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Featured Application: To obtain the normal cognitive decline during interaction with mobile de-
vices on the move as a ground truth for further studies about pathologic cognitive decline (such 
as MCI). 

Abstract: The widespread use of mobile phones in daily life makes them a fundamental tool for the 
study of human behavior. In particular, they can be used as a source of additional information to 
help to diagnose diseases. This work is based on contrasted dual-tasking tests where cognitive per-
formance is studied by performing tasks of high cognitive load while walking. In this case, we study 
significant differences in mobile device use among groups of people of different ages and examine 
whether they are more characteristic when the interaction takes place on the move. A study is con-
ducted by monitoring the interaction with the mobile device for one consecutive week and analyz-
ing the correlations between these interactions and the participants’ ages. Additionally, a user pro-
filing model is designed to help to use this ground truth in future works focused on the early diag-
nosis of cognitive deficits. The results obtained contribute to preliminarily characterizing how age-
related normotypical cognitive decline affects interactions with mobile devices. In addition, the pilot 
study generates a dataset with monitored events and interactions of 45 users that includes more 
than 4.5 million records. 
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1. Introduction 
The use of mobile devices as a tool in our daily lives is universally widespread. This 

general use allows them to serve as a valuable source of information for the analysis of 
people’s performance in their daily activities [1]. In their common usage, mobile devices 
and their applications can collect data about location, movement, battery usage, etc. Apart 
from sensor data, it is particularly interesting that interactions between users and their 
mobile devices also provide valuable information related to human behavior. Indeed, it 
has been shown that this analysis can support the diagnosis of diseases [2] but should 
play a complementary role in the doctor–patient relationship. In regard to dementia, 
Blanka Klimova [3] demonstrated the potential of mobile applications to facilitate diag-
nostic support, minimizing bias, with greater patient independence. Indirectly, such ap-
proaches can reduce healthcare costs and improve the overall quality of life of older peo-
ple [4]. This makes the analysis of smartphone interactions highly valuable, both in the 
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general field of human–computer Interaction (HCI) and in healthcare, whether for diag-
nostic or treatment purposes. 

This article is part of the project “Mobile computing-based Multitasking for Mild cog-
nitive impairment Monitoring and early Screening (M4S)”, which aims to contribute to the 
early diagnosis of cognitive decline by monitoring dual daily tasks in terms of interactions 
with mobile devices. One of the most common pre-dementia stages is known as mild cog-
nitive impairment [5] (MCI). It is defined as “cognitive decline greater than expected for 
an individual’s age and education level, but that does not interfere notably with activities 
of daily life” [6]. One of the main motivations of this project is the increasing prevalence 
of MCI, with epidemiological studies estimating it to be between 3% to 19% in adults older 
than 65 years, and with a risk of it progressing to dementia (11–33% cases) after 2 years. 
The prevalence increases over time, being up to 50% for those who finally progress to 
dementia within 5 years [7]. These statistics show that dementia is one of the most com-
mon disorders among older adults, and the number of people affected is projected to in-
crease by up to three times by 2050 [8]. 

The aim of this study is to determine which tasks performed with a mobile device 
show significant differences between population cohorts of different ages and whether 
this difference is more relevant when the tasks are performed while walking. This study 
is conducted with people who have no diagnosed dementia; therefore, the aim is to estab-
lish a ground truth regarding how the normal cognitive decline of aging affects the use of 
mobile devices, both while stationary and on the move. 

This work is based on a previous study [9] where we defined the HuSBIT-10 taxon-
omy for the main types of tasks performed with mobile devices (distinguishing between 
automatic, psychomotor, production, consumption, and exploration tasks). Based on this 
taxonomy, the cognitive load was studied by measuring it with electroencephalography 
(EEG), to extract those tasks with a more significant cognitive load. This study helped to 
determine the tasks to be monitored and analyzed in the current work. 

