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Featured Application: This paper introduces a neural-network-based landscape search engine
tool for the state of Wisconsin. It provides several examples of how the application works and
suggests avenues for future research.

Abstract: The task of image retrieval is common in the world of data science and deep learning, but it
has received less attention in the field of remote sensing. The authors seek to fill this gap in research
through the presentation of a web-based landscape search engine for the US state of Wisconsin.
The application allows users to select a location on the map and to find similar locations based on
terrain and vegetation characteristics. It utilizes three neural network models—VGG16, ResNet-50,
and NasNet—on digital elevation model data, and uses the NDVI mean and standard deviation for
comparing vegetation data. The results indicate that VGG16 and ResNet50 generally return more
favorable results, and the tool appears to be an important first step toward building a more robust,
multi-input, high resolution landscape search engine in the future. The tool, called LSE Wisconsin, is
hosted publicly on ShinyApps.io

Keywords: image retrieval; remote sensing; web GIS; GIScience

1. Introduction

Deep learning (DL) has been extensively and successfully applied in the field of remote
sensing for tasks such as object detection, object segmentation, and land use classification [1].
Such methods have brought about major advancements in the discipline and have been
crucial to the fusion of data science and remote sensing. At the same time, however, image
retrieval—that is, returning similar images given a single input image—has become an
increasingly common data science task, yet its application to remotely sensed datasets
has been lacking. This project seeks to fill that gap in research through the creation of a
“landscape search engine” tool, designed particularly for (though certainly not limited to)
location analysis applications.

To achieve this goal, the authors leverage several common DL models—VGG16,
ResNet-50, and NasNet—on digital elevation model (DEM) data and combine these outputs
with a traditional vegetation metric, the normalized difference vegetation index (NDVI),
in creating the image retrieval tool. The authors present this as a publicly accessible web
application (https://uwec-geog.shinyapps.io/lse-wi accessed on 6 August 2023) which
allows users to retrieve similar landscapes in the US state of Wisconsin for a location they
select on the map. Using sliders and drop-down list options, users can select a specific
neural network (NN) model, the number of locations to retrieve, the relative weight on
terrain or vegetation, the amount of weight to place on mean vs. standard deviation NDVI,
and an optional exclusion radius from the input location. To date, this is the only landscape
search tool built specifically for the state of Wisconsin, and, to the authors’ knowledge,
it is the only search engine tool which leverages neural network models for landscape
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search. Considering the increasing impact of data science on the domains of geographic
information science (GIScience) and remote sensing, the development of this tool and its
corresponding metrics signifies a crucial stride towards the creation of robust, user-friendly
digital resources for the research community and end-users alike.

Background

Implementations of DL in remote sensing and within the broader field of geographic
information science (GIScience) have been applied to a variety of tasks, such as land cover
mapping [2], environmental parameter retrieval [3], data fusion and downscaling [4], object
detection [5], and information construction and prediction (see [1,6,7] for comprehensive
overviews). Other efforts have focused on advancing the principles of DL in remote
sensing, including the integration of aerial images, and the detection of small objects on the
landscape [5,8]. Yuan et al. [3], in particular, have advocated for the fusion of geographic
principles into DL for remote sensing tasks, most notably Tobler’s famous First Law of
Geography: “Everything is related to everything else, but near things are more related than
distant things”. The most common and mainstream frameworks are back-propagation NNs,
such as convolutional neural networks (CNNs). Indicative of their power, CNN models
often produce a sizable increase in accuracy over traditional regression models, particularly
when working with remotely sensed data. Further, unlike traditional learning algorithms,
intrinsic features from raw input data can be extracted using a variety of DL frameworks
without using manual digitizing techniques, thus reducing the need for reliance on domain
knowledge [9].

