
Citation: Kong, G.; Hong, Y.-G.

Inference Latency Prediction

Approaches Using Statistical

Information for Object Detection in

Edge Computing. Appl. Sci. 2023, 13,

9222. https://doi.org/10.3390/

app13169222

Academic Editor: Mirosław

Klinkowski

Received: 12 July 2023

Revised: 29 July 2023

Accepted: 11 August 2023

Published: 14 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Inference Latency Prediction Approaches Using Statistical
Information for Object Detection in Edge Computing
Gyuyeol Kong 1 and Yong-Geun Hong 2,*

1 Division of Mechanical and Electronics Engineering, Hansung University, Seoul 02876, Republic of Korea;
gykong@hansung.ac.kr

2 Department of Artificial Intelligence & Convergence, Daejeon University, Daejeon 34520, Republic of Korea
* Correspondence: yghong@dju.kr

Abstract: To seamlessly deliver artificial intelligence (AI) services using object detection, both infer-
ence latency from a system perspective as well as inference accuracy should be considered important.
Although edge computing can be applied to efficiently operate these AI services by significantly
reducing inference latency, deriving an optimized computational offloading policy for edge comput-
ing is a challenging problem. In this paper, we propose inference latency prediction approaches for
determining the optimal offloading policy in edge computing. Since there is no correlation between
the image size and inference latency during object detection, approaches to predict inference latency
are required for finding the optimal offloading policy. The proposed approaches predict the inference
latency between devices and object detection algorithms by using their statistical information on the
inference latency. By exploiting the predicted inference latency, a client may efficiently determine
whether to execute an object detection task locally or remotely. Through various experiments, the
performances of predicted inference latency according to the object detection algorithms are com-
pared and analyzed by considering two communication protocols in terms of the root mean square
error. The simulation results show that the predicted inference latency matches the actual inference
latency well.

Keywords: object detection; edge computing; offloading policy; inference latency; inference
latency prediction

1. Introduction

As artificial intelligence (AI) technology develops and begins to be applied to various
fields, various services using AI technology are being developed. Machine learning (ML),
which is the core of AI technology, has been mostly researched in the direction of improving
inference accuracy. AI models with high accuracy require vast amounts of data and
parameters. OpenAI’s generative pre-trained transformer 3 (GPT-3) model, widely used
in the field of natural language processing, has used a total of 175 billion parameters and
about 500 billion learning data to develop the model [1].

AI models should be provided to customers so that they can be applied in real life. To
provide AI technology at a price such that it can be released as a service or product, tech-
nologies such as TensorFlow Serving [2], TorchServe [3], the Nvidia Transition Server [4],
and Intel OpenVINO [5] have been studied in recent years to efficiently provide AI services
focusing on inference rather than learning.

Edge computing has attracted a lot of attention because it can efficiently operate
complex AI services such as object detection and mobile object tracking by offloading
computing and processing data to a cloud and edge devices [6–10]. By applying edge
computing to object detection, performance can be improved, which can be used to reduce
inference latency and energy consumption and increase inference accuracy [9,10]. To
maximize performance through edge computing, an offloading policy that determines

Appl. Sci. 2023, 13, 9222. https://doi.org/10.3390/app13169222 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13169222
https://doi.org/10.3390/app13169222
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-6490-0281
https://orcid.org/0000-0003-2974-3820
https://doi.org/10.3390/app13169222
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13169222?type=check_update&version=1

Appl. Sci. 2023, 13, 9222 2 of 19

which edge or cloud devices to execute the workload plays a very important role, and
inference latency, communication latency, and energy consumption should be considered
to derive an optimal offloading policy. However, since inference latency is affected by the
characteristics of inference models, devices, and images, it is difficult to derive an offloading
policy by reflecting the actual inference latency in practice. Therefore, it is required to
derive an accurate offloading policy that takes into account the predicted inference latency.

In this paper, we introduce a resource optimization approach in terms of the inference
latency of object detection in edge computing from a system perspective for an efficient
AI service by using the TensorFlow serving system that is closely related to the ML model
deployment of AI models. Inference latency is a very important factor to be considered in
AI service systems, and finding optimal offloading policies in terms of inference latency
when edge computing is considered is a very challenging problem. Information on the
inference latency is essential to find the optimal offloading policy in the scheduling phase,
and in many studies [11–21], inference latency has been set to be proportional to file size.
However, in object detection, there is no correlation between the file size and inference
latency, and the inference latency is determined by the characteristics of the image, requiring
additional processes to calculate the inference latency. We propose two inference latency
prediction approaches for object detection. The first method is aimed at inference latency
prediction for the client, edge, and cloud devices, and the second method is focused on
inference latency prediction for the object detection algorithms by using their statistical
information on inference latency. By employing the predicted inference latency, the client
determines whether to perform the object detection task locally or remotely on the edge and
cloud for the optimal offloading policy. For the implementation of AI service systems, the
region-based fully convolutional network (RFCN) [22] and single-shot multibox detector
(SSD-MobileNet) [23] algorithms are considered as the two-stage and single-stage object
detectors, respectively, and the representational state transfer (REST) [24,25] and Google
remote procedure call (gRPC) [26] protocols are used as communication protocols. Through
various experiments, the performances of predicted inference latency is compared and
analyzed according to the object detection algorithms and communication protocols.

The main contributions of the paper are summarized as follows.

1. A system with AI technology was constructed using an object detection service as
an AI service, and the performance of the object detection model on this system was
studied from the perspective of the inference latency of the entire system, deviating
from the inference accuracy;

2. When performing object detection, we reveal that there is no correlation between
image size and inference latency, which presents a problem—that inference latency
prediction is required for scheduling purposes;

3. We propose an approach for inference latency prediction during object detection
in edge computing. The proposed approaches predict the inference latency be-
tween devices and object detection algorithms by using the statistical information on
inference latency;

4. By exploiting the predicted inference latency, the client may effectively determine
whether to perform the object detection task locally or remotely. By exploiting this
scheduling phase, the overall performance of AI services could be improved;

5. Through simulation results, we demonstrate that the performances of the proposed
approaches were compared and analyzed according to the object detection algorithms
(RFCN and SSD-MobileNet) in consideration of two communication protocols (gRPC
and REST).

The rest of the paper is organized as follows. Section 2 presents related works on AI
services with the optimization of edge computing. In Section 3, we present the system
model. Section 4 presents the proposed inference latency prediction approaches. Simulation
results are presented in Section 5, and Section 6 concludes the paper.

Appl. Sci. 2023, 13, 9222 3 of 19

2. Related Works

Recently, the operation of efficient AI services using edge computing in various
applications has been studied. Depending on the nature of AI-based applications, edge
computing could be used as a way to improve power consumption, inference accuracy, or
inference delay performance, and it is important to consider what specific tasks to execute
on which devices to maximize edge computing performance. Offloading strategies are
essential for the effective use of edge computing, and various offloading strategies are
being introduced in AI services.

Wu et al. [27] have studied the edge computing-driven AI service for object detection in
low-light conditions. Since low-light conditions could reduce object detection performance,
they proposed an end-to-end methodology for image enhancement and object detection.
Their proposed structure consists of an image enhancement stage operating on cloud and
an edge-based object detection stage performing in edge. In the first stage, the enhancement
neural network computes the enhanced illumination portion of a low-light image. Then,
edge devices can perform object detection accurately and quickly based on cloud computing
information feature maps. By using this structure, the detection performance is significantly
improved in low-light conditions.

Wu et al. [28] have developed an edge computing-based mobile object tracking method
in the internet of things. For IoT devices, it is very difficult to implement advanced mobile
object tracking that requires significant computing power due to energy constraints. To ease
the energy consumption burden of IoT devices, they proposed an edge computing-based
multivariate time series (ET-MTS) framework in IoT systems for accurately tracking mobile
objects using edge computing. The EC-MTS framework leverages vector automatic regression
to revisit arbitrary historical object trajectory data and fit the best trajectory model for accurate
mobile object position prediction. Simulation results demonstrated that EC-MTS showed
better object trajectory goodness-of-fit and object location prediction accuracy.

Tarahomi et al. [29] have presented an efficient power-aware virtual machine (VM)
allocation algorithm in a cloud data center. They considered virtualization to allocate
power-aware VMs because the power efficiency of cloud servers in a data center is very
important. The evolutionary algorithms were used for VM allocation to choose a suitable
VM as a physical host. Simulation results demonstrated that their proposed algorithms
improved power consumption.

Amanatidis et al. [30] have designed a cooperative task execution mechanism for
object detection using an edge computing structure. Cooperation with edge computing is
essential to realize object detection algorithms in IoT devices with high performance and
low power consumption. In their proposed cooperative task execution mechanism, the
edge device collaboratively performs object detection on different images from end devices
for optimizing the execution time and the execution accuracy. In particular, they focused
on new policy that considers image compressing and the batch sizes of the received images
from the end devices. Simulation results demonstrated that the proposed policy based on
different splitting decisions and compression values can improve the E2E execution time
and accuracy.

Most recent studies [27–29] have focused mainly on offloading specific functions on
edge and cloud servers rather than selective offloading [21,30] according to system envi-
ronments to improve inference accuracy and latency performance. In addition, offloading
policies are derived based on the actual observed inference latency [30] or the inference
latency calculated in proportion to the relevant data size [21]. Since these types of inference
latency are somewhat different from the actual inference latency, there is a limit to deriving
optimal offload policies for edge computing. We focus on this problem and address, in
this paper, inference latency prediction considering the characteristics of inference models,
images, and devices. By using the predicted inference latency close to the actual inference
latency, the performance improvement by offloading can be maximized. To the best of our
knowledge, the inference latency prediction approach is the first methodology introduced
in object detection using edge computing.

Appl. Sci. 2023, 13, 9222 4 of 19

3. System Model

We consider an AI service model for object detection in edge computing as shown in
Figure 1. For the edge computing environment, the hierarchy consisting of the client, edge,
and cloud is adopted as a system model. The client device requests an object detection
service and can execute this task locally or remotely through network-connected devices
by considering various situations as in [11–21]. For remote execution, we assume that the
edge device is set to have higher computing power than the client device, and the cloud
server is set to have higher computing power than the edge device. To select a device in the
client to execute object detection tasks from among the client, edge, and cloud, not only the
communication latency but also the inference latency should be considered. Among these,
we present an approach to predict the inference latency of the edge and cloud on the client.

