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Abstract: Flame recognition is of great significance in fire prevention. However, current algorithms
for flame detection have some problems, such as missing detection and false detection, and the
detection accuracy cannot satisfy the requirements for fire prevention. In order to further the above
problems, we propose a flame detection algorithm based on an improved YOLOv7 network. In
our algorithm, we replace a convolution of the MP-1 module with a SimAM structure, which is a
parameter-free attention mechanism. In this way, the missing detection problem can be improved.
Furthermore, we use a ConvNeXt-based CNeB module to replace a convolution of the ELAN-W
module for increasing detection accuracy and the false detection problem in complex environments.
Finally, we evaluate the performance of our algorithm through a large number of test cases, and the
data set used in our experiments was constructed by combining several publicly available data sets
for various application scenarios. The experimental results indicate that compared with the original
YOLOv7 algorithm, our proposed algorithm can achieve a 7% increase in the aspect of mAP_0.5 and
a 4.1% increase in the aspect of F1 score.

Keywords: flame detection; deep learning; YOLO series; convolutional neural networks; target
detection

1. Introduction

Fire disaster is one of the most common and widespread hazards to public safety,
posing a threat to human life and property security. As a matter of fact, fire disasters can be
easily extinguished in the early stages. Therefore, early detection of fire disasters plays an
important role in fire prevention and may reduce economic losses and casualties. However,
nowadays buildings are huge and complicated structures, which dramatically increases the
difficulty of fire detection. Accordingly, a more advanced fire detection method is called for.

The development of technologies upon flame detection passes through stages such as
sensor detection, traditional image processing methods, and deep learning methods. Given
the importance of fire monitoring, extensive research has been carried out on flame detection
methods. Traditional fire alarm systems generally detect changes in physical quantities
such as smoke concentration and temperature in the environment [1]. When these physical
quantities reach a certain value, an alarm is triggered, but there always exists a certain
time lag. The current flame detection methods can be classified into two main categories:
those based on manually defined flame features and those based on convolutional neural
networks. Note that in the early stages of fire development, most flames are small and
scattered, and their color is similar to natural light and sunlight. Therefore, the detection
accuracy of the methods based on manually defined flame features is quite low, since it
is difficult to detect small target flames. Researchers have tried to improve the detection
accuracy of those methods by combining the flame’s YUV color model, shape features,
and motion features [2] and by combining the RGB color model with the ViBe background
extraction algorithm [3]. Yet, the detection effect is still not satisfactory. Convolutional
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neural networks have strong learning ability, fault tolerance, and fast speed; thus, they
are commonly used in image recognition and classification. Currently, the convolutional
neural networks (CNNs) used for object detection mainly include region-convolutional
neural networks (R-CNN) [4] and YOLO series [5–9]. Compared with other convolutional
neural networks, the YOLO series can better extract global information from images and
can be trained end-to-end, which assures them as a more suitable option for flame detection.
In recent years, the YOLO series has been developed over many generations [10–14].
However, current methods have some issues, such as low detection accuracy and high
false-negative rate for small target flames, which cannot meet the requirements of flame
prevention. YOLOv7 [15] is the latest version of the YOLO series, and in [16], it is proved
that the performance of YOLOv7 is obviously better than YOLOv5 and YOLOv6 in the
aspect of target detection. In earlier works, YOLOv7 has been applied to safety helmet
detection, urban vehicle detection, road damage detection, tree species identification, and
vehicle-related distance estimation [16–20]. In this work, we propose a new flame detection
algorithm based on YOLOv7, which is, to our knowledge, the first time that YOLOv7 has
been applied in this field. In our algorithm, we replace a convolution of the MP-1 module
with the SimAM structure, which is a parameter-free attention mechanism [21]. In this way,
the missing detection problem can be improved. Furthermore, we replace a convolution
of the ELAN-W module with a ConvNeXt-based CNeB module [22] to improve detection
accuracy and the false detection problem in complex environments. Additionally, in order
to further the robustness of the algorithm, we construct a self-built data set by combining
several publicly available data sets for various application scenarios, and thus it contains
sufficient data volume and various complex detection environments. The experimental
results demonstrate that our algorithm is distinctly stronger than the original YOLOv7 and
YOLOv5 in all performance metrics.

This paper is structured as follows. In Section 2, we present the background and
some related works, and in Section 3, we introduce the improvements of our proposed
model based on YOLOv7. Then, we show our experiment design, including data set and
performance metrics, in Section 4 and analyze the experiment results in Section 5. Finally,
this paper is closed with a conclusion.

2. Background and Related Work

The goal of this section is to introduce the background of the field of target detection
and some related works on parameter-free attention modules and ConvNeXt modules,
which are applied in our proposed model.