Despite the significant number of remote sensing studies which utilize DL, there is a
paucity of research on the particular task of image retrieval using remotely sensed data,
with a few notable exceptions. Jasiewicz et al. [10] first coined the term “landscape search
engine” in building a landscape similarity tool for terrain across the entire country of Poland.
Using the concept of “geomorphons”, this approach classifies pixels from digital elevation
models (DEMs) into several types: ridge, shoulder, spur, slope, hollow, footslope, valley, pit,
flat, and peak. Another landscape similarity tool, developed by Dilts et al. [11], has been
applied toward location optimization of control sites based on the spatial characteristics of
treatment sites. The researchers applied a moving window analysis to generate per-pixel
maps of similarity between the treatment and control areas for site selections. Outside of
this application, the United States Geological Survey (USGS) has a landscape search tool
focusing on land treatment exploration within the United States, making use of modifiable
parameters, such as soil and vegetation characteristics [12]. Through an interactive web
map, it allows users to input empirical characteristics for the purpose of finding areas with
similar heat load, soil properties, and climate conditions. At the time of writing, however,
the two formerly mentioned studies do not have publicly available toolkits, and none of
these prior implementations make use of NNs.

VGG16, ResNet-50, and the Neural Architecture Search Network (NasNet) have been
used frequently in remote sensing. The Visual Geometry Group (VGG) model architec-
ture is a standard CNN which uses a specified number of consecutive convolutional
layers to extract features from image data. The input of VGG is an image with resolution
224 × 224, and, since VGGNet is a classification network, the output shape is propor-
tional to the number of classes in the dataset. The model architecture consists of multiple
convolution layers followed by max pooling layers, and the end of the model consists
of fully connected layers followed by the final classification layer. Two common VGG
architectures used are VGG16 and VGG19, which are sixteen and nineteen layers deep,
respectively [13]. The VGG16 architecture, in particular, was first introduced by Simonyan
and Zisserman [14] for image recognition and has been used extensively in multispectral
and hyperspectral image classifications even with low resolution imagery [15]. It has also
been utilized for tasks such as road feature extraction [16], sea ice classification [17], image
stitching [18], and many others.
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ResNet-50 falls into the family of deep residual networks and contains 50 layers:
48 convolutional layers, one average pooling layer, and one max pooling layer [19]. This
model, along with small modifications to its architecture, has been successfully applied in
many remote sensing applications, such as image segmentation [20], classification [21,22],
and image captioning [23]. In a comparative study of several NN models for remote sens-
ing classification, ResNet-50 indeed outperformed other models, including NasNet and
VGG16 [24]. NasNet has been applied to tasks such as scene classification (e.g., see [24,25])
but has been used for remote sensing tasks less often than VGG16 and ResNet-50. This
makes its use in new applications of particular interest as a comparison with more com-
monly utilized models.

It should be noted that the issues associated with image retrieval for landscapes vary
markedly from those associated with image retrieval on traditional color photographs.
Whereas a picture of a red ball against the backdrop of green grass and a blue sky exhibits
stark within-image pixel differences (i.e., high contrast), the continuous nature of the Earth’s
surface makes such extreme differences uncommon in landscape qualities like elevation.
Similarly, the variability of color in a natural landscape is much less than what is present
in photos containing human objects, such as vehicles and clothing. For these reasons, it is
worth exploring the utility of DL for image retrieval with landscape data.

2. Methods and Data

Due to the often long computation times incurred by using NN models and in making
vector geometry calculations, the code used to create LSE Wisconsin was grouped into
three stages: (a) data extraction, (b) a priori modeling, (c) and ad hoc querying. We
notably take a different approach from Jasiewicz et al. [10] by using NNs rather than
geomorphons, additionally utilizing vegetation data, and allowing users to select a variety
of model options. Further, our work is differentiated by the fact that the models make no
explicit classification of pixels into various terrain types. In addition to taking advantage of
state-of-the-art algorithms, this approach adds the benefit of flexibility.