Appl. Sci. 2023, 12, x FOR PEER REVIEW 4 of 19

inference models, images, and devices. By using the predicted inference latency close to

the actual inference latency, the performance improvement by offloading can be

maximized. To the best of our knowledge, the inference latency prediction approach is the

first methodology introduced in object detection using edge computing.

3. System Model

We consider an AI service model for object detection in edge computing as shown in

Figure 1. For the edge computing environment, the hierarchy consisting of the client, edge,

and cloud is adopted as a system model. The client device requests an object detection

service and can execute this task locally or remotely through network-connected devices

by considering various situations as in [11–21]. For remote execution, we assume that the

edge device is set to have higher computing power than the client device, and the cloud

server is set to have higher computing power than the edge device. To select a device in

the client to execute object detection tasks from among the client, edge, and cloud, not

only the communication latency but also the inference latency should be considered.

Among these, we present an approach to predict the inference latency of the edge and

cloud on the client.

Figure 1. System model for object detection in edge computing.

3.1. System Configuration

To configure the edge computing environment, we considered three machines,

corresponding to the client, edge, and cloud, as shown in Table 1. Machine 1, with the best

computing power, was used as the cloud server, and machine 3, with the lowest

computing power, was used as the client device. Also, machine 2, with moderate

computing power, was used as the edge device. Ubuntu version 20.04 (Ubuntu, London,

UK) was used along with the Python implementation of the TensorFlow object detection

API [31]. When an object detection service was requested from an AI service client module

to an AI service server module, REST and gRPC were used as the communication

protocols.

Table 1. Specification of machines.

Machine CPU GPU
Geekbench 5 Score

(Multi-Core)

Machine 1 (Cloud) Intel Core i7-11700K RTX 3060 10822

Machine 2 (Edge) Intel Core i7-11700K - 10821

Machine 3 (Client) Intel Core i7-10700K - 8948

Figure 1. System model for object detection in edge computing.

3.1. System Configuration

To configure the edge computing environment, we considered three machines, cor-
responding to the client, edge, and cloud, as shown in Table 1. Machine 1, with the best
computing power, was used as the cloud server, and machine 3, with the lowest computing
power, was used as the client device. Also, machine 2, with moderate computing power,
was used as the edge device. Ubuntu version 20.04 (Ubuntu, London, UK) was used along
with the Python implementation of the TensorFlow object detection API [31]. When an
object detection service was requested from an AI service client module to an AI service
server module, REST and gRPC were used as the communication protocols.

Table 1. Specification of machines.

Machine CPU GPU Geekbench 5 Score
(Multi-Core)

Machine 1 (Cloud) Intel Core i7-11700K RTX 3060 10822
Machine 2 (Edge) Intel Core i7-11700K - 10821
Machine 3 (Client) Intel Core i7-10700K - 8948

3.2. Object Detection Models

Two types of object detectors are considered in this paper. The SSD-MobileNet [23]
and RFCN [22] are considered for the single-stage and two-stage deep object detectors,
respectively. The SSD-MobileNet conducts object detection as a simple regression problem
by learning the class probabilities and boundary box coordinates of input images. The
RFCN generates regions of interest in the first stage, and object classification and boundary
box regression are performed on the regions of interest in the second stage. Therefore, the
RFCN is more accurate and requires a longer computational time, while the SSD-MobileNet
is much faster but provides less accurate results.

Appl. Sci. 2023, 13, 9222 5 of 19

3.3. Dataset

For inference latency analysis, the COCO 2017 validation dataset [32], with 5000 images,
was used to measure the inference latency of the RFCN and SSD-MobileNet algorithms. We
selected ten image samples out of 5000 images as shown in Figure 2 and showed the results
of object detection through the RFCN and SSD-MobileNet in Figure 3. The object detection
service using the RFCN model shows that most objects on the image are detected with high
accuracy (95% or more), but the SSD-MobileNet model shows that only major objects on the
image are detected, small objects are not detected, and the detection accuracy of major objects
is lower than that in the RFCN model.

Appl. Sci. 2023, 12, x FOR PEER REVIEW 5 of 19

3.2. Object Detection Models

Two types of object detectors are considered in this paper. The SSD-MobileNet [23]

and RFCN [22] are considered for the single-stage and two-stage deep object detectors,

respectively. The SSD-MobileNet conducts object detection as a simple regression

problem by learning the class probabilities and boundary box coordinates of input images.

The RFCN generates regions of interest in the first stage, and object classification and

boundary box regression are performed on the regions of interest in the second stage.

Therefore, the RFCN is more accurate and requires a longer computational time, while the

SSD-MobileNet is much faster but provides less accurate results.

3.3. Dataset

For inference latency analysis, the COCO 2017 validation dataset [32], with 5000

images, was used to measure the inference latency of the RFCN and SSD-MobileNet

algorithms. We selected ten image samples out of 5000 images as shown in Figure 2 and

showed the results of object detection through the RFCN and SSD-MobileNet in Figure 3.

The object detection service using the RFCN model shows that most objects on the image

are detected with high accuracy (95% or more), but the SSD-MobileNet model shows that

only major objects on the image are detected, small objects are not detected, and the

detection accuracy of major objects is lower than that in the RFCN model.

Figure 2. 10 Image samples from the COCO 2017 validation dataset. Figure 2. 10 Image samples from the COCO 2017 validation dataset.

Appl. Sci. 2023, 12, x FOR PEER REVIEW 6 of 19

(a) RFCN (b) SSD-MobileNet

Figure 3. Results of object detection for ten image samples: (a) RFCN; (b) SSD-MobileNet.

4. Proposed Inference Latency Prediction Approaches

This section describes approaches to predict inference latency during object detection

in edge computing. In an edge computing environment consisting of a client, edge, and

cloud, the two proposed methods approximately predict the inference latency of a task

between devices and object detection algorithms by using statistical information. Through

experiments, in object detection, we found that the inference latency is not proportional

to the size of the image and is determined by the characteristics of the image. In addition,

it was confirmed that the tendency of inference latency varies depending on the object

detection algorithm in use. Therefore, it is difficult to predict the inference latency of the

edge and cloud using only the size of the image. Through various analyses, it was

observed that there was a statistical similarity between the inference latencies of devices

and object detection algorithms. Using this characteristic, the client can predict the

inference latency for the edge and cloud based on the statistical information on the

inference latency in the edge and cloud. The predicted inference latency could be used in

a scheduling step of determining whether to perform the task locally or remotely on the

edge and cloud. After that, the inference latency of object detection was measured for 50

image samples out of 5000 images selected for visualization, and the results are presented

in the figures below.

4.1. Inference Latency According to Image Size

This section presents the relationship between image size and inference latency when

using the RFCN and SSD-MobileNet models for object detection. In [21], an approach

where the inference latency is also increased in proportion to the increase in the image

size was considered. However, this approach does not apply to all applications, and an

approach suitable for specific application characteristics should be considered.

We measured the inference latency for images with various sizes to analyze the

relationship between image size and inference time for the RFCN and SSD-MobileNet

models. As shown in Figure 4, we can confirm that the relationship between image size

and inference latency is uncorrelated, which shows that it is difficult to predict inference

latency with image size alone in object detection.

For this reason, the client cannot predict the inference latency required for object

detection in the edge and cloud devices, leading to a problem in which it cannot determine

where to execute the task, locally or remotely, on the edge and cloud. In other words,

when exploiting object detection services in edge computing, the process of predicting

inference latency at the edges and clouds should be additionally considered.

Figure 3. Results of object detection for ten image samples: (a) RFCN; (b) SSD-MobileNet.

4. Proposed Inference Latency Prediction Approaches

This section describes approaches to predict inference latency during object detection
in edge computing. In an edge computing environment consisting of a client, edge, and
cloud, the two proposed methods approximately predict the inference latency of a task
between devices and object detection algorithms by using statistical information. Through
experiments, in object detection, we found that the inference latency is not proportional

Appl. Sci. 2023, 13, 9222 6 of 19

to the size of the image and is determined by the characteristics of the image. In addition,
it was confirmed that the tendency of inference latency varies depending on the object
detection algorithm in use. Therefore, it is difficult to predict the inference latency of the
edge and cloud using only the size of the image. Through various analyses, it was observed
that there was a statistical similarity between the inference latencies of devices and object
detection algorithms. Using this characteristic, the client can predict the inference latency
for the edge and cloud based on the statistical information on the inference latency in the
edge and cloud. The predicted inference latency could be used in a scheduling step of
determining whether to perform the task locally or remotely on the edge and cloud. After
that, the inference latency of object detection was measured for 50 image samples out of
5000 images selected for visualization, and the results are presented in the figures below.

4.1. Inference Latency According to Image Size

This section presents the relationship between image size and inference latency when
using the RFCN and SSD-MobileNet models for object detection. In [21], an approach
where the inference latency is also increased in proportion to the increase in the image
size was considered. However, this approach does not apply to all applications, and an
approach suitable for specific application characteristics should be considered.

We measured the inference latency for images with various sizes to analyze the
relationship between image size and inference time for the RFCN and SSD-MobileNet
models. As shown in Figure 4, we can confirm that the relationship between image size
and inference latency is uncorrelated, which shows that it is difficult to predict inference
latency with image size alone in object detection.

Appl. Sci. 2023, 12, x FOR PEER REVIEW 7 of 19

(a) RFCN (b) SSD-MobileNet

Figure 4. Relationship between inference latency and image size with REST at the edge: (a) RFCN;

(b) SSD-MobileNet.

4.2. Inference Latency Depending on Devices

This section deals with the relationship between computing power and inference

latency when using the RFCN and SSD-MobileNet models for object detection. We

measured the inference latency for the gRPC and REST communication protocols

depending on three machines with different computing powers as described in Table 1.