After explaining the context, motivation, and objective of this work during the intro-
duction section, the rest of the paper continues with a review of related works in the liter-
ature in Section 2. Next, the description of the experimental protocol, materials, and meth-
ods (the BIPapp monitoring application and the generated dataset) is provided in Section 
3. The statistical method and results are explained in Section 4. The user profiling model 
to classify people regarding the use of mobile devices and age is also developed in Section 
4. Section 5 discusses the results’ scope, their meaning, and the possible limitations of the 
experiment. Finally, Section 6 concludes the paper, discussing the goals accomplished and 
the contributions of this work. 

2. Related Work 
There are multiple diagnosis tools for MCI, such as neurological evaluation, cognitive 

tests, or physical examinations [10], although none of them alone can provide high cer-
tainty in the results, so it is common to combine them. Within the neurological evaluation 
methods, there are tools such as EEG [11] or fMRI [12]. Regarding cognitive tests, two of 
the most used are the Mini-Mental State Examination (MMSE) [13], which is a general test 
for dementia, and the Montreal Cognitive Assessment [14], which is specific for MCI. 
Physical examination often refers to analyzing on-the-move activities, which represent a 
special focus of attention as they are commonly used as a tool in diagnosing cognitive 
decline. MCI is accompanied by other changes, such as balance and coordination [15]. In 
particular, evidence of an association between cognitive impairment and gait has been 
found as soon as older adults are affected by MCI [16,17]. Thus, the ability to multitask 
has been said to be at the core of competency in everyday life [18]. 

The term m-health refers to the usage of mobile devices to support medicine or im-
prove people’s health. It can be used for treatment, as in [19], where the authors proved 
that smartphones can be used to induce positive or negative affective states, or in [20], 
where the authors developed an app to improve diabetes self-management. There are also 
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applications to support the activities of health professionals [21,22]. The m-health usage 
on which this paper focuses is m-health for diagnosis [4], and, more specifically, early 
diagnosis. 

Research on smartphones as an early diagnosis tool has increased in the last few years 
and shows some promising results. In particular, for this paper, the focus is psychological 
and neurological disorders. For example, Kim et al. [23] describes a mobile app for the 
gathering of self-reports of mental health ratings from breast cancer patients as a depres-
sion screening tool. In [24], the authors propose a system for the detection of Parkinson’s 
disease, analyzing gait data from the smartphone, so that the doctor can obtain data that 
have been monitored continuously. In [25], the authors implement into an app a modified 
version of the MMSE for the easy gathering of results using a voice recognition technique 
and automated scoring as an alternative to the paper version. 

This paper is a preliminary study of the utility of smartphones as early diagnosis 
tools for the detection of MCI by combining ideas from traditional techniques of MCI di-
agnosis and modern mental disorder diagnosis using smartphones. 

3. Materials and Methods 
3.1. Experimental Protocol and Method 

The experiment gathered evidence regarding mobile interactions in an empirical 
manner, with the data quantitatively analyzed. The twofold research question guiding 
this experiment was “Are there significant differences in mobile device use among groups 
of people of different ages and are they more characteristic when the interaction takes 
place on the move?”. This question resulted in two hypotheses to be tested through this 
experiment: 

Hypothesis 1. Different tasks performed with a smartphone present different performance depend-
ing on the user’s age. 

Hypothesis 2. The performance of mobile device tasks depends on whether the user is stationary 
or on the move. 

The pilot study was conducted by the MAmI Research Group from the University of 
Castilla-La Mancha, a group focused on health informatics and HCI. The participants 
were informed about the scope and goals of this research and the collected data. The work 
was conducted with 45 participants, from 20 to 70 years old, who received and signed an 
information sheet and consent form, which provided detailed information about the 
study’s objective, procedures, and the types of data to be collected. All participants had 
the opportunity to consider their participation before making a final decision. Thereby, 
the preservation of the dignity and autonomy of the participants was ensured by their 
voluntary participation and the fact that they could leave the study at any time without 
any consequences. 