2.1. Data Extraction

Two freely available remotely sensed data sources were utilized in this project: DEM
data and NDVI data (see Figure 1). The DEM data comes from the Wisconsin Department of
Natural Resources (DNR), and a 30m DEM resolution was selected to produce reasonable
computation times given the size of the state of Wisconsin. This data is available for
direct download as a single file from the Wisconsin DNR. Using a command line utility
from the Geospatial Data Abstraction Library (GDAL), this single file was retiled into
individual .tif files, each 256 × 256 pixels. Thus, the resulting extent of each .tif was about
7.5 km × 7.5 km, which resulted in a total of 2510 observations after removing .tif files
which were completely empty (i.e., those at Wisconsin’s borders). This size balances ease
of computation while keeping a user-friendly approach. Medium-sized cities such as Eau
Claire and La Crosse can mostly be covered by 1–2 grid cells, whereas larger cities such as
Madison and Milwaukee are encompassed by more cells. It also strikes a reasonable balance
between substantial terrain and vegetation variation between grid cells on the application,
without burdening users with an overwhelming number (i.e., tens of thousands) of small
grid cells as selection options.

The vegetation data comes from the National Air and Space Administration’s (NASA)
Moderate Resolution Imaging Spectroradiometer (MODIS) program, specifically, the 16-Day
L3 Global 250 m SIN Grid. Similar to the DEM data, this dataset is available as a single
HDF5 file. Using the R Project for Statistical Computing, the single raster was cropped by
each of the 2510 DEM .tif files into individual vegetation .tif files. This ensured a one-to-one
spatial match of each terrain and vegetation grid cell. The vegetation data come from
5 June 2021 which was selected for several reasons. First, by this point, all of the snow
has melted in Wisconsin, and plants are actively growing. At the same time, crops have
been planted but are not yet fully grown. The idea behind this was to effectively separate
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natural vegetation (i.e., prairie and forests) from agriculture. Experiments with vegetation
data from later in the growing season did not effectively show the difference between
the abundant coniferous forests of northern Wisconsin and the farms commonly found
farther south.
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Figure 1. Map of terrain (DEM) and vegetation (NDVI) data.

2.2. A Priori Modeling

The a priori modeling—which only runs once—effectively serves as a data preparation
step before the results are handed over to the web application. The majority of this a priori
code was developed with Python 3.7 with a small portion being written in the R Project for
Statistical Computing. The major steps for the terrain data involved (1) creating feature
vectors using NN models, (2) comparing the feature vectors using cosine distance, and
(3) using min-max normalization to effectively scale the results. The three NN models
selected are benchmark models in TensorFlow and are commonly used in remote sensing,
though other models, such as XCeption and Inception, were tested, but were ultimately not
utilized due to their apparent poor performance for the task at hand. Though the authors
experimented with applying NN models to the vegetation data similarity, it was ultimately
discovered that more direct measures of NDVI, e.g., the mean and standard deviation,
better captured similarity as the resolution of individual vegetation images was relatively
low, which resulted in the NN models struggling to effectively separate these single-band
observations with relatively little structural difference.

Model Metrics

In order to create feature vectors, each DEM dataset, stored as a .tif, was first read
as a numpy array and resized appropriately based on the required input dimensions of
each model. This resizing was accomplished with bilinear sampling. Since the DEM data
is effectively a singular band containing one variable—elevation—and NN models often
work with three bands (i.e., RGB) images, this singular channel was copied two more times
to create an n × 3 array. Each array was then processed through each NN model to create a
one-dimensional feature vector.

Following this, each pair of feature vectors was compared using the cosine similarity
defined as:

cos_sim =
A · B
‖A‖‖B‖

where A is one feature vector and B is another. This is effectively a measure of the angle
between two model outputs in vector space, computed by dividing their dot products by
their magnitudes. This produces a single value for each pair of images.

In order to scale results between 0 and 1, min-max normalization was used:
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model_sim =
xi,j −min(x)

max(x)−min(x)

where xi,j represents a single pair of similarity results and x represents the aggregate of all
pairs. This was separately completed for each of the three NN models, producing variables
resnet50_sim, vgg16_sim, and nasnet_sim. These values were each stored in individual
numpy arrays.

