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Abstract: Deep learning has injected a new sense of vitality into the field of image inpainting, allowing
for the creation of more realistic inpainted images that are difficult to distinguish from the original
ones. However, this also means that the malicious use of image inpainting technology to tamper with
images could lead to more serious consequences. In this paper, we use an attention-based feature
pyramid network (AFPN) to locate the inpainting traces left by deep learning. AFPN employs a
feature pyramid to extract low- and high-level features of inpainted images. It further utilizes a
multi-scale convolution attention (MSCA) module to optimize the high-level feature maps. The
optimized high-level feature map is then fused with the low-level feature map to detect inpainted
regions. Additionally, we introduce a fusion loss function to improve the training effectiveness. The
experimental results show that AFPN exhibits remarkable precision in deep inpainting forensics and
effectively resists JPEG compression and additive noise attacks.

Keywords: digital forensics; image inpainting; tampering detection; feature pyramid network;
multi-scale convolution attention; deep learning

1. Introduction

With the widespread use of electronic devices and the ubiquitous nature of the internet,
accessing information has become increasingly effortless. Digital images, serving as the
primary medium for conveying information, are readily available. However, it is important
to note that the advancement of image editing software and technology is occurring at
an accelerated pace, leading to a decrease in the cost of image tampering. As a result,
ensuring the credibility of images has become increasingly challenging [1]. Forged images
can appear on social media, in news reports, and even in court, making image forensics
a natural focus for researchers. Currently, researchers have developed mature detection
methods for common image tampering techniques, such as resampling [2,3], splicing [4],
and copy move [5].

Image inpainting is a technique utilized for the purpose of editing images, which can
effectively repair damaged or missing regions of images based on the known contents
of the original images. It is difficult to distinguish forged images generated by image
inpainting. The conventional techniques for image inpainting can mainly be classified
into two primary categories, namely, diffusion-based inpainting methods [6,7] and patch-
based inpainting methods [8,9]. Constrained by computational expenses, conventional
approaches are only suitable for scenarios where the semantic content of the missing
region is uncomplicated and small. To achieve a proficient inpainting result in intricate
scenarios, an increasing number of researchers are attempting to use numerous deep
learning-based image inpainting techniques, such as convolutional neural network (CNN)-
based methods [10,11], generative adversarial network (GAN)-based methods [12–15], and
transformer-based methods [16]. These methods can obtain more realistic inpainted images
and even create new semantic information through large-scale training [17], increasing the
challenge of image inpainting forensics.
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The conventional inpainting forensics techniques [18,19] primarily depend on the
similarity between image blocks to locate inpainting traces. Unfortunately, these methods
exhibit significant limitations, such as high computational costs, low accuracy, and limited
generalizability. Currently, research on deep learning-based image inpainting forensics
remains in the developmental and exploratory phase [20–25], while these deep learning-
based techniques exhibit superior performance compared to conventional methods, the
majority of them pay attention to enhancing the feature extraction block, with suboptimal
optimization of the extracted features, resulting in limited accuracy of inpainting forensics.
It is imperative to reiterate that the majority of pixels within the inpainted region are
derived from known portions of the image. Therefore, optimizing the utilization of local-
to-global contextual information of the inpainting image is crucial in improving the results
of inpainting forensics.

Based on the above considerations, we establish an end-to-end image inpainting
forensics network, which uses the attention-based feature pyramid network (AFPN) to
locate inpainting traces. AFPN was widely used in object detection [26–28] and image
segmentation [29,30], but few people use AFPN in the field of image inpainting forensics. By
using multi-scale convolution attention [31] (MSCA) after extracting features, the employed
AFPN makes the most of low- and high-level features from inpainted images, which are
particularly important in inpainting forensics. In the field of image processing, low-level
features refer to basic visual characteristics that can be extracted directly from the pixel
values of an image, such as color, texture, edges, and corners. The significance of low-level
features lies in their ability to capture basic visual cues that are essential for image inpainting
detection. High-level features, on the other hand, represent more abstract and semantic
aspects of an image, capturing complex visual patterns, structures, and relationships. High-
level features can include object shapes, object categories, spatial arrangements, or even
more sophisticated attributes, enabling a deeper understanding of the visual content of
an image. By combining low-level and high-level features, computer vision systems can
achieve a more comprehensive understanding of images.