As shown in Figures 5 and 6, we can observe that the SSD-MobileNet model has a much

shorter inference latency than the RFCN model and that gRPC is slightly faster than REST.

It can also be seen that the cloud shows the lowest inference latency, the edge shows a

slightly longer inference latency than the cloud, and the client shows the longest inference

latency. What we should pay attention to here is the tendency of inter-machine inference

latency. For example, as shown in Figure 6b, although there are large differences between

the absolute inference latencies of the client, edge, and cloud devices, it can be observed

that the inference latencies of the client, edge, and cloud devices are relatively similar. In

addition, the similarity is more evident in REST than in gPRC. Leveraging this similarity

may help the client predict the inference latency of the edge and of the cloud.

(a) gRPC (b) REST

Figure 4. Relationship between inference latency and image size with REST at the edge: (a) RFCN;
(b) SSD-MobileNet.

For this reason, the client cannot predict the inference latency required for object
detection in the edge and cloud devices, leading to a problem in which it cannot determine
where to execute the task, locally or remotely, on the edge and cloud. In other words, when
exploiting object detection services in edge computing, the process of predicting inference
latency at the edges and clouds should be additionally considered.

4.2. Inference Latency Depending on Devices

This section deals with the relationship between computing power and inference
latency when using the RFCN and SSD-MobileNet models for object detection. We mea-
sured the inference latency for the gRPC and REST communication protocols depending
on three machines with different computing powers as described in Table 1. As shown

Appl. Sci. 2023, 13, 9222 7 of 19

in Figures 5 and 6, we can observe that the SSD-MobileNet model has a much shorter
inference latency than the RFCN model and that gRPC is slightly faster than REST. It can
also be seen that the cloud shows the lowest inference latency, the edge shows a slightly
longer inference latency than the cloud, and the client shows the longest inference latency.
What we should pay attention to here is the tendency of inter-machine inference latency.
For example, as shown in Figure 6b, although there are large differences between the abso-
lute inference latencies of the client, edge, and cloud devices, it can be observed that the
inference latencies of the client, edge, and cloud devices are relatively similar. In addition,
the similarity is more evident in REST than in gPRC. Leveraging this similarity may help
the client predict the inference latency of the edge and of the cloud.

Appl. Sci. 2023, 12, x FOR PEER REVIEW 7 of 19

(a) RFCN (b) SSD-MobileNet

Figure 4. Relationship between inference latency and image size with REST at the edge: (a) RFCN;

(b) SSD-MobileNet.

4.2. Inference Latency Depending on Devices

This section deals with the relationship between computing power and inference

latency when using the RFCN and SSD-MobileNet models for object detection. We

measured the inference latency for the gRPC and REST communication protocols

depending on three machines with different computing powers as described in Table 1.

As shown in Figures 5 and 6, we can observe that the SSD-MobileNet model has a much

shorter inference latency than the RFCN model and that gRPC is slightly faster than REST.

It can also be seen that the cloud shows the lowest inference latency, the edge shows a

slightly longer inference latency than the cloud, and the client shows the longest inference

latency. What we should pay attention to here is the tendency of inter-machine inference

latency. For example, as shown in Figure 6b, although there are large differences between

the absolute inference latencies of the client, edge, and cloud devices, it can be observed

that the inference latencies of the client, edge, and cloud devices are relatively similar. In

addition, the similarity is more evident in REST than in gPRC. Leveraging this similarity

may help the client predict the inference latency of the edge and of the cloud.

(a) gRPC (b) REST

Figure 5. Inference latency with the RFCN model for the client, edge, and cloud devices: (a) gRPC;
(b) REST.

Appl. Sci. 2023, 12, x FOR PEER REVIEW 8 of 19

Figure 5. Inference latency with the RFCN model for the client, edge, and cloud devices: (a) gRPC;

(b) REST.

(a) gRPC (b) REST

Figure 6. Inference latency with the SSD-MobileNet model for the client, edge, and cloud devices:

(a) gRPC; (b) REST.

4.3. Proposed Inference Latency Prediction between Devices

This section introduces the first method (Method 1), wherein the client predicts the

inference latency of the edge and cloud with a given inference model. To analyze the

similarity in inference latency between devices, we compare the inference latencies of

devices by using the normalized inference latency, which converts the distribution of

inference latency to a normal distribution. Let 𝑋 be the distribution of the inference

latency for each device. Then, the distribution of normalized inference latency 𝑍 can be

converted as below:

𝑍 = (𝑋 − 𝜇)/𝜎, (1)

where 𝜇 and 𝜎 are the mean and standard deviation of the inference latency for each

device for 5000 images. The notations used in this paper are given in Table 2. From now

on, the device information is used as a subscript under the symbols of the mean and

standard deviation. For example, 𝜇𝑐𝑙𝑜𝑢𝑑 and 𝜎𝑐𝑙𝑜𝑢𝑑 are the mean and standard deviation

of the cloud device, respectively. The statistical information is listed in Tables 3 and 4 for

the RFCN and SSD-MobileNet models, respectively.

Table 2. List of notations.

Notations Meaning

𝑋 Distribution of the inference latency for each device

𝑍 Distribution of the inference latency for each device

𝜇 Mean of the inference latency for each device

𝜎 Standard deviation of the inference latency for each device

𝜌 Correlation coefficient

𝛼 Factor for reflecting the correlation coefficient

𝑋̂𝑐𝑙𝑖𝑒𝑛𝑡 Distribution of predicted inference latency for client

𝑋̂𝑒𝑑𝑔𝑒 Distribution of predicted inference latency for edge

𝑋̂𝑐𝑙𝑜𝑢𝑑 Distribution of predicted inference latency for cloud

𝑍𝑐𝑙𝑖𝑒𝑛𝑡
𝑆𝑆𝐷−𝑀𝑜𝑏𝑖𝑙𝑒𝑁𝑒𝑡 Distribution of normalized latency of SSD-MobileNet for client

Figure 6. Inference latency with the SSD-MobileNet model for the client, edge, and cloud devices:
(a) gRPC; (b) REST.

4.3. Proposed Inference Latency Prediction between Devices

This section introduces the first method (Method 1), wherein the client predicts the
inference latency of the edge and cloud with a given inference model. To analyze the
similarity in inference latency between devices, we compare the inference latencies of

Appl. Sci. 2023, 13, 9222 8 of 19

devices by using the normalized inference latency, which converts the distribution of
inference latency to a normal distribution. Let X be the distribution of the inference latency
for each device. Then, the distribution of normalized inference latency Z can be converted
as below:

Z = (X − µ)/σ, (1)

where µ and σ are the mean and standard deviation of the inference latency for each device
for 5000 images. The notations used in this paper are given in Table 2. From now on, the
device information is used as a subscript under the symbols of the mean and standard
deviation. For example, µcloud and σcloud are the mean and standard deviation of the cloud
device, respectively. The statistical information is listed in Tables 3 and 4 for the RFCN and
SSD-MobileNet models, respectively.

Table 2. List of notations.

Notations Meaning

X Distribution of the inference latency for each device

Z Distribution of the inference latency for each device

µ Mean of the inference latency for each device

σ Standard deviation of the inference latency for each device

ρ Correlation coefficient

α Factor for reflecting the correlation coefficient

X̂client Distribution of predicted inference latency for client

X̂edge Distribution of predicted inference latency for edge

X̂cloud Distribution of predicted inference latency for cloud

ZSSD−MobileNet
client Distribution of normalized latency of SSD-MobileNet for client

ZRFCN
client Distribution of normalized latency of the RFCN for client

ZRFCN
edge Distribution of normalized latency of the RFCN for edge

ZRFCN
cloud Distribution of normalized latency of the RFCN for cloud

X̂RFCN
client Distribution of predicted latency of the RFCN for client

X̂RFCN
edge Distribution of predicted latency of the RFCN for edge

µRFCN
client Distribution of predicted latency of the RFCN for cloud

Table 3. Mean and standard deviation values of inference latency for the RFCN model.

(µ, σ) Client Edge Cloud

gRPC (1705.08, 229.42) (380.57, 51.08) (65.11, 6.60)
REST (1780.61, 231.88) (378.69, 46.60) (83.55, 6.64)

Table 4. Mean and standard deviation values of inference latency for the SSD-MobileNet model.

(µ, σ) Client Edge Cloud

gRPC (36.40, 1.71) (13.83, 0.56) (12.81, 0.35)
REST (78.68, 10.47) (34.24, 6.24) (30.09, 4.28)

We compare the similarities of the normalized inference latency values by reflecting
the µ and σ of inference latency for the client, edge, and cloud devices. Figures 7 and 8
show the normalized inference latency with the RFCN and SSD-MobileNet models for the
client, edge, and cloud devices, respectively. As shown in Figures 7 and 8, we can observe
that the normalized inference latency values are similar for the client, edge, and cloud

Appl. Sci. 2023, 13, 9222 9 of 19

devices. Also, the similarity between the client, edge, and cloud devices is more clearly
revealed in REST than in gRPC. Therefore, it can be considered that the inference latency of
the client can be utilized to predict the inference latency of the edge and cloud.

Appl. Sci. 2023, 12, x FOR PEER REVIEW 9 of 19

𝑍𝑐𝑙𝑖𝑒𝑛𝑡
𝑅𝐹𝐶𝑁 Distribution of normalized latency of the RFCN for client

𝑍𝑒𝑑𝑔𝑒
𝑅𝐹𝐶𝑁 Distribution of normalized latency of the RFCN for edge

𝑍𝑐𝑙𝑜𝑢𝑑
𝑅𝐹𝐶𝑁 Distribution of normalized latency of the RFCN for cloud

𝑋̂𝑐𝑙𝑖𝑒𝑛𝑡
𝑅𝐹𝐶𝑁 Distribution of predicted latency of the RFCN for client

𝑋̂𝑒𝑑𝑔𝑒
𝑅𝐹𝐶𝑁 Distribution of predicted latency of the RFCN for edge

𝜇𝑐𝑙𝑖𝑒𝑛𝑡
𝑅𝐹𝐶𝑁 Distribution of predicted latency of the RFCN for cloud

Table 3. Mean and standard deviation values of inference latency for the RFCN model.