After this, the vegetation metrics were computed. The within-image mean NDVI
and standard deviation NDVI were each computed, and similarities were computed by
retrieving the absolute value of the difference between each pair and then subtracting this
value from 1:

mean_ndvi_sim′i,j = 1− abs(ndvi_meani − ndvi_meanj)

sd_ndvi_sim′i,j = 1− abs(ndvi_sdi − ndvi_sdj)

These were then min-max normalized to create variables mean_ndvi_sim and
mean_sd_sim and were stored as numpy arrays. Distances (variable dist) were also calcu-
lated between each image pair and stored in a numpy array.

Finally, the results were aggregated into a SQLite database. Here, each row represents
a pair of locations and their corresponding similarity metrics, producing a “tall” rather
than “wide” dataset. Since there are 2510 locations in the dataset, the number of rows is
equal to the square of the number of locations, i.e., 6,300,100. While this approach produces
a reasonable amount of data duplication, leveraging a database in this way allows for
shorter query times and more efficient memory usage within the web application. The final
database size is a manageable ~450 MB.

2.3. Ad Hoc Querying

The querying of results occurs behind the scenes in the web application, which was
created with R’s web framework, Shiny [26]. On the application’s landing page, users are
given several input options:

• Exclusion radius in miles (variable dist, values: 0–300): following Tobler’s First Law
of Geography, it was expected that nearby locations would be highly similar and
that users may want to exclude options within a certain distance in order to retrieve
results from farther away. The default is 0, meaning that no locations are excluded
due to nearness.

• Number of similar locations to retrieve (variable k, values: 1–10): The default is 5.
• Terrain model (variable resnet50_sim, vgg16_sim, or nasnet_sim, depending on

using input from options “ResNet-50”, “VGG16”, and “NasNet”): The neural network
model to use in comparing results.

• Criteria weight for terrain (variable terrain_scale, values of 0–1): Relative weight
to use for terrain (default of 0.8). This gives end-users flexibility by allowing them to
place more or less emphasis on terrain versus vegetation.

• Criteria weight for NDVI mean vs. NDVI standard deviation (variable veg_mean_scale,
values 0–1): Relative weight to use for each of the two NDVI variables (default of 1).
This allows users to place more or less emphasis on total vegetation (i.e., mean NDVI
similarity) versus the amount of NDVI variability (i.e., NDVI standard deviation).

Using these input values with the similarities stored in the database, a “total similarity”
metric is computed on-the-fly after a user selects input options and clicks on the “Find
Similar Landscapes” button:

total_sim = (terrain_scaleu ∗model_sim)+

(veg_scaleu ∗ ((veg_mean_scaleu ∗ veg_mean_sim) + (veg_sd_scaleu ∗ veg_sd_sim))
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where

veg_scaleu = 1− terrain_scaleu

and

veg_mean_scaleu = 1− veg_sd_scaleu

Here, variables noted with the subscript “u” are either taken from or calculated by user
input, whereas the others have been computed a priori and are stored on disk. Effectively,
total_sim takes the similarity results and scales them based on the user’s desired param-
eters. This metric represents the combined similarity of terrain and vegetation, enabling
users to tailor emphasis on one landscape characteristic or the other to suit a specific use
case. The relative weight to place on terrain (terrain_scaleu) is multiplied by the terrain
similarity scores as computed by the NN models and the cosine distance between the fea-
ture vectors (model_sim). Similarly, the weight to place on vegetation (veg_scaleu)—which
is the additive inverse of the weight placed on terrain—is multiplied by the vegetation sim-
ilarity results. However, since vegetation similarity considers both NDVI mean similarity
(veg_mean_sim) and NDVI standard deviation similarity (veg_sd_sim), the weight to place
on each of these vegetation metrics is considered as a part of the larger weight placed on
vegetation similarity through the inputs veg_mean_scaleu and veg_sd_scaleu, respectively.
The metric total_sim could be thought of as simply a weighted average of similarity results
scaled by user input options.

