing, it makes no sense
to compare computing power in terms of generating variants of situations that can be
obtained using generative design. Why not go further and try to develop intelligent
programming tools that would optimize the design process to some extent? Tools that have
been used for some time, such as genetic algorithms used to optimize various structural
designs [46,47], and others [48], could be applied here. By applying the appropriate criteria,
the engineer would obtain a product that would be tailored to his needs. This may seem
like too big a leap in terms of the development of programming tools, which are currently
not very advanced. In reality, it is simply a matter of developing software for the existing
environment. Obviously, this requires much work, but given the opportunities it offers, it
should happen sooner or later.

An example of an AI application in the areas discussed above is the Python code
generated by ChatGPT to design a roof truss, as shown in Figure 27. Due to current
limitations, this code is intended to be executed within the Dynamo environment.
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It creates a roof truss as a structural framing element in Revit, based on the specified
span, pitch, and depth parameters. It sets various properties of the truss, such as depth,
pitch, span, family, and type, and assigns it to a specific level. Finally, the code outputs
the created truss element. This code assumes to have the necessary Revit and Dynamo
packages installed and referenced in the Dynamo environment.

The possibilities offered by software manufacturers for some time now give rise to the
hope that, by improving the tools offered and expanding their areas of application, it will
be possible to use this technique in everyday applications, such as optimizing the weight
of a designed structure.

6. Results

The main findings of this study can be summarized as follows:
Current applicability: The study positively evaluates the current applicability of VPL

technology in structural design. It is found to be highly effective in creating complex
geometries for building structures, particularly those with asymmetrical shapes that are
challenging to design using traditional methods. This is highly effective when multiple
design options are at the conceptual stage.

Optimization: By using an algorithmic-parametric approach to design, and in par-
ticular generative design, there are great opportunities for structural optimization. The
ongoing development of optimization methods, such as the use of genetic algorithms, in
VPL-based design is noteworthy.

VPL-BIM environments and integration: The development of VPL environments
dedicated to structural design, along with their integration with design systems such as
Building Information Modeling (BIM), is seen as a positive advancement. This integration
improves the overall design process. A noticeable development is the use of VPL in BIM,
4D, 5D, and higher. This allows for interoperability in iBIM.

Limitations in structural computing: While VPL technology is beneficial for form
creation, it has some limitations in structural computing. Existing systems mainly allow
for simple static analyses, and more advanced capabilities, such as automatic structural
optimization, are lacking. Current optimization tasks often require the use of individual
scripts and sophisticated methods.

Designer competencies: The awareness and experience of a wide range of designers of
the use of VPL in structural design need to be improved. The theoretical foundation for VPL-
based design requires increased educational efforts during academic studies and professional
work. This also applies to the need for preparing and updating teaching literature.

Continuous development: VPL environments are continuously evolving, and their
theoretical operating algorithms are being improved over time. This highlights the ongoing
progress in VPL technology.

7. Conclusions

Summarizing the results of this study, they can be divided into two scopes, strictly
practical and theoretical. In the first case, the current applicability of VPL technology in
structural design should be evaluated positively. It is most effective for the form creation
of building structures, which nowadays often adopt asymmetrical geometries that are
practically impossible to design in the traditional way. Also positive is the development of
VPL environments dedicated to structural design and their integration with design systems,
including BIM. In the field of structural computing, it seems that the dynamic development
of capabilities based on visual programming is necessary. Currently, existing systems
mostly allow one to perform simple static analyses. What is lacking are at least automatic
options for structural optimization. This requires the preparation of individual scripts
and the use of sophisticated methods, such as genetic algorithms. When discussing the
theoretical aspects of the application of VPL in structural design, the first thing to note is the
rather low awareness and experience of designers in this area. It is necessary to establish
a theoretical basis for design based on VPL. This requires the need for more educational
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activities during studies and at work. Another element is the observed development of VPL
environments, whose theoretical operating algorithms are being developed all the time.

The future will show which of the directions described in this study for the devel-
opment of visual programming in engineering design will develop most rapidly and
intensively. This development will, of course, vary according to the natural needs of the
design industry. Certain paths of development will certainly lead to the abandonment of
activities and a change in the concepts used so far. However, it is to be hoped that visual
design will be on an upward trend because the fundamental and natural direction of devel-
opment is the automation and optimization of the design process. An important element is
also the issue of technical documentation media, which will sooner or later be created in
digital form, which will become the basic form. The digital model of a building, which will
become the only complete source of information even in BIM technology, will therefore be
the only complete image and carrier of technical documentation and more. In this respect,
visual programming offers and will continue to offer more and more possibilities, not only
allowing the generation of increasingly complex geometries but also offering incredible
possibilities for managing the information encoded in the model.

In general, the study indicates that VPL technology shows promise in structural de-
sign, especially for complex geometries. However, there are challenges to address, such
as enhancing structural computing capabilities and increasing designers’ awareness and
expertise in using VPL effectively. The ongoing development of VPL environments and algo-
rithms will play a significant role in modeling its future applications in engineering design.
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Poland, 2014.

17. Burry, J.; Burry, M. The New Mathematics of Architecture; Thames and Hudson: London, UK, 2010.
18. Burry, M. Scripting Cultures: Architectural Design and Programming; Wiley: Chichester, UK, 2011.
19. Caneparo, L. Digital Fabrication in Architecture, Engineering and Construction, 1st ed.; Springer: Dordrecht, The Netherlands, 2014.
20. Adu, M.K.; Abe, O.E. Improving Structural Designs with Computer Programming in Building Construction. IOSR J. Comput. Eng.

2014, 16, 10–16.
21. Collao, J.; Lozano-Galant, F.; Lozano-Galant, J.A.; Turmo, J. BIM Visual Programming Tools Applications in Infrastructure Projects:

A State-of-the-Art Review. Appl. Sci. 2021, 11, 8343. [CrossRef]
22. Funari, M.; Spadea, S.; Ciantia, M.; Lonetti, P. Visual programming for the structural assessment of historic masonry structures.

In Proceedings of the 8th Euro-American Congress Construction Pathology, Rehabilitation Technology and Heritage
Management—REHABEND 2020, Granada, Spain, 24–27 March 2020; pp. 1–8.
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