(𝜇, 𝜎) Client Edge Cloud

gRPC (1705.08, 229.42) (380.57, 51.08) (65.11, 6.60)

REST (1780.61, 231.88) (378.69, 46.60) (83.55, 6.64)

Table 4. Mean and standard deviation values of inference latency for the SSD-MobileNet model.

(𝜇, 𝜎) Client Edge Cloud

gRPC (36.40, 1.71) (13.83, 0.56) (12.81, 0.35)

REST (78.68, 10.47) (34.24, 6.24) (30.09, 4.28)

We compare the similarities of the normalized inference latency values by reflecting

the 𝜇 and 𝜎 of inference latency for the client, edge, and cloud devices. Figures 7 and 8

show the normalized inference latency with the RFCN and SSD-MobileNet models for the

client, edge, and cloud devices, respectively. As shown in Figures 7 and 8, we can observe

that the normalized inference latency values are similar for the client, edge, and cloud

devices. Also, the similarity between the client, edge, and cloud devices is more clearly

revealed in REST than in gRPC. Therefore, it can be considered that the inference latency

of the client can be utilized to predict the inference latency of the edge and cloud.

(a) gRPC (b) REST

Figure 7. Normalized inference latency with the RFCN model for the client, edge, and cloud

devices: (a) gRPC; (b) REST.
Figure 7. Normalized inference latency with the RFCN model for the client, edge, and cloud devices:
(a) gRPC; (b) REST.

Appl. Sci. 2023, 12, x FOR PEER REVIEW 10 of 19

(a) gRPC (b) REST

Figure 8. Normalized inference latency with the SSD-MobileNet model for the client, edge, and

cloud devices: (a) gRPC; (b) REST.

Considering the similarity in normalized inference latency between the client, edge,

and cloud devices, we propose a method for predicting the inference latency at the edges

and clouds for the clients. The predicted inference latency for the edge and cloud in object

detection can be obtained by using the normalized inference latency for the client and

statistical information for the edge and cloud, as shown in Figure 9.

Let 𝑍𝑐𝑙𝑖𝑒𝑛𝑡 be the distribution of the normalized inference latency for the client

device. This distribution can be easily obtained by executing object detection in the client.

Then, the distributions of predicted inference latency for the edge and cloud 𝑋̂𝑒𝑑𝑔𝑒 and

𝑋̂𝑐𝑙𝑜𝑢𝑑 can be calculated as below:

𝑋̂𝑒𝑑𝑔𝑒 = 𝜎𝑒𝑑𝑔𝑒 ∙ 𝑍𝑐𝑙𝑖𝑒𝑛𝑡 + 𝜇𝑒𝑑𝑔𝑒, (2)

𝑋̂𝑐𝑙𝑜𝑢𝑑 = 𝜎𝑐𝑙𝑜𝑢𝑑 ∙ 𝑍𝑐𝑙𝑖𝑒𝑛𝑡 + 𝜇𝑐𝑙𝑜𝑢𝑑 . (3)

We assumed that the client was informed of the 𝜇 and 𝜎 of the edge and cloud in

advance. To employ the proposed technique, a process of calculating the 𝜇 and 𝜎 for the

edge and cloud according to the application and dataset is required.

From Equations (2) and (3), the client can predict the inference latency of the edge

and cloud. The predicted inference latencies for the edge and cloud are utilized as

important parameters in determining whether the client executes the object detection task

locally or remotely. In applications such as autonomous driving, which is very sensitive

to latency, the communication latency and inference latency should be considered more

importantly. Therefore, the proposed inference latency prediction technique is expected

to play an important role in various applications.

Additionally, the inference latency of the client and cloud is predictable at the edge.

Let 𝑍𝑒𝑑𝑔𝑒 be the distribution of the normalized inference latency for the edge device.

Then, the distributions of predicted inference latency for the client and cloud 𝑋̂𝑐𝑙𝑖𝑒𝑛𝑡 and

𝑋̂𝑐𝑙𝑜𝑢𝑑 can be computed as below:

𝑋̂𝑐𝑙𝑖𝑒𝑛𝑡 = 𝜎𝑐𝑙𝑖𝑒𝑛𝑡 ∙ 𝑍𝑒𝑑𝑔𝑒 + 𝜇𝑐𝑙𝑖𝑒𝑛𝑡, (4)

𝑋̂𝑐𝑙𝑜𝑢𝑑 = 𝜎𝑐𝑙𝑜𝑢𝑑 ∙ 𝑍𝑒𝑑𝑔𝑒 + 𝜇𝑐𝑙𝑜𝑢𝑑 . (5)

When it is difficult for the client to determine the device to execute the task, it is possible

to predict the inference latency of other devices at the edge and cloud for scheduling.

Figure 8. Normalized inference latency with the SSD-MobileNet model for the client, edge, and cloud
devices: (a) gRPC; (b) REST.

Considering the similarity in normalized inference latency between the client, edge,
and cloud devices, we propose a method for predicting the inference latency at the edges
and clouds for the clients. The predicted inference latency for the edge and cloud in object
detection can be obtained by using the normalized inference latency for the client and
statistical information for the edge and cloud, as shown in Figure 9.

Appl. Sci. 2023, 13, 9222 10 of 19
Appl. Sci. 2023, 12, x FOR PEER REVIEW 11 of 19

Figure 9. The flowchart of the proposed inference latency prediction.

The steps of the proposed methods are as follows. First, the client searches for edge

and cloud devices that are around (Step 1) and receives their statistical information on

inference latency (Step 2). Then, the inference latency is predicted based on 𝑍𝑐𝑙𝑖𝑒𝑛𝑡 and

the received statistical information on the edge and cloud devices from equations (2) and

(3) on the client (Step 3). Considering the predicted inference latency and communication

latency of the edge and cloud devices, the client derives an offloading policy regarding to

which device to offload, as in [21] (Step 4). Finally, the workload is offloaded to the

selected devices, and they execute object detection (Step 5) and update statistics based on

the actual inference latency (Step 6).

4.4. Proposed Inference Latency Prediction between Object Detection Algorithms

This section describes the second method (Method 2), wherein the client with the

SSD-MobileNet model predicts the inference latency of the RFCN model for the client,

edge, and cloud. It is very efficient to predict the inference latency of the RFCN model

through the SSD-MobileNet model because the SSD-MobileNet model operates much

faster than the RFCN model, as explained in Section 3.2. To analyze the relationship

between the inference latencies of the RFCN and SSD-MobileNet models, we compare the

correlation coefficients 𝜌 between the normalized inference latency of the SSD-

MobileNet model for the client, 𝑍𝑐𝑙𝑖𝑒𝑛𝑡
𝑆𝑆𝐷−𝑀𝑜𝑏𝑖𝑙𝑒𝑁𝑒𝑡, and the normalized inference latency of

the RFCN model for the client, edge, and cloud, i.e., 𝑍𝑐𝑙𝑖𝑒𝑛𝑡
𝑅𝐹𝐶𝑁 , 𝑍𝑒𝑑𝑔𝑒

𝑅𝐹𝐶𝑁, and 𝑍𝑐𝑙𝑜𝑢𝑑
𝑅𝐹𝐶𝑁, as listed

in Table 5. The two protocols show somewhat different characteristics. In gRPC,

𝑍𝑐𝑙𝑖𝑒𝑛𝑡
𝑆𝑆𝐷−𝑀𝑜𝑏𝑖𝑙𝑒𝑁𝑒𝑡 is observed to have a negative correlation with 𝑍𝑐𝑙𝑖𝑒𝑛𝑡

𝑅𝐹𝐶𝑁 , 𝑍𝑒𝑑𝑔𝑒
𝑅𝐹𝐶𝑁, and 𝑍𝑐𝑙𝑜𝑢𝑑

𝑅𝐹𝐶𝑁,

and in REST, 𝑍𝑐𝑙𝑖𝑒𝑛𝑡
𝑆𝑆𝐷−𝑀𝑜𝑏𝑖𝑙𝑒𝑁𝑒𝑡 is observed to have a negative correlation with 𝑍𝑐𝑙𝑖𝑒𝑛𝑡

𝑅𝐹𝐶𝑁 and

𝑍𝑒𝑑𝑔𝑒
𝑅𝐹𝐶𝑁 and a positive correlation with 𝑍𝑐𝑙𝑜𝑢𝑑

𝑅𝐹𝐶𝑁 . Therefore, it is possible to predict the

inference latency of the RFCN model through that of the SSD-MobileNet model by

exploiting these correlation characteristics.

Figure 9. The flowchart of the proposed inference latency prediction.

Let Zclient be the distribution of the normalized inference latency for the client device.
This distribution can be easily obtained by executing object detection in the client. Then,
the distributions of predicted inference latency for the edge and cloud X̂edge and X̂cloud can
be calculated as below:

X̂edge = σedge·Zclient + µedge, (2)

X̂cloud = σcloud·Zclient + µcloud. (3)

We assumed that the client was informed of the µ and σ of the edge and cloud in advance.
To employ the proposed technique, a process of calculating the µ and σ for the edge and
cloud according to the application and dataset is required.

From Equations (2) and (3), the client can predict the inference latency of the edge and
cloud. The predicted inference latencies for the edge and cloud are utilized as important
parameters in determining whether the client executes the object detection task locally or
remotely. In applications such as autonomous driving, which is very sensitive to latency,
the communication latency and inference latency should be considered more importantly.
Therefore, the proposed inference latency prediction technique is expected to play an
important role in various applications.

Additionally, the inference latency of the client and cloud is predictable at the edge.
Let Zedge be the distribution of the normalized inference latency for the edge device. Then,
the distributions of predicted inference latency for the client and cloud X̂client and X̂cloud
can be computed as below:

X̂client = σclient·Zedge + µclient, (4)

X̂cloud = σcloud·Zedge + µcloud. (5)

When it is difficult for the client to determine the device to execute the task, it is possible to
predict the inference latency of other devices at the edge and cloud for scheduling.