Other variables are retrieved from user input and queried from the SQLite database
using R’s dbplyr package [27] (see Figure 2 for a visual representation of the model).
Queries are accomplished quickly due to dbplyr’s ability to query databases on disk rather
than loading an entire dataset into memory; though users may notice a delay of several
seconds, the web application currently operates with only 1 GB of memory and a single
CPU core.

Figure 2. Similarity calculation flowchart.

3. Case Studies
3.1. Observations of General Patterns

In order to better understand how similarity scores are distributed and what the results
mean, the authors aggregated the similarity scores of each location pair for every model.
Then, the distributions and correlations between measures were investigated. In general,
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the aggregated similarity scores produced by ResNet-50 and NasNet are highly left-skewed,
with NasNet scores being more leptokurtic (Figure 3). This means that these scores are
generally closer to a value of 1, or deemed more similar on average. The VGG16 similarity
scores, on the other hand, are far more mesokurtic and slightly right-skewed. This means
that, for any given pair of landscapes, the ResNet-50 and NasNet scores are more likely to
be scored as more similar, though it should be kept in mind that this is simply a function
of how the models produce and compare feature vectors. Min-max normalization helps
in compensating for non-normality, but, in the end, such transformations do not alter the
ordering of similar images, only the way in which they are represented. The vegetation
similarity scores are also left-skewed (Figure 4).
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Figure 3. Density plots of neural network model similarities.
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Figure 4. Density plots of NDVI similarities.
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A correlogram of all variable pairs helps determine how similar model metrics are
in terms of what they fundamentally measure (Figure 5). Pairs with stronger correlations
exhibit a higher degree of overlap, while those with weaker correlations manifest distinc-
tive measurements. The inclusion of distance in correlation computations also provides
insights into spatial dependence. Spearman’s ρ is used due to the non-normal nature of the
distributions. Correlations among the variables are generally weak with the exception of
the terrain variable pairs:

• resnet50_sim with vgg_16_sim
• resnet50_sim with nasnet_sim
• vgg16_sim with nasnet_sim

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

resnet50_sim

vgg16_sim

nasnet_sim

veg_mean_sim

veg_sd_sim

dist

 0.26

 0.72

 0.00

 0.00

 0.00

 0.32

 0.00

 0.01

 0.00

−0.01

 0.00

 0.01

 0.20

−0.10 −0.11

Figure 5. Correlogram of similarity results.

The strongest relationship is between resnet50_sim and nasnet_sim (ρ = 0.72), mean-
ing that these variables capture similar things. In turn, this means that vgg16_sim is
capturing something relatively unique. Despite the high correlations between ResNet-50
and NasNet, we keep both due to the exploratory nature of the web application. Indeed, in
practice, the two do seem to function differently.

There is virtually no correlation between the individual vegetation metrics with any
of the terrain metrics. On the surface, this appears counterintuitive as the amount of
vegetation in a location is, to a certain degree, dependent on characteristics closely tied
to the terrain: lithology, topography, and soil. However, while Wisconsin is far from
isotropic, its terrain admittedly does not vary nearly as much as a state like Colorado,
which straddles the Rocky Mountains. Following this, very flat locations in the state can
have wildly different NDVI values—consider, for example, a location of mostly water and
one of flat farmland. Further, given the right skew of most model metrics, yet the low
amount of correlation between the terrain and vegetation similarity scores, using these two
in tandem to produce the total similarity score is wise, as, importantly, the two combined
help separate individual observations.

In general, there is a surprisingly low amount of spatial dependence in the data as
evidenced by the small Spearman’s ρ correlations of the variable dist with others. In fact,
the relationship between dist and veg_mean_sim along with the relationship between dist



Appl. Sci. 2023, 13, 9264 9 of 19

and veg_sd_sim are both negative, meaning that nearby locations are likely to be dissimilar
in terms of NDVI. While this is a little surprising given the apparent regional differences in
Wisconsin with respect to vegetation, the scale of analysis is such that adjacent locations
can indeed vary greatly.