In order to observe the low-level feature, high-level feature, and the key differences
between them more intuitively, we show an example of applying AFPN in Figure 1.

Figure 1. An example of applying AFPN.

We obtain Figure 1c by adding the low-level feature map to itself and then add spatial
attention (SA) to obtain Figure 1d. Figure 1e–g can be obtained in a similar way. The
low-level feature map of the inpainting network exhibits a high degree of similarity to
the ground truth, as depicted in Figure 1b,c. Conversely, the high-level feature map in
Figure 1e appears to be deficient in crucial inpainting traces, necessitating the application
of an effective module to optimize it. Initially, we attempt to optimize the high-level
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features through the utilization of channel attention (CA). However, it was observed that
despite the increased visibility of the previous inpainting traces, a significant number of
inpainting traces remained undetected, as depicted in Figure 1f. Subsequently, consider-
ing the peculiarity of the inpainted image, MSCA was employed to extract multi-scale
contextual information ranging from local to global information in the feature map. The
results in Figure 1g indicate that MSCA is an effective module for enhancing the existing
inpainting traces and detecting previously indiscernible inpainting traces. Additionally,
we also attempt to employ SA to handle low-level features, yet it is observed that the
manipulation adds noise to the low-level features, as depicted in Figure 1d. Following
different operations, the high- and low-level features exhibit a complementary relationship,
and fusing them by direct addition can result in an inpainting trace-detection map that
closely approximates the ground truth, as depicted in Figure 1b,h. In summary, AFPN
effectively achieves a high detection accuracy by appropriately processing the low- and
high-level features.

Our major contributions can be summarized as follows:

1. We use a forensic network to detect traces left by deep learning-based inpainting
methods. The network employs a feature pyramid to extract multi-scale inpainting
features. To fully utilize multi-scale feature information, we employ MSCA to optimize
high-level features and fuse the optimized high- and low-level features for inpainting
forensics. The efficacy of the attention module and feature fusion module is verified
through ablation analysis.

2. We design a fusion loss function to assess the quality of not only the fused feature
maps but also the high-level feature maps. Experimental results demonstrate that the
fused loss function can optimize the training process and enhance the performance of
our network.

3. To indicate the generalization performance of our network, we employ six state-of-
the-art deep learning-based image inpainting methods to set up a diverse inpainting
test dataset. Extensive experiments show that the employed AFPN can achieve
good detection performance across diverse inpainting test datasets. Furthermore, we
assess the robustness of the proposed methods on JPEG compression and additive
noise attacks.

The rest of this paper is organized as follows. Section 2 summarizes the related work
on inpainting forensics methods and attention mechanisms. Section 3 presents our network.
The experimental results are presented in Section 4, while Section 5 concludes the paper.

2. Related Works
2.1. Inpainting Forensics Methods

Traditional methods for image inpainting forensics usually depend on calculating
the similarity between image blocks to identify the location of the inpainted region.
Wu et al. [32] proposed a blind detection approach that relies on zero-connectivity and
fuzzy membership. Similarly, Lin et al. [33] employed quantization table estimation to
evaluate the incongruity among images for detecting forged images. Liang et al. [34]
provided empirical evidence, supporting the notion that traditional methods of image
inpainting and forensics are fundamentally similar, which presented a proficient algorithm
for detecting forgeries by integrating central pixel mapping, maximum zero-connectivity
component labeling, and fragment splicing detection. However, these methods that depend
on the similarity of image blocks are limited by some challenging issues. Firstly, the search
for highly similar image blocks necessitates the computation of nearly every block in the
image, resulting in a significant drain on computational resources. Furthermore, the com-
putational cost escalates rapidly with the increasing image size. Secondly, the high degree
of similarity among original image blocks, such as those depicting oceans and deserts,
results in a high false alarm rate for traditional methods. Finally, the similarity between
image blocks is easily affected by common image post-processing operations, reducing the
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robustness of traditional methods. Consequently, traditional inpainting forensics methods
have poorer performance.