The overall context of the M4S project presented above is described in Figure 1. This 
work contributes to the characterization of the interactions with mobile devices. In the 
previous work [9], the cognitive load of each task with the mobile device was studied to 
select the tasks to be considered in the present study. In parallel, a detailed analysis of gait 
variables while interacting with the mobile device was carried out using body tracking 
technology [26]. The protocol employed within the experiment can be summarized as fol-
lows: (1) all participants were informed and signed the consent form; (2) the participants, 
with or without help, installed BIPapp (described in Section 3.2) and configured it to acti-
vate the required permissions and services (i.e., accessibility and activity recognition ser-
vices); (3) without receiving any additional instruction, they used their mobile devices for 
at least 7 days; and (4) users uninstalled BIPapp from their devices. 
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Figure 1. Overview of M4S project; the focused part of the current study is outlined in red. 

3.2. Material: BIPapp 
BIPapp is an Android mobile application that enables the monitoring of different ac-

tions and events performed by a user with a mobile device. Privacy and ethics are ensured 
in the collection of data by using a random unique identifier that prevents users from 
being recognized. Figure 2 illustrates the different actions and events monitored. 

 
Figure 2. Events and actions monitored through BIPapp. 

Figure 3 depicts a graphical representation of the development and operation of BI-
Papp. When the user has installed the application for the first time, it must be registered 
(1). Once the user has registered and logged in, different options can be enabled to monitor 
the user’s actions and events (2), (4). The app recognizes user activity and steps taken with 
stand-alone services (https://developer.android.com/guide/components/services, ac-
cessed on 16 February 2023). Google’s Activity Recognition Client API (https://develop-
ers.google.com/android/reference/com/google/android/gms/location/ActivityRecogni-
tionClient, accessed on 26 April 2023) is used to detect physical activity performed by the 
user. The monitored actions correspond to an accessibility service (3) 
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(https://developer.android.com/reference/android/accessibilityservice/Accessibil-
ityService, accessed on 8 July 2023) that enables the monitoring of events and actions per-
formed with the mobile device. 

 
Figure 3. Overview of BIPapp: configuration, services, and architecture. 

Once the user has registered and configured the app, all event data are stored in a 
relational database in the cloud (5). These data are accessed and processed via a REST API 
implemented with Slim (https://www.slimframework.com/) (6) and (7). The “Application 
Information” section explains how the application works and shows the unique and anon-
ymous user identifier assigned to it (8). 

3.3. Obtained Data 
The process of designing the database to store the data monitored by BIPapp was 

critical. For this purpose, a MySQL relational database hosted on a cloud server was used; 
this was due to the relationship between the tables, enabled by means of the unique iden-
tifier assigned to each user. The different tables created to store the collected data were as 
follows.  
• Apps. Stores specific events performed in certain applications. (e.g., sending an 

email, opening a WhatsApp conversation, liking a Facebook post, etc.). 
• AppsInstalled. These are records of the apps installed on each user’s device.  
• Lock. This stores the locking and unlocking events of the mobile device. 
• Buttons. This stores events related to pressing physical buttons, such as those to in-

crease and decrease the volume. 
• ActivityDetect. This records the different physical activities performed by the user 

and related to the event performed with the device at that moment.  
• Calls. The numbers and dates of incoming, outgoing, and missed calls are recorded.  
• FirstPlane. This stores the use of a given application along with the event produced 

in that application.  
• Keyboard. This logs events performed with the keyboard, specifically metrics that 

measure the typing of letters, symbols, and emoticons (it does not store conversa-
tions). 

• Users. These are the distinct encrypted identifiers for users. 
At the end of the experiment, there were approximately 4,500,000 records in the da-

tabase. The criterion for inclusion in the experiments was that a full, uninterrupted week 
of data was available, so a subset of users had to be disregarded. In the end, 29 users were 
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included in the dataset, with a total of 3,805,000 data records. The following section de-
scribes how the data were processed to obtain the final dataset. 