3.2. Individual Locations

Below, we demonstrate the use of the application with three different locations and
parameter configurations. These were chosen intentionally to demonstrate both where the
search engine appears to function well and where it does not. Additionally, we retrieve
similarity results for three different parts of the state with varied terrain features and
vegetation types. We attempt to use a variety of different configuration options, though it
is not possible to cover them all.

3.2.1. Location A: Western Wisconsin

This location is located in western Wisconsin, just south of the town of Independence.
Situated in the area commonly referred to as the “Driftless Area” due to its lack of evidence
for glaciation, it is characterized by relatively steep ridges and dendritic drainage—that is,
the terrain appears like branching tree roots (Figure 6). In retrieving similar landscapes, the
following model parameters are used:

• k = 5
• terrain_model = ‘resnet50’
• terrain_scale = 0.8
• veg_mean_scale = 1.0
• user_dist = 0

240

280

320

360

Elevation

Parent Terrain

−1.0

−0.5

0.0

0.5

1.0
NDVI

Parent Vegetation

Figure 6. DEM and NDVI rasters for Location A (id = 1521).

These are the default options within the web application. So, if a user were to use the
application, click on the same location, and obtain results with no modifications, the exact
same result would be obtained. With these default options, the majority of the emphasis is
placed on the terrain signature—80%—rather than on the vegetation. Additionally, for the
20% of metric emphasis used on vegetation, 100% is used on the total NDVI and none is
used on the NDVI variability. No exclusion distance is used in this case, so results may be
obtained for locations at any distance away from the parent location (see Figures 7 and 8,
and Table 1 for results).

Despite the fact that matched locations are found at varied distances from the parent
location—between 5 and 171 miles away—the model appears to work well with this type
of location, as matched instances appear very similar, especially those ranked 1, 2, and 5.
The dendritic patterns are clearly visible in these matched locations, just like the parent
location. The matched location ranked 1 is also located in the Driftless Area, and the
matched location ranked 2 is located in the cell adjacent to the parent location, just to
the West.
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Figure 7. Matched locations for Location A (id = 1521).
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Figure 8. Map of matched locations for Location A (id = 1526, shown in blue) labeled by similarity
rank (interactive web map available online).
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Table 1. Similarity results from an example query (id = 1521).

Similarity Rank Distance (mi.) Total Similarity Score Resnet-50 Similarity VGG16 Similatiry Nasnet Similarity NDVI Mean Similarity NDVI SD Similatiry Parent ID Child ID

1 71 0.974 0.968 0.738 0.953 0.998 0.820 1521 2073
2 5 0.972 0.966 0.349 0.888 0.995 0.980 1521 1520
3 171 0.971 0.970 0.613 0.923 0.973 0.986 1521 450
4 139 0.970 0.967 0.676 0.952 0.985 0.797 1521 150
5 119 0.969 0.972 0.808 0.983 0.957 0.895 1521 2289
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3.2.2. Location B: Northern Wisconsin

This location lies in northern Wisconsin in Bayfield County, between the towns of
Hayward and Ashland. It is within the Bibon Swamp State Natural Area, and the region is
characterized by glacial moraines and a plethora of lakes. While the parent DEM appears
to possess significant amounts of water (Figure 9), being in a swamp, this is only the case at
certain times of the year. The following model parameters are used:

• k = 5
• terrain_model = ‘vgg16’
• terrain_scale = 0.5
• veg_mean_scale = 0.9
• user_dist = 0
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Figure 9. DEM and NDVI rasters for Location B (id = 117).

Equal emphasis is placed on terrain and vegetation, and a small amount of emphasis is
placed on NDVI variability (10%). Instead of ResNet-50, VGG16 is used, and the exclusion
distance is kept at 0 (Figures 10 and 11, and Table 2 for results).
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Figure 10. Matched locations for Location B (id = 117).
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Table 2. Similarity results from an example query (id = 117).