To address the aforementioned limitations and improve the detection performance, re-
searchers have used deep learning-based image inpainting forensics methods. Li et al. [20]
designed HP-FCN, which incorporated a high-pass pre-filtering module prior to the resid-
ual network to mitigate the interference of image content and facilitate the location of
inpainting traces. Wu et al. [21] proposed MT-Net, a more versatile tampering location
network that extracted tampering traces from the image and subsequently located anoma-
lous regions by assessing the disparities between local features and their reference features.
Wu et al. [22] proposed the IID-Net, which utilized the neural architecture search (NAS)
algorithm to automatically design feature extraction blocks. Zhang et al. [23] improved
upon the U-Net architecture by integrating it with feature pyramid networks (FPNs), result-
ing in a method that effectively detected diffusion-based inpainting traces. Zhu et al. [24]
built GLFFNet, which incorporated the Swin Transformer and CNN to extract global and
local features of inpainted images. Dong et al. [25] built MVSS-Net, which uses multi-view
feature learning to jointly exploit tampering boundary artifacts and the noise view of the
input. In contrast to the aforementioned deep learning-based methods, our AFPN focuses
on the optimization of extracted features to enable the network to effectively acquire and
utilize local-to-global contextual information from the inpainted image.

2.2. Attention Mechanisms

The utilization of the attention mechanism in neural networks enables the allocation
of computing resources toward tasks of greater significance, directing the network’s focus
toward crucial components, and ultimately improving network performance. Currently,
attention mechanisms have been effectively implemented in a diverse range of tasks,
including machine translation [35], saliency detection [36], semantic segmentation [31],
anomaly detection [37], object recognition [38], and image captioning [39].

Attention mechanism has been shown to significantly improve the efficacy of image
inpainting networks. For instance, Yu et al. [40] employed contextual attention to acquire
feature information from known image blocks, thereby enabling the generation of a more
realistic inpainted image. Similarly, Wu et al. [41] utilized SA to enhance the semantic
consistency between the inpainting area and the original area, as well as within the in-
painting area. Since most image inpainting methods use information from the original
areas to repair damaged areas, there is a strong correlation between the inpainted areas
and the original areas. The attention mechanism enables the network to pay attention to
this correlation, improving the performance of image inpainting forensics networks.

2.3. AFPN

The feature pyramid network (FPN) is a classic network for realizing multi-scale
representation. In order to achieve better results, researchers improve FPN by introducing
the attention mechanism and establishing one AFPN after another. Liu et al. [26] proposed
an AFPN, which not only facilitates better integration between high-level and low-level
feature maps but also enhances the accurate semantic information from low-level features.
Wu et al. [27] performed two types of attention mechanisms on the output of the feature
enhancement module, modeling the semantic interdependencies in both spatial and channel
dimensions, respectively. Jiao et al. [28] devised an AFPN by introducing a learnable
fusion factor, which controls the feature information conveyed from deep layers to shallow
layers. Hu et al. [29] proposed an attention aggregation-based feature pyramid network to
improve multi-scale feature learning through attention-guided feature aggregation. Sun
et al. [30] proposed a global–local channel spatial attention module, aimed at capturing
global contextual information and image segmentation.

The above methods achieved good results in the fields of object detection and image
segmentation, but they are of little help to the field of image inpainting forensics. As
depicted in Figure 1, the general attention mechanism is not beneficial to detecting in-
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painting traces. However, the MSCA used in our AFPN can effectively enhance the useful
information in the high-level feature map, efficiently completing the task of detecting the
inpainted area. In addition, the structure of MSCA is light, which has little influence on the
processing speed.