3.4. Data Pre-Processing and Generated Dataset 
Due to the number of records, as well as their nature, it was necessary to conduct 

several refinement processes in order to be able to effectively use these data. 
The first step was to condense the different events into cycles to profile the users. To 

accomplish this, several approaches were considered, including grouping by time win-
dow, grouping by event typology, and grouping by locked/unlocked cycles. As the focus 
of the study was oriented towards the uses applied to the mobile device, the decision was 
made to use the lock/unlock cycle classification approach, which was achieved with the 
algorithm in Figure 4. As described, the filtering of the locked/unlocked events of all users 
was performed first. After this, they were sorted temporally, from oldest to newest. Fi-
nally, a loop was performed that checked the input or output of lock/unlock events and 
stored this information in a lexicon to then assign the type of cycle to each record. 

 
Figure 4. Algorithm to profile user interactions and obtain data based on cycles of use. 

The second step comprised combining the user event logs (classified into locked/un-
locked cycles as explained above) with the physical activity logs. Here, we dealt mainly 
with the difference in the frequency of physical activity and user event collection. To solve 
this and perform an accurate matching process, an algorithm was designed and imple-
mented that could assign to each event the physical activities closest in time and type; 
Figure 5 provides details of the algorithm. In this case, it was traversed event by event, 
using the time stamp. With this time stamp and a pre-determined time drift of seconds, a 
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time window was established to locate physical activities. The activities that fell within 
the window were ordered temporally, and the one closest to the time stamp of the event 
(or the one with the least temporal drift) was searched. 

 
Figure 5. Algorithm to combine user events (interactions) and physical activity detection. 

After combining physical activities as events captured by the mobile device, “sum-
mary cycles” were computed that grouped the counts of all events and actions given dur-
ing a lock or unlock. During this process, several metrics were generated, such as the cycle 
time, number of production type events, and average typing time. In the following sec-
tions, we provide additional details about the mechanisms that utilize the generated da-
taset. 

4. Results 
4.1. Statistical Analysis 

The data are studied from two perspectives, one statistical and one algorithmic. The 
objective of each approach is different. The defined hypotheses are investigated through 
the statistical approach (Section 3). The user profiling model is applied to establish how 
people of different ages use mobile phones (Section 4); this provides us with a method for 
the classification of users. 

4.1.1. Theory and Calculation 
To check the study’s hypotheses, a statistical analysis was developed from the data 

collected to identify correlations or associations between different metrics of mobile usage 
and users’ ages (e.g., comparing the number of characters deleted by each user, the 
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frequency of typing, the amount of time spent using the mobile phone, etc.). These metrics 
were also linked to the physical activity performed at each moment. 

A non-parametric statistical test was performed as the sample was small and did not 
follow a normal distribution. Due to the nature of the data as continuous quantitative var-
iables, Pearson’s correlation coefficient [27] was applied in order to measure the ordinal 
association between two measured quantities. Pearson’s correlation coefficient ranges 
from −1 to +1, indicating in both cases the degree of association between variables but in 
opposite directions. According to the suggestions given in [28], the interpretation of the 
magnitude of Pearson’s correlation coefficient is shown in Table 1. It represents the rela-
tionship between X and Y in absolute values but applies to any pair of variables. 

Table 1. Boundaries of Pearson’s correlation coefficient [28]. 

Range of Rxy Values Interpretation 
0.00 ≤ |rxy| < 0.10 Null correlation 
0.10 ≤ |rxy| < 0.30 Weak correlation 
0.30 ≤ |rxy| < 0.50 Moderate correlation 
0.50 ≤ |rxy| < 1.00 Strong correlation 

The first step was to make certain assumptions about the parameters by establishing 
two opposite hypotheses: a null hypothesis and an alternative hypothesis. Then, depend-
ing on the coefficient obtained, a decision was made to accept or reject the hypothesis. This 
measure of inferential statistics made it possible to draw conclusions or general patterns 
for the whole population from the study of the sample and the degree of significance of 
the results obtained. 