Similarity Rank Distance (mi.) Total Similarity Score Resnet-50 Similarity VGG16 Similarity Nasnet Similarity NDVI Mean Similarity NDVI SD Similarity Parent ID Child ID

1 183 0.890 0.705 0.812 0.957 0.968 0.959 117 1548
2 226 0.884 0.937 0.811 0.974 0.959 0.942 117 1772
3 124 0.884 0.953 0.840 0.949 0.921 0.983 117 1286
4 194 0.881 0.695 0.785 0.948 0.978 0.965 117 1797
5 283 0.872 0.792 0.831 0.944 0.917 0.872 117 2309
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Parent
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24
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Figure 11. Map of matched locations for Location B (id = 117, shown in blue) labeled by similarity
rank (interactive web map available online).

Here, all matched locations are relatively distant as the closest matched location is
124 miles away. That said, all matched locations appear materially similar to the parent
location, as most are relatively flat and appear to contain significant portions of water.

3.2.3. Location C: Urban Milwaukee

This is the only urbanized location evaluated in this paper, and it lies in the southeast
part of the state near Lake Michigan. The area is relatively flat with moderately low NDVI
values (Figure 12). The following parameters are used:

• k = 5
• terrain_model = ‘resnet50’
• terrain_scale = 0.2
• veg_mean_scale = 0.5
• user_dist = 150

180

200

220

240

Elevation

Parent Terrain

−1.0

−0.5

0.0

0.5

1.0
NDVI

Parent Vegetation

Figure 12. DEM and NDVI rasters for Location C (id = 2276).

Here, the influence of terrain is kept small compared to vegetation. Additionally,
vegetation variability carries 50% of the overall vegetation influence. This example also
makes use of the exclusion distance metric, as all locations within 150 miles of the parent
image are excluded from the results. These results have some intriguing facets that are
worth discussing (Figures 13 and 14, and Table 3).
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First, the terrain images of the matched locations appear visually dissimilar from the
parent location, but this is to be expected with only 20% of the overall metric emphasis
placed on terrain. The vegetation images appear to be very similar to the parent location, as
they have relatively low NDVI values. Notably, all five matched locations appear in a small
group; the distances away from the parent location are 262, 253, 241, 213, and 214 miles,
respectively, ranked from most similar to least similar. While these are not urban areas,
they are certainly visually similar based on the criteria utilized. It is also notable that the
area containing the cluster of matched locations is the one substantial area of native prairie
in Wisconsin.

Though this example exhibits the difficulty in identifying urban areas as similar to
other urban areas, land use is not necessarily dependent upon terrain. Further, at the
time of year of this NDVI data—early June—vegetation is less dependent on land use for
built-up land than later in the growing season. The inclusion of additional datasets, such as
true color aerial photographs, or simply using NDVI from a different time of year, would
likely change this result.

Child Terrain
 (rank = 1)

Child Terrain
 (rank = 2)

Child Terrain
 (rank = 3)

Child Terrain
 (rank = 4)

Child Terrain
 (rank = 5)

Child Vegetation
 (rank = 1)

Child Vegetation
 (rank = 2)

Child Vegetation
 (rank = 3)

Child Vegetation
 (rank = 4)

Child Vegetation
 (rank = 5)

Figure 13. Matched locations for Location C (id = 2276).

Parent

1
2 3

4

5

Figure 14. Map of matched locations for Location C (id = 2276, shown in blue) labeled by similarity
rank (interactive web map available online).
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Table 3. Similarity results from an example query (id = 2276).