3. Methods

In this paper, we propose a novel inpainting forensics method, containing a context-
aware pyramid feature extraction (CPFE) [36] module and an MSCA module to capture
context-aware multi-scale multi-receptive-field high-level features to enhance inpainting
traces. Additionally, our method contains one fusion loss function to guide the network
to learn valid features for inpainting forensics. The overall architecture is illustrated in
Figure 2.

Figure 2. The overall architecture of our method.

3.1. Multi-Scale Feature Extraction

We take conv1-2, conv2-2, conv3-3, conv4-3, and conv5-3 of VGGNet [42] to extract
multi-scale features {Ci}5

i=1 from an input inpainted image. The low-level feature maps are
obtained by rolling up C1 and C2, and the high-level feature maps are obtained by rolling up
C3, C4, and C5. To extract basic advanced features, we utilize the CPFE module, capturing
contextual information at a constant scale, shape, and position. Specifically, the CPFE
module employs atrous convolution with dilation rates of 3, 5, and 7 to capture multi-scale
contextual information, and then combines the feature maps of different convolution layers
with a 1 × 1 dimension reduction feature across channels to obtain three different scale
feature maps, as illustrated in Figure 3. After that, the CPFE upsamples the two smaller
ones to the largest one, making the concatenation possible. Finally, we obtain 64 × 64 × 384
feature maps, which are optimized and restored by CPFE.
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Figure 3. Detailed structure of the context-aware pyramid feature extraction (CPFE).

3.2. Attention Mechanism

We utilize a powerful attention mechanism called MSCA, which is illustrated in
Figure 4.

Figure 4. Illustration of the multi-scale convolution attention (MSCA).

We utilize the CPFE module to obtain high-level features of multi-scale and multi-
receiving fields. However, the high-level feature map in Figure 1e requires further ap-
propriate optimization. The experimental results demonstrate that the MSCA effectively
enhances the inpainting traces for high-level feature maps, see Figure 1g. Furthermore,
the low-level feature map keeps the original state, as improper handling may result in the
magnification of noisy features, including the contour and texture, as depicted in Figure 1d,
negatively influencing the inpainting forensics process.
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The MSCA module consists of three parts: the depth-wise convolution of aggregating
local information, the multi-branch depth-wise strip convolution of capturing the multi-
scale context, and the 1 × 1 convolution of simulating the relationship between different
channels. The output of the 1 × 1 convolution is directly used as the attention weight to
reweigh the input of the MSCA.

The mathematical expression of the MSCA can be written as follows:

Att = Conv(1×1)(
3

∑
i=0

Scalei(DWConv(F))), (1)

Out = Att⊗ F. (2)

where F represents the optimized feature maps, and Att and Out represent the attention
map and output, respectively. The⊗ operation involves matrix multiplication on a pixel-by-
pixel basis. DWConv refers to the depth-wise convolution, and scalei, where i ∈ {0, 1, 2, 3}
represents the ith branch in Figure 4. scale0 represents the identity connection.

In order to simulate the standard depth convolution with a large kernel, two depth-
wise strip convolutions are employed in each of the three branches, with kernel sizes of
7, 11, and 21, respectively. The selection of depth-wise strip convolution is motivated by
two primary factors. Firstly, strip convolution is characterized by its lightweight nature,
requiring only a pair of 7 × 1 and 1 × 7 convolutions to simulate the standard 2D convolution
with a kernel size of 7 × 7. Secondly, most of the inpainted areas contain some strip
objects, such as people and slogans, increasing the difficulty of the inpainting forensics.
As such, the implementation of strip convolution as a complementary technique to grid
convolution can improve the detection of inpainting traces. In addition, compared with
the attention used by AFPN in [26–30], MSCA is more portable, powerful, and suitable in
image inpainting forensics.

3.3. Loss Function

The task of inpainting forensics can be characterized as a binary classification problem,
wherein the primary objective of the forensics network is to categorize every pixel in the
input image as either tamper-free or tampered. In most binary classification tasks, the
binary cross entropy (BCE) loss function is widely employed as the preferred loss function.
The BCE can be mathematically defined as follows:

LB(G, O) = − 1
HW

H

∑
i=1

W

∑
j=1

(G(i, j) log O(i, j)(1− G(i, j)) log(1−O(i, j))), (3)

in this equation, G(i, j) and O(i, j) represent the (i, j)th pixel point in the ground truth and
the output map, respectively. The resolution of the input image, with dimensions H ×W,
is set to 256 in this paper.