The steps of the proposed methods are as follows. First, the client searches for edge
and cloud devices that are around (Step 1) and receives their statistical information on

Appl. Sci. 2023, 13, 9222 11 of 19

inference latency (Step 2). Then, the inference latency is predicted based on Zclient and the
received statistical information on the edge and cloud devices from Equations (2) and (3)
on the client (Step 3). Considering the predicted inference latency and communication
latency of the edge and cloud devices, the client derives an offloading policy regarding to
which device to offload, as in [21] (Step 4). Finally, the workload is offloaded to the selected
devices, and they execute object detection (Step 5) and update statistics based on the actual
inference latency (Step 6).

4.4. Proposed Inference Latency Prediction between Object Detection Algorithms

This section describes the second method (Method 2), wherein the client with the
SSD-MobileNet model predicts the inference latency of the RFCN model for the client,
edge, and cloud. It is very efficient to predict the inference latency of the RFCN model
through the SSD-MobileNet model because the SSD-MobileNet model operates much faster
than the RFCN model, as explained in Section 3.2. To analyze the relationship between the
inference latencies of the RFCN and SSD-MobileNet models, we compare the correlation
coefficients ρ between the normalized inference latency of the SSD-MobileNet model for
the client, ZSSD−MobileNet

client , and the normalized inference latency of the RFCN model for
the client, edge, and cloud, i.e., ZRFCN

client , ZRFCN
edge , and ZRFCN

cloud , as listed in Table 5. The two

protocols show somewhat different characteristics. In gRPC, ZSSD−MobileNet
client is observed to

have a negative correlation with ZRFCN
client , ZRFCN

edge , and ZRFCN
cloud , and in REST, ZSSD−MobileNet

client is

observed to have a negative correlation with ZRFCN
client and ZRFCN

edge and a positive correlation

with ZRFCN
cloud . Therefore, it is possible to predict the inference latency of the RFCN model

through that of the SSD-MobileNet model by exploiting these correlation characteristics.

Table 5. The correlation coefficients of normalized inference latency between the SSD-MobileNet
model for the client and the RFCN model for the client, edge, and cloud.

ρ Client Edge Cloud

gRPC –0.39 –0.36 –0.26
REST –0.39 –0.32 0.38

We compared the relationship between the normalized inference latencies of the SSD-
MobileNet and RFCN models by considering a factor, α, to reflect the negative correlation.
For the positive and negative correlations, α was set to +1 and −1, respectively. Then, the
normalized inference latencies of the RFCN model for the client, edge, and cloud, ZRFCN

client ,
ZRFCN

edge , and ZRFCN
cloud , are predicted as α·ZSSD−MobileNet

client . Therefore, with the gRPC protocol,
the normalized inference latencies of the RFCN model for the client, edge, and cloud are
predicted as −ZSSD−MobileNet

client , −ZSSD−MobileNet
client , and ZSSD−MobileNet

client , respectively.
Figure 10 shows the normalized inference latencies of the RFCN and SSD-MobileNet

models for the client in the REST protocol. It can be observed that the normalized inference
latencies of the client in the RFCN and SSD-MobileNet models have a negative correlation
as shown in Figure 10a. By setting α as –1, we can observe that the normalized inference
latencies of the client tend to be similar for the RFCN and SSD-MobileNet models, as shown
in Figure 10b.

Figure 11 shows the normalized inference latencies of the RFCN model for the edge
device and the SSD-MobileNet model for the client device in the REST protocol. Similar to
what is observed in the relationship between the RFCN and SSD-MobileNet models for the
client device, it can be observed that the normalized inference latencies of the RFCN model
for the edge device and the SSD-MobileNet model for the client device have a negative
correlation, as shown in Figure 11a. Therefore, it is possible to approximately predict the
normalized inference latency of the RFCN model for the edge device by multiplying the
normalized inference latency of the SSD-MobileNet model for the client by −1, as shown
in Figure 11b. Similarly, the normalized inference latency of the RFCN for the cloud device

Appl. Sci. 2023, 13, 9222 12 of 19

can be predicted based on the normalized inference latency of the SSD-MobileNet model
for the client device.

Appl. Sci. 2023, 12, x FOR PEER REVIEW 12 of 19

Table 5. The correlation coefficients of normalized inference latency between the SSD-MobileNet

model for the client and the RFCN model for the client, edge, and cloud.

𝝆 Client Edge Cloud

gRPC –0.39 –0.36 –0.26

REST –0.39 –0.32 0.38

We compared the relationship between the normalized inference latencies of the

SSD-MobileNet and RFCN models by considering a factor, 𝛼 , to reflect the negative

correlation. For the positive and negative correlations, 𝛼 was set to +1 and -1,

respectively. Then, the normalized inference latencies of the RFCN model for the client,

edge, and cloud, 𝑍𝑐𝑙𝑖𝑒𝑛𝑡
𝑅𝐹𝐶𝑁 , 𝑍𝑒𝑑𝑔𝑒

𝑅𝐹𝐶𝑁, and 𝑍𝑐𝑙𝑜𝑢𝑑
𝑅𝐹𝐶𝑁, are predicted as 𝛼 ∙ 𝑍𝑐𝑙𝑖𝑒𝑛𝑡

𝑆𝑆𝐷−𝑀𝑜𝑏𝑖𝑙𝑒𝑁𝑒𝑡. Therefore,

with the gRPC protocol, the normalized inference latencies of the RFCN model for the

client, edge, and cloud are predicted as −𝑍𝑐𝑙𝑖𝑒𝑛𝑡
𝑆𝑆𝐷−𝑀𝑜𝑏𝑖𝑙𝑒𝑁𝑒𝑡 , −𝑍𝑐𝑙𝑖𝑒𝑛𝑡

𝑆𝑆𝐷−𝑀𝑜𝑏𝑖𝑙𝑒𝑁𝑒𝑡 , and

𝑍𝑐𝑙𝑖𝑒𝑛𝑡
𝑆𝑆𝐷−𝑀𝑜𝑏𝑖𝑙𝑒𝑁𝑒𝑡, respectively.

Figure 10 shows the normalized inference latencies of the RFCN and SSD-MobileNet

models for the client in the REST protocol. It can be observed that the normalized inference

latencies of the client in the RFCN and SSD-MobileNet models have a negative correlation

as shown in Figure 10a. By setting 𝛼 as –1, we can observe that the normalized inference

latencies of the client tend to be similar for the RFCN and SSD-MobileNet models, as

shown in Figure 10b.

(a) 𝛼 = 1 (b) 𝛼 = −1

Figure 10. The normalized inference latencies of the RFCN and SSD-MobileNet models for the

client in the REST protocol: (a) 𝛼 = 1; (b) 𝛼 = −1.

Figure 11 shows the normalized inference latencies of the RFCN model for the edge

device and the SSD-MobileNet model for the client device in the REST protocol. Similar

to what is observed in the relationship between the RFCN and SSD-MobileNet models for

the client device, it can be observed that the normalized inference latencies of the RFCN

model for the edge device and the SSD-MobileNet model for the client device have a

negative correlation, as shown in Figure 11a. Therefore, it is possible to approximately

predict the normalized inference latency of the RFCN model for the edge device by

multiplying the normalized inference latency of the SSD-MobileNet model for the client

by −1, as shown in Figure 11b. Similarly, the normalized inference latency of the RFCN

for the cloud device can be predicted based on the normalized inference latency of the

SSD-MobileNet model for the client device.

Figure 10. The normalized inference latencies of the RFCN and SSD-MobileNet models for the client
in the REST protocol: (a) α = 1; (b) α = −1.

Appl. Sci. 2023, 12, x FOR PEER REVIEW 13 of 19

(a) 𝛼 = 1 (b) 𝛼 = −1

Figure 11. The normalized inference latencies of the RFCN model for the edge and the SSD-

MobileNet model for the client in the REST protocol: (a) 𝛼 = 1; (b) 𝛼 = −1.

Considering these similar characteristics of the normalized inference latency between

devices, the actual inference latency of the RFCN model for the client, edge, and cloud can

be predicted based on their statistical information, 𝛼, and 𝑍𝑐𝑙𝑖𝑒𝑛𝑡
𝑆𝑆𝐷−𝑀𝑜𝑏𝑖𝑙𝑒𝑁𝑒𝑡. First, the SSD-

MobileNet model is executed on the client to obtain 𝑍𝑐𝑙𝑖𝑒𝑛𝑡
𝑆𝑆𝐷−𝑀𝑜𝑏𝑖𝑙𝑒𝑁𝑒𝑡, and 𝛼 is determined

by considering the correlation coefficients of normalized inference latency between the

RFCN and SSD-MobileNet models. Then, the distributions of predicted inference latency

for the client, edge, and cloud 𝑋̂𝑐𝑙𝑖𝑒𝑛𝑡
𝑅𝐹𝐶𝑁 , 𝑋̂𝑒𝑑𝑔𝑒

𝑅𝐹𝐶𝑁 and 𝑋̂𝑐𝑙𝑜𝑢𝑑
𝑅𝐹𝐶𝑁 can be calculated as below:

𝑋̂𝑐𝑙𝑖𝑒𝑛𝑡
𝑅𝐹𝐶𝑁 = 𝜎𝑐𝑙𝑖𝑒𝑛𝑡

𝑅𝐹𝐶𝑁 ∙ (𝛼 ∙ 𝑍𝑐𝑙𝑖𝑒𝑛𝑡
𝑆𝑆𝐷−𝑀𝑜𝑏𝑖𝑙𝑒𝑁𝑒𝑡) + 𝜇𝑐𝑙𝑖𝑒𝑛𝑡

𝑅𝐹𝐶𝑁 , (6)

𝑋̂𝑒𝑑𝑔𝑒
𝑅𝐹𝐶𝑁 = 𝜎𝑒𝑑𝑔𝑒

𝑅𝐹𝐶𝑁 ∙ (𝛼 ∙ 𝑍𝑐𝑙𝑖𝑒𝑛𝑡
𝑆𝑆𝐷−𝑀𝑜𝑏𝑖𝑙𝑒𝑁𝑒𝑡) + 𝜇𝑒𝑑𝑔𝑒

𝑅𝐹𝐶𝑁, (7)

𝑋̂𝑐𝑙𝑜𝑢𝑑
𝑅𝐹𝐶𝑁 = 𝜎𝑐𝑙𝑜𝑢𝑑

𝑅𝐹𝐶𝑁 ∙ (𝛼 ∙ 𝑍𝑐𝑙𝑖𝑒𝑛𝑡
𝑆𝑆𝐷−𝑀𝑜𝑏𝑖𝑙𝑒𝑁𝑒𝑡) + 𝜇𝑐𝑙𝑜𝑢𝑑

𝑅𝐹𝐶𝑁 , (8)

where 𝜇𝑑𝑒𝑣𝑖𝑐𝑒
𝑅𝐹𝐶𝑁 and 𝜎𝑑𝑒𝑣𝑖𝑐𝑒

𝑅𝐹𝐶𝑁 are the mean and standard deviation of the inference latency

of RFCN model for each device. It is assumed that the 𝜇𝑑𝑒𝑣𝑖𝑐𝑒
𝑅𝐹𝐶𝑁 and 𝜎𝑑𝑒𝑣𝑖𝑐𝑒

𝑅𝐹𝐶𝑁 for all devices

are known in advance on the client and are updated periodically. The correlation

characteristics of the inference latency for each inference model and the analysis and

delivery of statistical information are not the scope of this paper, and we will further study

these topics in the future. As it becomes possible to predict the inference latency of the

RFCN model for the client, edge, and cloud devices through the normalized inference

latency of the SSD-MobileNet model for the client device, the actual inference latency of

the RFCN model with relatively long latency can be predicted as short latency.