4.1.2. Results of the Statistical Approach 
Based on the first hypothesis about verifying how people use their mobile devices 

differently depending on their age, a statistical analysis was performed using the data 
obtained.  

The data of users who completed the experiment were organized into stages of adult-
hood according to Carl Jung’s theory [29], in order to analyze changing trends in the use 
of mobile devices. Table 2 describes each age range. To distinguish each user’s events, we 
used a variable named “identifier”. Participants also provided their subjective ability to 
use technology. A criterion for inclusion was that the participants typically used mobile 
devices in their daily tasks, including communication, shopping, managing finances, and 
searching for information on the internet. 

Table 2. Grouping of user data by age range. 

 Total High 
Ability 

Medium 
Ability 

Low 
Ability 

Men Women 

Young adults [20–34 yo] 9 9 0 0 3 6 
Middle-aged adults [35–59 yo] 13 3 7 3 6 7 

Older adults [60–70 yo] 7 1 2 4 4 3 

The fixed variables were age and the type of physical activity (standing or moving). 
The rest of the variables were selected based on the information collected and those that 
differentiated the use of the device from one user to another. Sex/gender and the techno-
logical ability of the participants were variables that were collected, but, due to the limited 
population, they were not considered in the study as no meaningful statistical conclusions 
could be drawn. Inferential analysis of the data was then performed using Pearson’s cor-
relation coefficient. Firstly, Table 3 summarizes this correlation regarding mobile use and 
age.  
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Table 3. Correlation coefficients of mobile device usage metrics vs. age. 

 Stationary On the Move 
Mobile usage vs. age −0.574 −0.605 

Average number of open applications vs. age 0.225 0.133 
Total events held vs. age −0.650 −0.539 

Blocking vs. age −0.543 −0.476 
Unblocking vs. age −0.594 −0.541 

To provide greater detail on the use of mobile devices, the applications utilized by 
users were classified by the type of content offered to users. Five types were distinguished: 
financial, commercial, shopping, entertainment, and utility. As Table 4 depicts, the most 
frequently used applications were commercial, utility, and entertainment.  

Table 4. Correlation coefficient application categories vs. age. 

 Financial Commercial Shopping Entertainment Utility 
Age 0.344 −0.062 −0.451 −0.621 0.176 

% of users 20.69 86.21 24.14 100.00 93.10 

The significance of the analysis lies in differentiating the use of the mobile device 
while the user is standing or in motion. Therefore, starting from the previous classifica-
tion, an exploration was performed of the applications utilized by users on the move and 
the degree of correlation that existed with respect to age (Table 5).  

Table 5. Correlation coefficient of use of apps on the move vs. age. 

 Whats
App 

Gmail Calls Twitter Insta-
gram 

Face-
book 

Out-
look 

Chro 
me 

Other All 

Age −0.542 0.466 0.255 −0.391 −0.290 0.068 −0.030 −0.580 −0.282 −0556 
% of users 100.00 30.4 39.1 21.74 26.09 30.43 26.09 17.39 4.35 100.00 

Focusing on WhatsApp and Facebook, the two applications most often used, Table 6 
shows that the older the age of users, the fewer actions they performed on the application. 

Table 6. Correlation coefficients of actions performed in WhatsApp and Facebook vs. age. 

 Stationary On the Move 
WHATSAPP   

WhatsApp events vs. age −0.578 −0.545 
Open conversation vs. age −0.169 −0.476 

Viewing and listening to multimedia files vs. age −0.194 −0.502 
Writing vs. age −0.566 −0.551 

Sending files and camera vs. age 0.370 −0.640 
FACEBOOK   

Facebook events vs. age 0.194 0.068 
Facebook likes vs. age 0.156 <0.01 

Facebook commenting vs. age 0.526 <0.01 
Facebook sharing vs. age 0.070 <0.01 

Notification vs. age 0.078 0.086 

Studying the correlation index between the age of the users and the number of each 
type of call made (Table 7), a low association was found, where, as the age increased, more 
calls were made. 