However, in the case of the majority of inpainted images, the ratio of tampered regions
is minimal, resulting in a significant disparity between negative samples (un-inpainted
areas) and positive samples (inpainted areas). Consequently, if the sole supervision method
for training is binary cross-entropy (BCE), the trained model may possess a robust capability
to classify negative samples, but it may encounter challenges in accurately classifying posi-
tive samples. This, in turn, poses a difficulty for the model to precisely detect the inpainted
area. We propose the utilization of the focus loss function [43] as a solution to address the
issue of class imbalance. The focus loss function incorporates a modulation factor into the
BCE loss function, thereby decreasing the significance of over-classified negative samples
in the overall loss. This approach effectively improves the classification performance of
positive samples. The focus loss function is mathematically defined as follows:

LF(G, O) = − 1
HW

H

∑
i=1

W

∑
j=1

(α(1−O(i, j))γG(i, j) log O(i, j) + (1− α)(O(i, j))γ(1− G(i, j)) log(1−O(i, j))), (4)
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where the focus loss employs a weighting factor, denoted by α ∈ {0∼1} to achieve a
balanced representation of the positive and negative sample categories. Specifically, α
represents the weight assigned to positive samples, while (1− α) represents the weight
assigned to negative samples. Given that the inpainted areas utilized in our paper constitute
a range of 5–15%, we set α = 0.9. Additionally, the focus loss employs a focusing parameter,
denoted by γ ∈ {0∼5}, to effectively address the imbalance of difficult and easy samples.
Empirical evidence suggests that the optimal experimental outcome is achieved when
γ = 2.

As the attention mechanism constitutes the core algorithm of this study and there
are essential differences between the processing of high-level feature maps and low-level
feature maps, the direct impact of the quality of high-level feature maps on network
performance necessitates the adoption of focus loss for high-level feature map H, called HF
loss. The resulting loss function utilized in this paper is obtained by combining the two
focus losses:

L = λ1LF(G, H) + λ2LF(G, O), (5)

where the hyperparameters λi, i ∈ {1, 2} indicate the relative significance of the high-level
and output feature maps. For the purposes of this study, both hyperparameters are assigned
a value of 1 to underscore the paramount importance of the high-level feature map.

4. Experiments

Our AFPN was implemented in PyTorch on a single RTX 3090 GPU and trained with
stochastic gradient descent (SGD) [44]. We used the VGG-16 model that was initialized
from the pre-trained weights of the ImageNet [45] dataset as the foundational model, and
the default parameters of Adam [46] as the optimizer. The initial learning rate was set at
10−4, with a batch size of 12 and with 50 epochs of training. During the training phase, all
images were cropped to a size of 256 × 256. For comparisons, we used publicly available
implementations of the state-of-the-art methods, such as [20,21,23,25], the F1 score was
utilized as the evaluation criterion. Furthermore, we conducted ablation experiments and
introduced novel evaluation criteria, including recall, accuracy, and intersection over union
(IoU), to comprehensively assess the efficacy of the primary components of the proposed
method. Finally, we evaluated the network’s robustness to further test its effectiveness.

4.1. Training and Testing Datasets

We employed a training set comprising 24,000 groups of images, wherein each group
consisted of an inpainting image and a corresponding ground truth mask image. Specifi-
cally, a random selection of 24,000 images from the Places [47] and Dresden [48] datasets
was made, and blank regions with an area of 5–15% were generated within these images.
Subsequently, the deep learning inpainting method described in [12] was utilized to inpaint
these blank regions, resulting in the creation of 24,000 inpainted images.