5. Simulation Results

This section shows the simulation results of the two proposed inference latency

prediction methods in object detection. While the proposed method 1 aims to predict the

inference latency between devices using a given inference model, the proposed method 2

aims to predict the inference latency between a complex two-stage and a simple single-

stage inference model. For object detection, the RFCN and SSD-MobileNet are considered

as two-stage and single-stage object detectors, respectively, and gRPC and REST are used

as the communication protocols. We evaluate that the proposed inference latency

prediction methods work well in various environments through experimental results. For

prediction accuracy comparison, the root mean square error (RMSE) is calculated between

Figure 11. The normalized inference latencies of the RFCN model for the edge and the SSD-MobileNet
model for the client in the REST protocol: (a) α = 1; (b) α = −1.

Considering these similar characteristics of the normalized inference latency between
devices, the actual inference latency of the RFCN model for the client, edge, and cloud can
be predicted based on their statistical information, α, and ZSSD−MobileNet

client . First, the SSD-
MobileNet model is executed on the client to obtain ZSSD−MobileNet

client , and α is determined by
considering the correlation coefficients of normalized inference latency between the RFCN
and SSD-MobileNet models. Then, the distributions of predicted inference latency for the
client, edge, and cloud X̂RFCN

client , X̂RFCN
edge and X̂RFCN

cloud can be calculated as below:

X̂RFCN
client = σRFCN

client ·(α·Z SSD−MobileNet
client

)
+ µRFCN

client , (6)

X̂RFCN
edge = σRFCN

edge ·(α·Z SSD−MobileNet
client

)
+ µRFCN

edge , (7)

Appl. Sci. 2023, 13, 9222 13 of 19

X̂RFCN
cloud = σRFCN

cloud ·
(

α·ZSSD−MobileNet
client

)
+ µRFCN

cloud , (8)

where µRFCN
device and σRFCN

device are the mean and standard deviation of the inference latency of
RFCN model for each device. It is assumed that the µRFCN

device and σRFCN
device for all devices are

known in advance on the client and are updated periodically. The correlation characteristics
of the inference latency for each inference model and the analysis and delivery of statistical
information are not the scope of this paper, and we will further study these topics in
the future. As it becomes possible to predict the inference latency of the RFCN model
for the client, edge, and cloud devices through the normalized inference latency of the
SSD-MobileNet model for the client device, the actual inference latency of the RFCN model
with relatively long latency can be predicted as short latency.

5. Simulation Results

This section shows the simulation results of the two proposed inference latency pre-
diction methods in object detection. While the proposed method 1 aims to predict the
inference latency between devices using a given inference model, the proposed method
2 aims to predict the inference latency between a complex two-stage and a simple single-
stage inference model. For object detection, the RFCN and SSD-MobileNet are considered
as two-stage and single-stage object detectors, respectively, and gRPC and REST are used as
the communication protocols. We evaluate that the proposed inference latency prediction
methods work well in various environments through experimental results. For predic-
tion accuracy comparison, the root mean square error (RMSE) is calculated between the
distribution of inference latency X and the distribution of predicted inference latency X̂.

5.1. Performance Evaluation of Proposed Method 1 with RFCN Model

We measured the predicted inference latency of the proposed method 1 in the RFCN
model and now compare it to the actual inference latency for the edge and cloud.
Figures 12 and 13 show the actual and predicted inference latency with the RFCN model
for the cloud and edge, respectively. Overall, as shown in Figures 12 and 13, it can be
observed that the predicted inference latency with the RFCN model reflects the actual
inference latency for the edge and cloud well. Therefore, it can be confirmed that the
proposed inference latency prediction approach is suitable for object detection.

Appl. Sci. 2023, 12, x FOR PEER REVIEW 14 of 19

the distribution of inference latency 𝑋 and the distribution of predicted inference latency

𝑋̂.

5.1. Performance Evaluation of Proposed Method 1 with RFCN Model

We measured the predicted inference latency of the proposed method 1 in the RFCN

model and now compare it to the actual inference latency for the edge and cloud. Figures

12 and 13 show the actual and predicted inference latency with the RFCN model for the

cloud and edge, respectively. Overall, as shown in Figures 12 and 13, it can be observed

that the predicted inference latency with the RFCN model reflects the actual inference

latency for the edge and cloud well. Therefore, it can be confirmed that the proposed

inference latency prediction approach is suitable for object detection.

(a) gRPC (b) REST

Figure 12. The actual and predicted inference latency of method 1 with the RFCN model for the

cloud: (a) gRPC; (b) REST.

(a) gRPC (b) REST

Figure 13. The actual and predicted inference latency of method 1 with the RFCN model for the

edge: (a) gRPC; (b) REST.

When comparing the results for the edge and cloud, the inference latency of the cloud

is relatively very low, and so the similarity between the predicted and actual inference

Figure 12. The actual and predicted inference latency of method 1 with the RFCN model for the
cloud: (a) gRPC; (b) REST.

Appl. Sci. 2023, 13, 9222 14 of 19

Appl. Sci. 2023, 12, x FOR PEER REVIEW 14 of 19

the distribution of inference latency 𝑋 and the distribution of predicted inference latency

𝑋̂.

5.1. Performance Evaluation of Proposed Method 1 with RFCN Model

We measured the predicted inference latency of the proposed method 1 in the RFCN

model and now compare it to the actual inference latency for the edge and cloud. Figures

12 and 13 show the actual and predicted inference latency with the RFCN model for the

cloud and edge, respectively. Overall, as shown in Figures 12 and 13, it can be observed

that the predicted inference latency with the RFCN model reflects the actual inference

latency for the edge and cloud well. Therefore, it can be confirmed that the proposed

inference latency prediction approach is suitable for object detection.

(a) gRPC (b) REST

Figure 12. The actual and predicted inference latency of method 1 with the RFCN model for the

cloud: (a) gRPC; (b) REST.

(a) gRPC (b) REST

Figure 13. The actual and predicted inference latency of method 1 with the RFCN model for the

edge: (a) gRPC; (b) REST.

When comparing the results for the edge and cloud, the inference latency of the cloud

is relatively very low, and so the similarity between the predicted and actual inference

Figure 13. The actual and predicted inference latency of method 1 with the RFCN model for the edge:
(a) gRPC; (b) REST.

When comparing the results for the edge and cloud, the inference latency of the cloud
is relatively very low, and so the similarity between the predicted and actual inference
latency at the edge is longer than that of the cloud. Although the difference between the
predicted and actual inference latency seems small at the edge, the RMSE of the edge is
larger than that of the cloud, as shown in Table 6, since the inference latency at the edge is
relatively long. The difference between the predicted and actual inference latency for the
cloud seems more noticeable than for the edge. However, the RMSE of the cloud is smaller
than that of the edge.

Table 6. The RMSE performance of method 1 with the RFCN model for the edge and cloud.

RMSE Cloud Edge

gRPC 3.259 28.300
REST 5.372 15.554

A comparison was also conducted according to the communication protocols gRPC
and REST. Two different trends have been observed depending on the communication
protocol. First, the RMSE performance of gRPC is lower than that of REST in the cloud.
In other words, the predicted inference latency is more accurate when gRPC is used than
when REST is used in the cloud. Second, the RMSE performance of REST is lower than that
of gRPC at the edge. That is, the predicted inference latency is more accurate when REST is
used than when gRPC is used at the edge. Figures 12 and 13 also confirm that using gRPC
in the cloud and REST at the edge is better for predicting inference latency.

5.2. Performance Evaluation of Proposed Method 1 with SSD-MobileNet Model

We measured the predicted inference latency of the proposed method 1 in the SSD-
MobileNet model and now compare it to the actual inference latency for the edge and cloud.
Figures 14 and 15 show the actual and predicted inference latency with the SSD-MobileNet
model for the cloud and edge, respectively. Overall, as shown in Figures 14 and 15, it can
be observed that the predicted inference latency with the SSD-MobileNet model reflects the
actual inference latency for the edge and cloud well. Therefore, it can be also confirmed
that the proposed inference latency prediction approach is suitable for object detection.

Appl. Sci. 2023, 13, 9222 15 of 19

Appl. Sci. 2023, 12, x FOR PEER REVIEW 15 of 19

latency at the edge is longer than that of the cloud. Although the difference between the

predicted and actual inference latency seems small at the edge, the RMSE of the edge is

larger than that of the cloud, as shown in Table 6, since the inference latency at the edge

is relatively long. The difference between the predicted and actual inference latency for

the cloud seems more noticeable than for the edge. However, the RMSE of the cloud is

smaller than that of the edge.

Table 6. The RMSE performance of method 1 with the RFCN model for the edge and cloud.