Similarity Rank Distance (mi.) Total Similarity Score Resnet-50 Similarity VGG16 Similarity Nasnet Similarity NDVI Mean Similarity NDVI SD Similarity Parent ID Child ID

1 262 0.982 0.964 0.676 0.785 0.995 0.978 2276 767
2 253 0.962 0.971 0.415 0.838 0.994 0.927 2276 873
3 241 0.962 0.916 0.194 0.921 0.971 0.975 2276 876
4 213 0.954 0.861 0.428 0.781 0.961 0.995 2276 996
5 214 0.954 0.892 0.508 0.942 0.943 0.997 2276 1274
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4. Discussion

Overall, in the authors’ experiments, it appears as though VGG16 and ResNet-50 work
best for retrieving similar landscapes. Despite the high degree of correlation between the
ResNet-50 and NasNet similarity scores, ResNet-50 nevertheless appears to work better.
Due to the near infinite number of potential parameter combinations, it is not practical to
demonstrate the application using every configuration option and not even with every NN
model. The authors leave this further exploration up to the reader. The development of this
introductory tool provides a meaningful first step in the domain of NN-based landscape
search engines, but, despite the application’s utility, its approach is not without drawbacks.
Future implementations could improve upon LSE Wisconsin in a variety of ways, yet many
of the limitations point to need for a robust, multi-input custom NN architecture designed
specifically for landscapes. The subsequent discussion echos this point.

First, higher resolution data encompassing smaller areas may allow for more tangible
applications, especially given the low amount of spatial dependence in the data. Lidar-
derived 1 m DEM, for instance, could be used in place of the terrain data utilized in LSE
Wisconsin. This would, however, increase the end dataset size by a factor of 90, placing
considerable strain on a web server equipped with 1GB of memory at the time of writing.
Second, one of the most salient limitations is that all models appear, at least to some degree,
to struggle in comparing locations covered by large amounts of water. The inclusion of
water as a discrete variable in a multi-input NN model would appear prudent, but there
can be considerable variation in where water is actually present throughout Wisconsin,
particularly in its wide-ranging marshes in the northern part of the state.

Related to this, vegetation data from multiple time periods would allow for different
types of comparisons. For instance, giving users the option to select a time period later
in the summer may help differentiate urban areas from agricultural land use better, as
elucidated in the Milwaukee example. Indeed, such issues would be resolved by the
use of a custom NN architecture with several inputs—e.g., terrain, multiple vegetation
datasets, land use, aerial photography, and others—but such an approach is inhibited by the
inherent subjectivity of “similarity”, not to mention a lack of remote sensing test datasets
for such problems. Survey-based research would be beneficial in quantifying the degree
of landscape likeness. An approach such as the one implemented by Wang et al. [28] with
remote sensing scientists would be useful; appropriately ranking a set of images could be
used as a test dataset for a custom NN architecture.

Other more obvious extensions include applying this approach to other US states,
other locations entirely, or expanding the approach to include an entire country. Such a
foray would be ambitious, however, given the necessity of using large, potentially disparate
datasets outside of Landsat-derived products. Another ambitious improvement would
be in giving users the ability to input their own terrain and/or vegetation datasets for
evaluation, though this would require feature vector comparison on-the-fly. Moreover,
the increasing availability of user-derived datasets using unmanned aerial systems (UAS)
presents opportunities also worth considering for additional improvements. Future work is
needed by domain experts to help fine-tune LSE Wisconsin for real use cases and to direct
future development.

5. Conclusions

This paper introduced a methodology for constructing a neural-network-based land-
scape search engine and presented a corresponding web application. This is the first tool
of its kind for the U.S. state of Wisconsin, and, to the authors’ knowledge, it is the first
landscape search engine tool that uses NN for landscape search. Through this paper, the au-
thors have demonstrated that benchmark NN models can indeed work for image retrieval
with landscape data, and VGG16 and ResNet-50 appear to be the most promising models.
Despite the models struggling in locations with significant amounts of water, as it stands
now, LSE Wisconsin could nevertheless be used directly for location analysis applications.
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This tool marks an important step in the application of image retrieval on remotely sensed
datasets, and additional domain applications are likely to emerge with time. Further, the
authors hope that LSE Wisconsin ultimately pushes the research community toward a more
robust, multi-input landscape search engine tool in the future.
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