To demonstrate the universality of the algorithm presented in this paper, a test set com-
prising six distinct deep learning inpainting methods was utilized. These methods, namely
GC [12], CA [40], SA [41], SN [49], RN [50], and EC [51], each consisted of 1000 groups of
images. The inpainted area in each group was manually selected to encompass meaningful
objects, with the total area of the inpainted region ranging from 0 to 30% of the entire image.

4.2. Quantitative Comparisons

The advantages of AFPN can be effectively demonstrated through comparative exper-
iments. This study employs three state-of-the-art inpainting forensics techniques, namely
HP-FCN [20], MT-Net [21], U-FPN [23], and MVSS-Net [25], to detect the inpainted areas
generated by GC inpainting methods. HP-FCN is a full convolution network with high
precision that is utilized to identify the forged region generated by deep inpainting. The
reason why we choose HP-FCN is that it is the first one to use the deep learning method
to detect the deep inpainting image. MT-Net leverages the robust learning capability
of neural networks to classify anomalous features in input images and exhibits a strong



Appl. Sci. 2023, 13, 9196 9 of 16

generalization performance across various conventional operation types, including inpaint-
ing operations. MVSS-Net uses multi-view feature learning to jointly exploit tampering
boundary artifacts and the noise view of the input. Both MT-Net and MVSS-Net study the
variety of possible attacks on the content, devising a generic method. The U-FPN model
extends the feature pyramid network approach, leveraging the benefits of network feature
extraction to effectively identify and inpainting traces. U-FPN is the first one to use FPN
for image inpainting forensics. To ensure impartiality, this study evaluates the performance
of three models, including those provided by the networks, and retrains them using the
proposed training set. The results of this comparison are presented in Table 1, where a
higher F1 score indicates superior performance.

In order to provide a more precise explanation of the network’s generalization ability,
the gray value in the table was excluded from the average calculation. The data presented
in the table indicate that the AFPN, as employed in this paper, outperforms the other three
methods across all test sets. The performance of the U-FPN, which utilizes multi-scale
feature information akin to AFPN, is deemed barely satisfactory at 76.45%. Conversely,
HP-FCN’s poor performance of 8.57% on the EC dataset and low average of 52.51% suggest
limited efficacy and universality. Notably, the retrained MT-Net model exhibits a lower
efficacy at 15.12% compared to the original model’s 46.41%, yet it yields excellent results at
92.10% on the GC test set, which suggest that MT-Net’s performance is acceptable. MVSS-
Net is very similar to MT-Net. The performance of MVSS-Net is gratifying on SN (94.08%)
and EC (83.52%), but is very bad on GC(1.86%). Their universality is notably lacking.

Table 1. Quantitative comparisons by using the F1 score as an evaluation criterion.

Models Retrain
Test Dataset

Mean
GC CA SN EC SA RN

MT-Net - 1 14.17 28.80 72.63 67.55 60.14 35.22 46.41
MT-Net GC 92.10 2 19.02 32.78 10.62 2.38 10.80 15.12
HP-FCN - 0.04 0.22 0.38 0.42 0.05 1.98 0.52
HP-FCN GC 76.93 35.75 81.43 8.57 55.78 56.58 52.51
U-FPN - 31.12 28.60 19.26 10.41 20.74 23.55 22.28
U-FPN GC 80.14 70.40 70.26 72.18 87.28 82.22 76.45

MVSS-Net - 1.86 76.22 94.08 83.52 67.63 77.07 66.73
Proposed GC 98.91 87.03 3 94.69 84.21 94.55 85.53 89.20

1 The “-” in the “Retrain” column indicates that the models are officially released without retraining. 2 The gray
value means that the inpainting methods used in the test dataset are used in the training, not testing generalization.
3 The highest value is highlighted in black.

4.3. Qualitative Comparisons

To facilitate a more intuitive evaluation of the performances of the four image forensics
methods, this study opted to visually present the selected images from each test set. Notably,
the retraining effect of the MT-Net is comparatively inferior and, thus, the original model
parameters were utilized, while the remaining networks employed the model parameters
post-retraining. The visualizations of these images are presented in Figure 5.