RMSE Cloud Edge

gRPC 3.259 28.300

REST 5.372 15.554

A comparison was also conducted according to the communication protocols gRPC

and REST. Two different trends have been observed depending on the communication

protocol. First, the RMSE performance of gRPC is lower than that of REST in the cloud. In

other words, the predicted inference latency is more accurate when gRPC is used than

when REST is used in the cloud. Second, the RMSE performance of REST is lower than

that of gRPC at the edge. That is, the predicted inference latency is more accurate when

REST is used than when gRPC is used at the edge. Figures 12 and 13 also confirm that

using gRPC in the cloud and REST at the edge is better for predicting inference latency.

5.2. Performance Evaluation of Proposed Method 1 with SSD-MobileNet Model

We measured the predicted inference latency of the proposed method 1 in the SSD-

MobileNet model and now compare it to the actual inference latency for the edge and

cloud. Figures 14 and 15 show the actual and predicted inference latency with the SSD-

MobileNet model for the cloud and edge, respectively. Overall, as shown in Figures 14

and 15, it can be observed that the predicted inference latency with the SSD-MobileNet

model reflects the actual inference latency for the edge and cloud well. Therefore, it can

be also confirmed that the proposed inference latency prediction approach is suitable for

object detection.

(a) gRPC (b) REST

Figure 14. The actual and predicted inference latency of method 1 with the SSD-MobileNet model

for the cloud: (a) gRPC; (b) REST.
Figure 14. The actual and predicted inference latency of method 1 with the SSD-MobileNet model for
the cloud: (a) gRPC; (b) REST.

Appl. Sci. 2023, 12, x FOR PEER REVIEW 16 of 19

(a) gRPC (b) REST

Figure 15. The actual and predicted inference latency of method 1 with the SSD-MobileNet model

for the edge: (a) gRPC; (b) REST.

The SSD-MobileNet model has a tendency that is different from the results of the

RFCN model because the difference in inference latency between the cloud and edge is

small. In the SSD-MobileNet model, there is a large difference in terms of inference latency

depending on the communication protocol rather than the difference in inference latency

according to the device. When comparing the results of gRPC and REST, the similarity

between the predicted and actual inference latency while using REST is greater than that

while using gRPC. However, the RMSE of gRPC is much smaller than that of REST, as

shown in Table 7.

Table 7. The RMSE performance of method 1 with the SSD-MobileNet model for the edge and cloud.

RMSE Cloud Edge

gRPC 0.285 0.606

REST 0.689 1.705

There is a trade-off relationship between gRPC and REST in the SSD-MobileNet

model. The gRPC protocol has a lower inference latency and RMSE performance

compared to the REST protocol, but it has a lower similarity between the prediction and

the actual inference latency. Conversely, the REST protocol has a high inference latency

and the RMSE performance compared to the gRPC protocol, but it has a high similarity

between the prediction and the actual inference latency. When building a system

environment, it is necessary to consider this trade-off relationship.

5.3. Performance Evaluation of Proposed Method 2

We measured the predicted inference latency of the proposed method 2 using the

SSD-MobileNet model and now compare it to the actual inference latency of the RFCN

model for the client and edge devices. Figure 16 shows the actual and predicted inference

latency of the RFCN model for the client and edge devices using the SSD-MobileNet

model for the client device in the REST protocol. Although there are more prediction

errors when compared to the proposed method 1, it can be observed that the predicted

inference latency of the proposed method 2 is also highly similar to the actual inference

latency. Simulation results confirm that the use of the characteristics of the negative

correlation between the RCFN and SSD-MobileNet models can effectively predict the

inference latency of the complex RFCN model. Additionally, the proposed method 2

Figure 15. The actual and predicted inference latency of method 1 with the SSD-MobileNet model for
the edge: (a) gRPC; (b) REST.

The SSD-MobileNet model has a tendency that is different from the results of the
RFCN model because the difference in inference latency between the cloud and edge is
small. In the SSD-MobileNet model, there is a large difference in terms of inference latency
depending on the communication protocol rather than the difference in inference latency
according to the device. When comparing the results of gRPC and REST, the similarity
between the predicted and actual inference latency while using REST is greater than that
while using gRPC. However, the RMSE of gRPC is much smaller than that of REST, as
shown in Table 7.

Table 7. The RMSE performance of method 1 with the SSD-MobileNet model for the edge and cloud.

RMSE Cloud Edge

gRPC 0.285 0.606
REST 0.689 1.705

Appl. Sci. 2023, 13, 9222 16 of 19

There is a trade-off relationship between gRPC and REST in the SSD-MobileNet model.
The gRPC protocol has a lower inference latency and RMSE performance compared to
the REST protocol, but it has a lower similarity between the prediction and the actual
inference latency. Conversely, the REST protocol has a high inference latency and the
RMSE performance compared to the gRPC protocol, but it has a high similarity between
the prediction and the actual inference latency. When building a system environment, it is
necessary to consider this trade-off relationship.

5.3. Performance Evaluation of Proposed Method 2

We measured the predicted inference latency of the proposed method 2 using the
SSD-MobileNet model and now compare it to the actual inference latency of the RFCN
model for the client and edge devices. Figure 16 shows the actual and predicted inference
latency of the RFCN model for the client and edge devices using the SSD-MobileNet model
for the client device in the REST protocol. Although there are more prediction errors
when compared to the proposed method 1, it can be observed that the predicted inference
latency of the proposed method 2 is also highly similar to the actual inference latency.
Simulation results confirm that the use of the characteristics of the negative correlation
between the RCFN and SSD-MobileNet models can effectively predict the inference latency
of the complex RFCN model. Additionally, the proposed method 2 predicts not only the
inference latency of the RFCN model for the client but also the inference latency of the
RFCN model for the edge device well.

Appl. Sci. 2023, 12, x FOR PEER REVIEW 17 of 19

predicts not only the inference latency of the RFCN model for the client but also the

inference latency of the RFCN model for the edge device well.

(a) client (b) edge

Figure 16. The actual and predicted inference latency of method 2 with the RFCN model for each

device using the SSD-MobileNet for the client in the REST protocol: (a) client; (b) edge.

We also evaluated the RMSE performance of the proposed method 2 in the gRPC and

REST protocols as shown in Tables 8 and 9, respectively. When calculating the RMSE, two

cases, where 𝛼 is 1 and -1, in the proposed method 2 were considered to understand the

effect of 𝛼. According to the correlation given in Table 4, it can be seen that the proposed

method 2 with an 𝛼 value of -1 decreases the RMSE for a negative correlation, and the

proposed method 2 with an 𝛼 value of 1 decreases the RMSE for a positive correlation.

By setting 𝛼 to -1, it was possible to improve the performance by more than 30% from

the perspective of the RMSE for negative correlation. Therefore, the proposed inference

latency prediction method considering correlation is suitable for predicting the inference

latency of the complex RFCN model.

Table 8. The RMSE performance of method 2 in the gRPC protocol.

RMSE Client Edge Cloud

𝛼 = 1 297.92 63.60 7.70

𝛼 = −1 196.44 43.23 5.87

Table 9. The RMSE performance of method 2 in the REST protocol.

RMSE Client Edge Cloud

𝛼 = 1 298.00 60.03 5.05

𝛼 = −1 196.75 42.74 7.58

5.4. Complexity Analysis of Proposed Inference Latency Prediction Methods

This section describes the complexity of the proposed methods. The proposed

methods predict the inference latency through three steps. First, the inference latency is

measured on the client device. Then, the normalized inference latency is computed by

reflecting the statistical information on the measured inference latency on the client

device. Lastly, the predicted inference latencies of the edge and cloud devices are obtained

by considering their statistical information on the normalized inference latency. Since the

second and third steps involve simple scaling, most of the complexity is due to the first

step of measuring the inference latency on the client. However, the first step can also be

Figure 16. The actual and predicted inference latency of method 2 with the RFCN model for each
device using the SSD-MobileNet for the client in the REST protocol: (a) client; (b) edge.

We also evaluated the RMSE performance of the proposed method 2 in the gRPC
and REST protocols as shown in Tables 8 and 9, respectively. When calculating the RMSE,
two cases, where α is 1 and −1, in the proposed method 2 were considered to understand
the effect of α. According to the correlation given in Table 4, it can be seen that the proposed
method 2 with an α value of −1 decreases the RMSE for a negative correlation, and the
proposed method 2 with an α value of 1 decreases the RMSE for a positive correlation. By
setting α to −1, it was possible to improve the performance by more than 30% from the
perspective of the RMSE for negative correlation. Therefore, the proposed inference latency
prediction method considering correlation is suitable for predicting the inference latency of
the complex RFCN model.

Appl. Sci. 2023, 13, 9222 17 of 19

Table 8. The RMSE performance of method 2 in the gRPC protocol.

RMSE Client Edge Cloud

α = 1 297.92 63.60 7.70
α = −1 196.44 43.23 5.87

Table 9. The RMSE performance of method 2 in the REST protocol.

RMSE Client Edge Cloud

α = 1 298.00 60.03 5.05
α = −1 196.75 42.74 7.58

5.4. Complexity Analysis of Proposed Inference Latency Prediction Methods

This section describes the complexity of the proposed methods. The proposed methods
predict the inference latency through three steps. First, the inference latency is measured
on the client device. Then, the normalized inference latency is computed by reflecting the
statistical information on the measured inference latency on the client device. Lastly, the
predicted inference latencies of the edge and cloud devices are obtained by considering
their statistical information on the normalized inference latency. Since the second and third
steps involve simple scaling, most of the complexity is due to the first step of measuring
the inference latency on the client. However, the first step can also be executed relatively
simply because it uses a simple inference model, such as the SSD-MobileNet model, when
measuring inference latency on the client device. In addition, since this process can be
performed in parallel on a separate core of the client, inference latency can be predicted
with very low time overhead if only the statistical information of each device is updated.