2.1. Background on Target Detection

Target detection is a hot research topic in computer vision, and it can be divided
into traditional target detection [23] and deep-learning-based target detection [24–28].
Traditional target detection methods mainly rely on feature extractors, which use slid-
ing windows to extract image features and generate a large number of target candidate
regions [29]. However, the above-mentioned methods are cumbersome and have some
problems, such as serious window redundancy, slow detection speed, and low monitoring
accuracy. Recently, convolutional neural networks have become widespread tools for
image feature extraction and classification, which is the most popular architecture of deep
learning [30–36]. The target detection technologies based on deep learning can adaptively
learn high-level semantic information of images by using multi-structure network models
along with their training algorithms.
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In 2014, Girshick et al. successfully applied convolutional neural networks to target
monitoring and proposed the R-CNN algorithm [4], which combined AlexNet [37] with
selective search algorithms [38]. The detection accuracy of the R-CNN algorithm reached
58.5% on the PASCAL VOC2007 data set, which is significant progress compared to tra-
ditional target detection algorithms. The YOLO series is a deep-learning-based approach
to object detection in real time. Meanwhile, it is often used in flame detection. In 2015,
Redmon et al. proposed the YOLOv1 algorithm, which integrates classification, positioning,
and detection functions in one network [10]. Following that, the YOLO series has been
developed over many upgraded versions. There are many flame detection algorithms
based on YOLOv3, YOLOv4, and YOLOv5 [5–9]. YOLOv7 [15] is the latest version of the
YOLO series, and in [16], it is proved that the performance of YOLOv7 is obviously better
than YOLOv5 and YOLOv6 in the aspect of target detection. Unfortunately, as far as we
know, YOLOv7 has not yet been applied to flame detection. In this work, we propose an
improved detection algorithm based on YOLOv7, which is, to our knowledge, the first time
that YOLOv7 has been applied in this field.

2.2. Parameter-Free Attention Module

The attention mechanism is derived from the study of human vision, which means
that the machine selectively focuses on a specific part of the visual area and ignores other
irrelevant information. In recent years, the attention mechanism has been widely used
in many areas, including image processing, speech recognition, and natural language
processing [39–45]. In 2021, Yang et al. proposed the parameter-free attention module
(SimAM) [21]. Compared to ECA single-dimensional attention [46] and CBAM two-
dimensional attention [47], the SimAm attention module does not need to add parameters
to derive three-dimensional attention weights, and it is simple and efficient. The structure
comparison is shown in Figure 1.
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Figure 1. Comparisons of different attention steps: (a) Channel-wise attention; (b) Spatial-wise
attention. (c) Full 3-D weights for attention.

In order to improve the performance of the attention mechanism, the SimAM algorithm
evaluates the importance of each neuron. Rich information neurons inhibit surrounding
neurons, known as spatial inhibition [48]. Informative neurons are found by measuring
the linear separability between data elements, and an energy function is defined for each
neuron in Equation (1).

et = (wt, bt, y, xt) = (yt − t̂)2 +
1

M − 1

M−1

∑
i=1

(y0 − x̂i)
2, (1)

where

wt =
2(t − µt)

(t − µt)2 + 2σ2
t + 2λ

,
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bt = −1
2
(t + µt)wt,

t̂ = wtt + bt,

x̂i = wtxi + bt,

t is the target neuron, and xi are other neurons in a single channel of input features,
respectively.

By minimizing Equation (1), the linear separability between neurons can be found [49].
For ease of understanding, yt and y0 are processed with binary labels, and a regularizer is
added. Thus, we obtain the minimum energy from Equation (2)

e∗t =
4(σ̂2 + λ)

(t − µ̂)2 + 2σ̂2 + 2λ
, (2)

where

µ̂ =
1
M

M

∑
i=1

xi,

and

σ̂2 =
1
M

M

∑
i=1

(xi − µ̂)2.

It is not difficult to see from Equation (2) that the smaller the energy of t is, the greater
the linear separability between the target neuron and surrounding neurons is, and the
higher the information richness is. Therefore, 1

e∗t
is generally used to indicate the importance

of neurons.

2.3. ConvNeXt Model

ConvNeXt is a pure convolutional neural network proposed by Liu et al. [50]. It has a
simple structure, and its accuracy and inference speed far exceed the Swin Transformer [51].