The visualized content depicted in Figure 5 exhibits a fundamental consistency with
the data presented in Table 1. Notably, the MT-Net demonstrates a sub-optimal performance
on the CA and GC test sets, with an accuracy rate of 28.80 and 14.17%, respectively.
Consequently, the MT-Net fails to accurately obtain the majority of inpainting information
on the CA and GC test sets. MVSS-Net is more special. Its performance on GC is a mess.
Conversely, the U-FPN exhibits a commendable performance across all test sets, albeit
with some writing defects. The simple network architecture of the HP-FCN renders it
challenging to achieve optimal results in more complex tasks.
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Figure 5. Qualitative comparisons for the detection of inpainting forgeries.

4.4. Ablation Studies

This paper conducted three types of ablation experiments to examine the impacts of
three innovations (i.e., feature fusion mode, attention module, and loss function) on the
final inpainting trace detection outcomes. The results are presented in Table 2.

Regarding the feature fusion approach, three distinct methods for feature fusion were
proposed, based on the network structure. These methods include utilizing solely low-level
features as the output, solely high-level features as the output, and utilizing low- and high-
level fusion features as the output. When solely low-level features are utilized, the accuracy
is notably high (99.11%); however, the recall rate is relatively low (91.76%), indicating that
part of inpainting traces remain undetected. The utilization of solely advanced features
results in an increased recall rate of 94.74%; however, this value is significantly lower
than the outcome obtained through feature fusion, which is 98.21%. This indicates that
the inpainting traces of images accurately identified by low- and high-level features are
restricted, and optimal recall rates can be attained by amalgamating them. Thus, the feature
fusion technique employed in this study is highly efficacious, enabling the network to
acquire valuable information from both low- and high-level features.

Three distinct approaches for selecting an attention mechanism exist, namely, utilizing
only MSCA, exclusively employing CA, or abstaining from an attention mechanism alto-
gether. The recall rate for the latter option is the least favorable at 93.79% when compared
to the other two. Upon implementation of CA, the recall rate is increased to 95.94%, albeit
at the cost of a decrease in accuracy from 98.95 to 98.05%. Thus, it can be inferred that
using the CA in the context of inpainting forensics is limited. The results of the ablation
experiments demonstrate that using the MSCA module, as presented in this paper, can
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significantly improve the efficacy of inpainting forensics networks by effectively leveraging
the contextual information from advanced features at both local and global levels.

Table 2. Localizationresults (%) obtained by different variants of the proposed method.

Low-Level X 1

Low-High X X X X X

Feature
fusion

method High-Level X

w/o Att X

CA XAttention
MSCA X X X X X

HF Loss X

Focal Loss XLoss
Focal-HF X X X X X

Recall 98.21 2 91.76 94.74 95.94 93.79 97.10 96.01
Precision 99.62 99.11 98.42 98.05 98.95 98.25 99.04

IoU 97.85 91.01 93.32 94.15 92.87 95.45 95.12
F1 98.91 95.29 96.54 96.98 96.30 97.67 97.50

1 X means to adopt this method. 2 The highest value is highlighted in black.

To ascertain the efficacy of the loss function posited in this study, a final ablation
experiment was conducted. The outcome of training the network with the loss function
LF(G, O) in Equation (4) (yielding an F1 score of 97.67%) is found to be nearly identical to
that of LF(G, H) (yielding an F1 score of 97.50%). But they are all lower than the results of
fusion loss function L (98.91%). This finding serves to reaffirm the criticality of the high-level
feature integrated into the network architecture employed in this research. It is noteworthy
that altering the loss function has minimal impact on the network performance. Empirical
findings indicate that utilizing the fusion loss function, denoted as L in Equation (5), can
significantly enhance the network performance.

In order to verify the hyperparameters we used in Equation (5), we perform a concrete
study about the setting of the hyperparameter. The results are presented in Table 3.

Table 3. Localization results (%) obtained by different loss function hyperparameter settings.