Appl. Sci. 2023, 13, 9204 10 of 16 
 

Table 7. Correlation coefficients for calls vs. age. 

 Total Calls Outgoing Lost Incoming 
Age 0.256 0.189 0.071 0.339 

Finally, the relationship between the user’s age and the number of elements written 
(letters, symbols, and emoticons) and between the age and the number of elements deleted 
was studied, as depicted in Table 8.  

Table 8. Correlation coefficients for typing and age. 

 Stationary On the Move 
Written elements vs. age −0.697 −0.522 

Elements removed vs. age 0.690 0.778 
Total writing time vs. age −0.446 −0.436 
Writing frequency vs. age −0.253 −0.660 

4.2. User Profiling 
4.2.1. Theory and Calculation 

With the objective of building a method to determine how people use their mobile 
phones differently depending on their age, a model for the construction of a device inter-
action profile was developed. The proposed profiling method consists of counting how 
many cycles of each type each user has; therefore, this section explains how each cycle 
type is labeled. 

The focus of this process is to characterize a user by the way in which she or he inter-
acts with the mobile device, and, as the interaction when the mobile device is locked is 
minimal, as a first step, locked cycles are discarded. As a next step, to increase the inter-
pretability of the data, a subset of features that are more appropriate to characterize each 
type of cycle is selected. This subset is further reduced by totaling the type of interaction 
following the HuSBIT-10 taxonomy [9] and the physical activities’ durations that are 
highly related between them. 

Once the data are simplified, the next step is to group the cycles according to their 
similarities, for which a clustering algorithm is an appropriate tool. The data have many 
samples, thus making the utilization of numerous clustering algorithms unfeasible be-
cause they require an excessive amount of time to be executed; thus, they are discarded. 
Moreover, these data present a distribution with varying density, and many samples are 
quite similar, which results in most of the clustering algorithms producing highly unbal-
anced groups. As a result, after testing a number of clustering algorithms, a self-organiz-
ing map (SOM) [30] is chosen. An SOM is an unsupervised artificial neural network that 
projects the data to a low-dimensional (usually 2D) network while maintaining their top-
ological structure. The SOM algorithm starts by creating a neural network and initializes 
its weights, which can be random, decided beforehand, or set by prior calculation (for 
example, principal component analysis). Then, each sample of the dataset is associated 
with a neuron based on its weights, and these weights, along with the weights of neigh-
boring neurons, are modified to be closer to the sample. After repeating this process sev-
eral times but decreasing how much the weights are affected, the weights of the neurons 
will converge, and the network will be trained. One of the main hyperparameters of an 
SOM algorithm is the topology and its dimensions. The other two main hyperparameters 
are the initial learning rate, which affects how much the weights of each neuron are mod-
ified, and the sigma, which represents the radius by which nearby neurons affect each 
other. For this case, a hexagonal topology is used with dimensions of 6 × 7, a learning rate 
of 1.5, and a sigma of 1.3. These specific values are established after performing a grid 
search. MiniSom (https://github.com/JustGlowing/minisom, accessed on 25 June 2023) is 
the implementation of the algorithm that is employed in this paper. 
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Before applying the algorithm, the data are pre-processed in two ways. First, a loga-
rithm is applied to the duration column, so that its distribution is similar to a Gaussian 
function, and its large scale has less impact on the clustering. Second, all the data are 
standardized using Z-score normalization, causing all of them to have the same scale, 
which is highly desirable for a clustering process. Once the clustering process is com-
pleted, the next step is to study each group of cycles by observing their distributions and 
the means, medians, and standard deviations of the different features. Lastly, profiles are 
built by counting the number of cycles of each type for each user. This process is illustrated 
in Figure 6. 

 
Figure 6. User profiling process. 