The structure is shown in Figure 2, where H, w, and dim represent the height, width,
and number of layers of the feature map, respectively. The ConvNeXt network adjusts the
stacking times in ResNet50 from (3, 4, 6, 3) to (3, 3, 9, 3), in order to obtain more complex
features. First, the input feature map goes through a convolution layer with convolution
kernel size 4 and step size 4 to downsample the input feature map. Then, it changes the
number of channels to 96 and goes through 4 ConvNeXt blocks. Each ConvNeXt block
adopts the inverted bottleneck design, which can effectively avoid the loss of information
during the downsampling process, and then obtain a feature map with a size of 7 × 7 × 768,
and finally pass through the global average pool. The normalization and LN layers are used
to reduce the model’s dependence on the initialization parameters, such that the accuracy
can be further improved, and finally, a feature map is output through a linear classifier.
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Figure 2. ConvNeXt network architecture.

3. Proposed Model

YOLOv7 is the most powerful target detection model of the YOLO series. Compared
to earlier versions of the YOLO series, YOLOv7 is more efficient and more accurate, and it
can reach a higher monitoring speed with the same computing resources.

For YOLOv7, the image is first resized to 640× 640 and input to the backbone network.
Then, three layers of feature maps of different sizes are output through the head layer net-
work. Finally, prediction results are obtained through reparameterization and convolution.
In general, YOLOv7 optimizes the model with the model structure reparameterization
and dynamic label assignment. However, for non-rigid objects (e.g., flames), there are still
deficiencies in the detection, such as missing detection, false detection, and low detection
accuracy and efficiency. In order to further these problems, here, we propose an improved
YOLOv7 network. In this work, we replace convolutions in MP-1 and ELAN-W modules
of the YOLOv7 network with a three-dimensional attention mechanism SimAM and a pure
ConvNeXt-based CNeB module, respectively. The newly added modules can be seen in the
MP-1 and ELAN-W module structure diagrams in Figure 3 in detail.
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Figure 3. Improvement of YOLOv7 overall structure.

3.1. Improvement on YOLOv7 Backbone Structure

In the MP-1 module of the YOLOv7 network, the above branch goes through maxi-
mum pooling and 1 × 1 convolution, the image information is extracted through the local
maximum, and during the below branch, the image information is extracted through two
convolutions. When the information passes through the convolution with kernel 3 × 2,
it will cause some fine-grained loss, thereby reducing the feature learning ability of the
network, and thus small targets cannot be perceived. As shown in Figure 4, here, the 3 × 2
convolution in the below branch is replaced by the SimAM attention mechanism, which can
suppress the interference of complex backgrounds on the target, enhance the extraction of
target features, and significantly improve the problem of missing detection on small targets.

MP-1

cat

Conv
Max

pooling

Conv Conv

(a)

MP-1

cat

Conv
Max

pooling

SimAM Conv

(b)

Figure 4. Comparisons of the original MP-1 module and the improved MP-1 module: (a) Original
MP-1 module; (b) Improved MP-1 module.

3.2. Improvement on YOLOv7 Head Structure

In order to enable a deeper network to effectively learn and converge, the ELAN-W
structure has been proposed in the version of YOLOv7. It is proved through experiments
that by controlling the shortest and longest gradient path. The learning ability of the
network can be improved without destroying the original gradient path.
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As shown in Figure 5, here, we propose an improved ELAN-W module by replacing
a 1 × 1 convolution with a CNeB module build based on ConvNeXt. The above branch
first goes through a 1 × 1 convolution to change the number of channels. Then, the image
features can be extracted through four 3 × 3 convolutions and finally passed to the CNeB
module, which further improves the extraction of image features by the network model.
There is a 1× 1 convolution operation during the below branch, which is used to control the
change in the number of channels. The improved ELAN-W module can further detection
accuracy and the false detection problem.

catConv

Conv

Conv Conv Conv Conv cat

ELAN-W

Conv

(a)

catConv

Conv

Conv Conv Conv Conv cat CNeB

ELAN-W

(b)

Figure 5. Comparisons of the original ELAN-W module and the improved ELAN-W module.
(a) Original ELAN-W module; (b) Improved ELAN-W module.

4. Experiments Design

Our experiments were performed on the Ubuntu 16.04 operating system. The GPU
and graphics card are NVIDIA TITAN Xp, and the display driver is version 470.74. Python
version 3.7.13, CUDA version 12.1, and the PyTorch framework were used in programming
for the experiments. In addition, the development environment is PyCharm.

4.1. Dataset

The data set plays a very crucial role in deep learning training, and it can make the
model robust and generalizable. In order to satisfy the requirements of our experiments,
we built a data set of flame under various scenes. The images used in the experiments were
mainly from multiple public data sets of flames, such as Kaggle and ImageNet [52,53], and
obtained by searching Google. Finally, we chose 8778 different effective images for our
experiments, where the training set takes 70%, the testing set takes 20%, and validation set
takes 10%, and some examples are shown in Figure 6.