6. Conclusions

In this paper, we proposed two inference latency prediction approaches for object
detection in edge computing. Predicting accurate inference latency is essential because
inference latency plays an important role in deriving the optimal offloading policy for edge
computing. Using the proposed method, it was possible to predict the inference latency of
other devices in a particular device within a given model by using statistical information
on their inference latency. Additionally, the proposed method was also able to predict the
inference latency of other devices on a certain device across different inference models.
Through various experiments, the performances of actual and predicted inference latency
were compared according to the selected object detection algorithms and communication
protocols. The simulation results show that the predicted inference latency is well matched
with the actual inference latency between devices or algorithms. Therefore, the proposed
inference latency prediction approaches are suitable for AI services using object detection
in edge computing. In the future, we will study and evaluate the performance of offloading
policy decisions by applying the proposed inference latency prediction methods in real
system environments.

Author Contributions: Conceptualization, G.K. and Y.-G.H.; methodology, G.K. and Y.-G.H.; soft-
ware, G.K.; validation, G.K. and Y.-G.H.; formal analysis, G.K.; investigation, G.K. and Y.-G.H.;
writing—original draft preparation, G.K.; writing—review and editing, G.K. and Y.-G.H.; supervision,
Y.-G.H.; project administration, Y.-G.H.; funding acquisition, Y.-G.H. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was supported by the Daejeon University Research Grants (2021).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2023, 13, 9222 18 of 19

References
1. Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.

Language models are few-shot learners. In Proceedings of the 34th Conference on Neural Information Processing Systems
(NeurIPS 2020), Vancouver, BC, Canada, 6–12 December 2020.

2. Tensorflow Serving. Available online: https://www.tensorflow.org/tfx/guide/serving (accessed on 11 July 2023).
3. TorchServe. Available online: https://pytorch.org/serve/ (accessed on 11 July 2023).
4. Nvidia Trion Server. Available online: https://developer.nvidia.com/nvidia-triton-inference-server (accessed on 11 July 2023).
5. Intel OpenVINO. Available online: https://www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/overview.

html (accessed on 11 July 2023).
6. Sadatdiynov, K.; Cui, L.; Zhang, L.; Huang, J.Z.; Salloum, S.; Mahmud, M.S. A review of optimization methods for computation

offloading in edge computing networks. Digit. Commun. Netw. 2022, 9, 450–461. [CrossRef]
7. Feng, C.; Han, P.; Zhang, X.; Yang, B.; Liu, Y.; Guo, L. Computation offloading in mobile edge computing networks: A survey.

J. Netw. Comput. Appl. 2022, 202, 103366. [CrossRef]
8. Wang, X.; Han, Y.; Leung, V.C.M.; Niyato, D.; Yan, X.; Chen, X. Convergence of Edge Computing and Deep Learning: A

Comprehensive Survey. IEEE Commun. Surv. Tutor. 2020, 22, 869–904. [CrossRef]
9. Kang, P.; Somtham, A. An evaluation of modern accelerator-based edge devices for object detection applications. Mathematics

2022, 10, 4299. [CrossRef]
10. Hui, Y.; Lien, J.; Lu, X. Early experience in benchmarking edge AI processors with object detection workloads. Lect. Notes Comput.

Sci. 2020, 12093, 32–48.
11. Liao, Z.; Peng, J.; Xiong, B.; Huang, J. Adaptive offloading in mobile-edge computing for ultra-dense cellular networks based on

genetic algorithm. J. Cloud Comput. 2021, 10, 1–16. [CrossRef]
12. Xu, Z.; Zhao, L.; Liang, W.; Rana, O.F.; Zhou, P.; Xia, Q.; Xu, W.; Wu, G. Energy-aware inference offloading for DNN-driven

applications in mobile edge clouds. IEEE Trans. Parallel Distrib. Syst. 2020, 32, 799–814. [CrossRef]
13. Li, B.; He, M.; Wu, W.; Sangaiah, A.K.; Jeon, G. Computation offloading algorithm for arbitrarily divisible applications in mobile

edge computing environments: An OCR case. Sustainability 2018, 10, 1611. [CrossRef]
14. Dinh, T.Q.; La, Q.D.; Quek, T.Q.; Shin, H. Learning for computation offloading in mobile edge computing. IEEE Trans. Commun.

2018, 66, 6353–6367. [CrossRef]
15. Zhang, H.; Yang, Y.; Huang, X.; Fang, C.; Zhang, P. Ultra-low latency multi-task offloading in mobile edge computing. IEEE

Access 2021, 9, 32569–32581. [CrossRef]
16. Ale, L.; Zhang, N.; Fang, X.; Chen, X.; Wu, S.; Li, L. Delay-aware and energy-efficient computation offloading in mobile edge

computing using deep reinforcement learning. IEEE Trans. Cogn. Commun. Netw. 2021, 7, 881–892. [CrossRef]
17. Yu, S.; Wang, X.; Langar, R. Computation offloading for mobile edge computing: A deep learning approach. In Proceedings of the

IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, QC,
Canada, 8–13 October 2017; pp. 1–6.

18. Ali, Z.; Jiao, L.; Baker, T.; Abbas, G.; Abbas, Z.H.; Khaf, S. A deep learning approach for energy efficient computational offloading
in mobile edge computing. IEEE Access 2019, 7, 149623–149633. [CrossRef]

19. Shakarami, A.; Shahidinejad, A.; Ghobaei-Arani, M. An autonomous computation offloading strategy in Mobile Edge Computing:
A deep learning-based hybrid approach. J. Netw. Comput. Appl. 2021, 178, 102974. [CrossRef]

20. Irshad, A.; Abbas, Z.H.; Ali, Z.; Abbas, G.; Baker, T.; Al-Jumeily, D. Wireless powered mobile edge computing systems:
Simultaneous time allocation and offloading policies. Electronics 2021, 10, 965. [CrossRef]

21. Abbas, Z.H.; Ali, Z.; Abbas, G.; Jiao, L.; Bilal, M.; Suh, D.-Y.; Piran, M.J. Computational Offloading in Mobile Edge with
Comprehensive and Energy Efficient Cost Function: A Deep Learning Approach. Sensors 2021, 21, 3523. [CrossRef] [PubMed]

22. Dai, J.; Li, Y.; He, K.; Sun, J. R-fcn: Object detection via region-based fully convolutional networks. In Proceedings of the 30th
Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain, 5–10 December 2016.

23. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single shot multibox detector. In Proceedings of
the 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016.

24. Vadlamani, S.L.; Emdon, B.; Arts, J.; Baysal, O. Can GraphQL Replace REST? A Study of Their Efficiency and Viability. In
Proceedings of the IEEE/ACM 8th International Workshop on Software Engineering Research and Industrial Practice (SER&IP),
Madrid, Spain, 4 June 2021; pp. 10–17.

25. REST API (Introduction). Available online: https://www.geeksforgeeks.org/rest-api-introduction/ (accessed on 11 July 2023).
26. gRPC. Available online: https://grpc.io/ (accessed on 11 July 2023).
27. Wu, Y.; Guo, H.; Chakraborty, C.; Khosravi, M.; Berretti, S.; Wan, S. Edge computing driven low-light image dynamic enhancement

for object detection. IEEE Trans. Netw. Sci. Eng. 2023. [CrossRef]
28. Wu, Y.; Tian, P.; Cao, Y.; Ge, L.; Yu, W. Edge computing-based mobile object tracking in internet of things. High.-Confid. Comput.

2022, 2, 100045. [CrossRef]
29. Tarahomi, M.; Izadi, M.; Ghobaei-Arani, M. An efficient power-aware VM allocation mechanism in cloud data centers: A micro

genetic-based approach. Cluster. Comput. 2020, 24, 919–934. [CrossRef]
30. Amanatidis, P.; Karampatzakis, D.; Iosifidis, G.; Lagkas, T.; Nikitas, A. Cooperative task execution for object detection in edge

computing: An internet of things application. Appl. Sci. 2023, 13, 4982. [CrossRef]

https://www.tensorflow.org/tfx/guide/serving
https://pytorch.org/serve/
https://developer.nvidia.com/nvidia-triton-inference-server
https://www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/overview.html
https://www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/overview.html
https://doi.org/10.1016/j.dcan.2022.03.003
https://doi.org/10.1016/j.jnca.2022.103366
https://doi.org/10.1109/COMST.2020.2970550
https://doi.org/10.3390/math10224299
https://doi.org/10.1186/s13677-021-00232-y
https://doi.org/10.1109/TPDS.2020.3032443
https://doi.org/10.3390/su10051611
https://doi.org/10.1109/TCOMM.2018.2866572
https://doi.org/10.1109/ACCESS.2021.3061105
https://doi.org/10.1109/TCCN.2021.3066619
https://doi.org/10.1109/ACCESS.2019.2947053
https://doi.org/10.1016/j.jnca.2021.102974
https://doi.org/10.3390/electronics10080965
https://doi.org/10.3390/s21103523
https://www.ncbi.nlm.nih.gov/pubmed/34069364
https://www.geeksforgeeks.org/rest-api-introduction/
https://grpc.io/
https://doi.org/10.1109/TNSE.2022.3151502
https://doi.org/10.1016/j.hcc.2021.100045
https://doi.org/10.1007/s10586-020-03152-9
https://doi.org/10.3390/app13084982

Appl. Sci. 2023, 13, 9222 19 of 19

31. TensorFlow Object Detection API. Available online: https://github.com/tensorflow/models/tree/master/research/object_
detection (accessed on 11 July 2023).

32. COCO Dataset. Available online: https://cocodataset.org/ (accessed on 11 July 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/tensorflow/models/tree/master/research/object_detection
https://cocodataset.org/

	Introduction
	Related Works
	System Model
	System Configuration
	Object Detection Models
	Dataset

	Proposed Inference Latency Prediction Approaches
	Inference Latency According to Image Size
	Inference Latency Depending on Devices
	Proposed Inference Latency Prediction between Devices
	Proposed Inference Latency Prediction between Object Detection Algorithms

	Simulation Results
	Performance Evaluation of Proposed Method 1 with RFCN Model
	Performance Evaluation of Proposed Method 1 with SSD-MobileNet Model
	Performance Evaluation of Proposed Method 2
	Complexity Analysis of Proposed Inference Latency Prediction Methods

	Conclusions
	References