Hyperparameter Setting Recall Precision IoU F1

λ1 = λ2 98.21 99.62 97.85 98.91
λ1 = 2λ2 97.93 96.61 95.85 97.87
2λ1 = λ2 94.13 99.67 96.18 98.12

From Table 3, we observe that the best results are obtained when the LF, (G, O), and
LF(G, H) account for the same proportion in the loss function.

In addition, we also study the influence of the pre-training model on the detection
results. We use different pre-trained models, i.e., VGGNet [42], ResNet-50 [52], and Swin-
T [53] to train AFPN. The results are presented in Table 4.

Table 4. Localization results (%) obtained by different pre-trained models.

Pre-Trained Model Recall Precision IoU F1

VGG-16 98.21 99.62 97.85 98.91
ResNet-50 99.20 99.56 97.83 98.84

Swin-T 99.30 99.74 98.21 99.16

From Table 4, we observe that using the Swin-T pre-trained model can further stimulate
the potential of our method, but this improvement is limited. Usually, CNN has an
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advantage over the transformer in the processing speed because of their different calculation
methods. So, we choose VGG16 as our pre-training model.

4.5. Robustness Evaluations

The evaluation of the employed AFPN’s robustness is conducted, whereby the impact
of common image post-processing operations, including noise addition and JPEG com-
pression, on the trace of inpainting is examined, thereby posing challenges for inpainting
forensics. The inadequacy of robustness remains a significant drawback of conventional
inpainting forensics approaches. The results are presented in Tables 5 and 6.

Table 5. Localization results (%) under different JPEG compression quality factors.

QF Recall Precision IoU F1

85 94.46 98.24 92.89 96.31
75 92.52 98.35 91.11 95.35
65 80.60 99.61 80.35 89.10

Table 6. Localization results (%) under Gaussian noise with different standard deviations.

Std Recall Precision IoU F1

0.1 92.37 98.29 90.90 95.24
0.2 90.20 98.92 89.32 94.36
0.3 83.70 99.32 83.22 90.84

Consequently, this study employed various post-processing techniques of different
magnitudes on the test datasets, presenting statistical detection outcomes in Tables 5 and 6.
The findings indicate that the overall performance is satisfactory when disturbance intensity
is low. The performance remains relatively stable at a JPEG compression quality factor
of 85. Conversely, a significant decline in performance is observed as the disturbance
intensity increases to 65. This assertion holds when Gaussian noise is introduced, as the
stability collapses at a standard deviation of 0.3. Whether the quality factor is 65 or the
standard deviation is 0.3, images are significantly degraded, leading to the loss of the
original purpose of inpainting forensics.

In order to show the advantages of our network in robustness, we made comparisons.
The visualizations of these comparisons are presented in Figures 6 and 7.

Figure 6. Comparisons in the robustness of JPEG compression by using the F1 score as an evaluation
criterion.
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Figure 7. Comparisons in the robustness of Gaussian noise by using the F1 score as an evaluation
criterion.

In conclusion, the robustness of AFPN is demonstrated.

4.6. Limitations

Our method also has some limitations, as shown in Figure 8.

Figure 8. Limitation of our method.

The detection effect of the method proposed in this paper is not good for graphs whose
repair marks are too complicated and extremely difficult to identify.

5. Conclusions

In this paper, we use a deep learning-based inpainting forensics approach called AFPN.
AFPN utilizes the feature pyramid network to predict pixel-wise class labels for inpainting
manipulation and optimizes high-level feature maps by the MSCA model. For training
AFPN, we introduce the fusion loss function, which takes the effect of high-level feature
maps into account. By adopting a data-driven approach, AFPN avoids the challenges
associated with designing hand-crafted features.

We extensively test AFPN on various images and compare its performance with state-
of-the-art inpainting forensics methods. The experimental results demonstrate that AFPN
effectively learns manipulation features for deep image inpainting and accurately locates
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inpainted regions. In terms of location accuracy, AFPN outperforms representative forensics
methods. Additionally, AFPN exhibits superior robustness against typical post-processing
operations, such as JPEG compression and additive noise attacks.
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