A decision tree is used to study the differences between these profiles for each age 
group. A decision tree [31] is a supervised learning classifier that uses a tree structure to 
create recursive splits of the data, where each leaf represents a class, and each intermediate 
node represents a split. How the data are split depends on the functions used to determine 
the quality of a split, with the most used being entropy and Gini impurity. For the analysis, 
the scikit-learn [32] implementation is used, which applies, by default, the Gini impurity 
function. This algorithm is usually less powerful than many other classifiers, but it is use-
ful in visualizing how classes are assigned based on the data used to train the tree. 

4.2.2. User Profiling Results 
Figure 7 illustrates the decision tree that shows how profiles are associated with each 

age group. To improve the visualization in the paper, we limit the minimum samples on 
a leaf to 2, which makes the tree smaller. Young adults and middle-aged adults are 
grouped mostly into large and pure leaves, while older adults are more dispersed 
throughout the tree, which depicts more varied behavior. The first split corresponds to a 
type of cycle with an average duration of 3.5 min, low writing, and low physical activity 
and creates a leaf with most of the young adult users. The second greatest split is related 
to cycles with an average duration of 23 s, low physical activity, and very little writing.  
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Figure 7. Decision tree of user profiles and how they are classified in each age group. First line in 
intermediate nodes is the feature and the value by which it is split; second line is the value of Gini 
impurity of a node; third line is the number of samples in the node; fourth line is the class distribu-
tion (the first position includes the participants from 20 to 34 years, the second includes participants 
from 35 to 59 years, and the third includes participants from 60 to 75 years); and the last line is the 
class with more samples. 

In addition, this tree’s accuracy is tested using the leave-one-out cross-validation 
method, which consists of training the model with the data of every user except one and 
testing it with the remaining ones. After this cross-validation process, the model obtains 
average accuracy of 70%. The model mainly fails to classify a user within their age group, 
which is predictable. However, it works with a high level of accuracy in separating users 
of different age groups. 

5. Discussion 
After conducting the pilot study and analyzing the results, this work has demon-

strated promising contributions as well as clear limitations. The contributions extracted 
from the results can be summarized as follows. 
• There exists a strong correlation between age and several monitored metrics. 
• A significant inverse correlation is found in the mobile’s time of use, the frequency 

of locking and unlocking the device, and the number of actions performed in each 
open app. Consequently, younger individuals exhibit more intensive use of the de-
vice. Additionally, younger people tend to use entertainment apps more frequently. 

• One of the most valuable findings is the strong inverse correlation in the use of the 
device while in motion. Generally, but particularly in applications such as WhatsApp 
and Chrome, the older the user, the fewer apps they use while moving. This finding 



Appl. Sci. 2023, 13, 9204 13 of 16 
 

is closely related to the dual-tasking test commonly used to diagnose cognitive de-
cline.  

• Concerning the use of WhatsApp, there is a significant difference in the type of action 
performed depending on whether the user is in motion or stationary, as well as de-
pending on their age. As individuals age, they use complex actions such as writing 
messages, viewing multimedia files, or sending images less frequently while walk-
ing. However, these actions do not correlate with age when the user is stationary; 
they perform these actions similarly and with a comparable frequency regardless of 
age. 

• Further analysis of the metrics related to messaging reveals that young adults write 
more than older users in both stationary and in-motion scenarios. There is a similar 
ratio between the number of deleted items and the number of typed items when the 
user is stationary. However, this correlation changes to the opposite direction when 
in motion, as older adults tend to correct more errors and write at a slower pace. 
These findings provide valuable insights into the relationship between age and mo-

bile device usage patterns, specifically in relation to cognitive decline and messaging be-
havior on WhatsApp. The work sheds light on the different ways in which age impacts 
mobile interactions and helps us to understand the potential implications of these find-
ings.  