Figure 6. Some example images of dataset.
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4.2. Evaluation Metrics

The detection accuracy of this experiment is measured by the value of the mean average
precision (mAP). This value represents the average precision (AP) of all categories, which
is calculated from the precision–recall curve (PR) curve. The calculation formulas are as
follows:

P =
TP

TP + FP
, (3)

R =
TP

TP + FN
, (4)

AP =
∫ 1

0
P(R)dR, (5)

mAP =
1
n

n

∑
i=1

APi, (6)

where P indicates precision, R indicates recall, TP (true positives) is the number of correctly
predicted positive samples, FP (false positives) is the number of wrongly predicted positive
samples, FN (false negatives) is the number of wrongly predicted negative samples, and n
represents the total number of target categories.

F1 score is another important performance metric that combines recall and precision
together and takes both false positives and false negatives into account. The calculation
formula of F1 is as follows:

F1 = 2 · P · R
P + R

. (7)

5. Results and Analysis

In our experiments, we measured the performances of our improved model as well
as the original YOLOv5 and YOLOv7, and the results are shown in Figure 7. In order
to effectively compare these models, we used the same data set and the same training
parameters and methods in the experiments for each model. In Figure 7, the so-called
YOLOv7-Improved-1 indicates the network only with the SimAM attention mechanism
shown in Figure 4, the so-called YOLOv7-Improved-2 indicates the network only with
ConvNeXt shown in Figure 5, and the so-called YOLOv7-Improved-3 indicates the network
with both of SimAM attention mechanism and ConvNeXt. It can be easily seen from
Figure 7 that there is no underfitting and overfitting during all experiments.

In order to avoid the randomness, the experiments for each model are repeated three
times, and we choose the average value as the final result. An overview of our experimental
results is given in Table 1. It can be easily seen that the overall performances of the original
YOLOv7 has been significantly improved compared to YOLOv5. Further, the performances
of YOLOv7-Improved-1 and YOLOv7-Improved-2 are already higher than the original
YOLOv7 in each metric, and YOLOv7-Improved-3 is still much stronger than YOLOv7-
Improved-1 and YOLOv7-Improved-2. The mAP_0.5 of the YOLOv7-Improved-3 has been
increased by 7% compared to the original YOLOv7, the detection accuracy (precision) has
been increased by 5.3%, and the F1 score has been increased by 4.1%.
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Figure 7. Comparisons of mAP, recall curves, and loss curves of various models: (a) mAP curves;
(b) Recall curves; (c) Loss curves.

Table 1. Comparisons with the original YOLOv5 and YOLOv7.

Model mAP_0.5 Precision Recall Parameters (M) F1

YOLOv5 0.499 0.491 0.613 46.10 0.451

YOLOv7 0.544 0.543 0.621 36.40 0.560

YOLOv7-
Improved-1 0.580 0.570 0.632 39.73 0.583

YOLOv7-
Improved-2 0.585 0.577 0.630 40.52 0.576

YOLOv7-
Improved-3 0.614 0.596 0.635 50.38 0.601
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For comparative analysis of various models, we randomly selected three images from
the test set and used the models of YOLOv5, YOLOv7, and YOLOv7-Improved-3 to detect
the flame in these images. The detection effects are shown in Figure 8.

Figure 8. Comparison of test results.

From Figure 8, we can see that for Image a, the confidence of YOLOv5 is 58%, the
confidence of YOLOv7 is 72%, and the confidence of YOLOv7-Improved-3 has reached
82%. Obviously, the confidence of YOLOv7-Improved-3 has been significantly improved.
For Image b, YOLOv5 cannot detect the target in the lower right corner, while YOLOv7 and
YOLOv7-Improved-3 detected it successfully, and the confidence of YOLOv7-Improved-3 is
higher than YOLOv7. For Image c, both YOLOv5 and YOLOv7 have serious false detections
due to the complex background and environment, while YOLOv7-Improved-3 detected the
flame with a high degree of confidence.

6. Conclusions

In this work, we introduce a flame detection algorithm based on the improved YOLOv7
network. First, we added the SimAM non-parameter attention to the MP-1 module
of YOLOv7 in order to solve the problem of missing detection of YOLOv7. Next, the
ConvNeXt-based CNeB module replaces the ordinary convolution in the ELAN-W module
of YOLOv7, which solves the false detection of YOLOv5 and YOLOv7 and also improves
the performance of the model. Additionally, in order to enhance the robustness and gener-
alization of our proposed algorithm, a sufficient amount of self-built data covering various
application scenes is created based on different public data sets. The experimental results
show that our improved YOLOv7 model has higher accuracy in flame detection without
adding too many parameters, and the situations of missing detection and false detection
have been distinctly improved. Although its detection speed is slower than the original
YOLOv7, it can basically satisfy the requirement of real-time detection. In future work, the
network structure will be further studied to improve the detection speed and the effect of
real-time detection.
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