However, it is essential to acknowledge the limitations of the study to guide future 
research and further explore this intriguing area of investigation. Comparisons between 
different users are always based on intrinsic differences in how people use their mobile 
devices, which makes it difficult to obtain statistically robust results. An important bias is 
that differences in use may be the result of generational differences, rather than normal 
cognitive decline. A typical example is the strong correlation between age and the deletion 
of characters when writing messages. Is this related to the fact that we make more mis-
takes as we get older or that the current generation of older adults is more concerned 
about writing correctly? 

Another limiting aspect is the simple distinction between standing and moving ac-
tivities. Based on existing studies showing the relationship between cognitive impairment 
and alterations in gait parameters [16,17], we are currently working on studying the inter-
action with mobile devices and specific gait parameters obtained through body tracking 
[26]. 

Despite the limitations in the statistical results, both in terms of the population size 
and the nature of the correlations (which do not imply causation with age-related cogni-
tive impairment), the identified differences can serve as valuable metrics for future studies 
on cognitive impairment. Specifically, these differences are particularly evident in actions 
such as writing, sending files, or engaging with multimedia content, especially while in 
motion. In fact, the data obtained from healthy adults can serve as a reliable baseline when 
studying cases of cognitive decline. 

Moreover, the dataset itself contains a substantial amount of information, making it 
suitable for other studies aimed at characterizing interactions with mobile devices. An 
illustrative example of this is the second analysis explained in Section 4.2 about user pro-
filing. The profiling technique employed has proven to be useful and has some strengths. 
The first is that the profiles of each user can be easily compared between them, both visu-
ally and mathematically. They are also simple to understand because they are represented 
by counting the number of each type of cycle. This work also shows the possibility of 
using them for machine learning, which has shown good results and could be improved 
with more data and more powerful algorithms. Regarding the disadvantages, the main 
one is that they are expensive in terms of time and memory to compute, although some 
improvements in the pipeline could be made for implementation in production. The other 
major disadvantage is that these profiles can only be used to compare the usage between 
similar periods of time, although, with some modifications, the number of cycles could be 
converted into frequencies, avoiding this problem. 
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All these findings are related to the characterization, based on correlations and sta-
tistical inferences, of differences in mobile device use depending on age. This aspect is 
especially critical for the next steps of the M4S project, in which the present work is framed. 
Recognizing and understanding the differences produced by normal aging is critical in 
avoiding false positives when screening for cognitive deficits based on mobile device use.  

6. Conclusions 
The twofold research question that guided this experiment was “Are there significant 

differences in mobile-device use among groups of people of different ages, and are they 
more characteristic when the interaction takes place on the move?”. Two hypotheses were 
formulated on the basis of this question. 

First, the aim was to check whether there are tasks performed on a smartphone that 
present different performance depending on the user’s age. Statistically, there is a strong 
correlation between age and lower mobile device usage, with older adults using financial 
apps to a greater extent and entertainment, communication, and shopping apps to a lesser 
extent. 

The second hypothesis, regarding the characterization of usage taking into account 
differences while stationary and moving, showed that the difference in some communica-
tion tasks was particularly significant, with older adults characteristically performing sig-
nificantly fewer actions on the move, such as opening conversations, viewing or sending 
multimedia items, or commenting on social network posts. In writing, older adults had a 
slower speed of writing and tended to correct more errors. 

In addition to these findings, the article provides a user profiling model that is used 
to classify them based on their mobile phone usage and age. Currently, this model, alt-
hough it has been proven to classify with some effectiveness, requires a larger dataset. In 
any case, it has been shown to be a powerful tool for the future goal of helping to screen 
for cognitive impairments. 

Finally, an important contribution of this article is the dataset generated with more 
than 4.5 million interactions recorded for mobile phone use, from a total of 45 people. 
Considering only the data of people for whom a full, uninterrupted week was obtained, 
the dataset includes data from 29 users and more than 3.8 million records. 

Future work will focus on intra-user and long-term studies in which changes in mo-
bile device use can be observed in the same person. These would make it possible to study 
causality in terms of cognitive decline. The present work lays the foundations for such a 
future study, providing as contributions the validity of the tools and methods applied in 
the present work. 
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