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Abstract: Background: For the reconstruction of Cone-Beam CT volumes, the exact position of
each projection is needed; however, in some situations, this information is missing. Purpose: The
development of a self-calibration algorithm for arbitrary CBCT trajectories that does not need initial
positions. Methods: Projections are simulated in a spherical grid around the center of rotation.
Through using feature detection and matching, an acquired projection is compared to each simulated
image in this grid. The position with the most matched features was used as a starting point for a
fine calibration with a state-of-the-art algorithm. Evaluation: This approach is compared with the
calibration of nearly correct starting positions when using FORCASTER and CMA-ES minimization
with a normalized gradient information (NGI) objective function. The comparison metrics were the
normalized root mean squared error, structural similarity index, and the dice coefficient, which were
evaluated on the segmentation of a metal object. Results: The parameter estimation for a regular
Cone-Beam CT with a 496 projection took 1:26 h with the following metric values: NRMSE = 0.0669;
SSIM = 0.992; NGI = 0.75; and Dice = 0.96. FORCASTER with parameter estimation took 3:28 h
with the following metrics: NRMSE = 0.0190; SSIM = 0.999; NGI = 0.92; and Dice = 0.99. CMA-ES
with parameter estimation took 5:39 h with the following metrics: NRMSE = 0.0037; SSIM = 1.0;
NGI = 0.98; and Dice = 1.0. Conclusions: The proposed algorithm can determine the parameters of
the projection orientations for arbitrary trajectories with enough accuracy to reconstruct a 3D volume
with low errors.

Keywords: CBCT; cone-beam CT; computed tomography; calibration

1. Introduction

To reconstruct a Cone-Beam Computed Tomography image, several X-ray images are
required and must be input into a reconstruction algorithm. This algorithm must know at
which position and orientation each X-ray image was made. Several methods have been
developed to solve this problem, and they come in two broad categories, offline and online
calibration.

Offline calibration uses phantoms with markers, which are often small metal beads that
are imaged for each projection where the position and orientation can be calculated [1–7].
The phantom is imaged with a trajectory, and the correction factors are calculated. Then,
these correction factors are used when reconstructing the images from this trajectory. This
requires a dedicated run of the trajectory with the phantom.

Online calibration uses the acquired projections and then uses prior information about
the imaged object [8–11], or it minimizes a cost function that is defined on the reconstructed
image [12–15]. A review of current approaches was published by Hatamikia et al. [16].
This approach does not need a dedicated phantom nor an extra run of the trajectory for
the calibration, but it does have other constraints. Some use a prior image on which the
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projections are registered when using 2D–3D registration algorithms, others require the
trajectory to have a specific, often circular, shape.

Using a 2D–3D registration of the acquired projections on a prior image allows for the
calibration of fully arbitrary trajectories [17], and the registration is faster if the initial param-
eters are close to the actual parameters. The position reported by the CBCT system is usually
close enough for a quick and good calibration with state-of-the-art algorithms. But, if this
information is not available (e.g., portable C-Arms, continuous acquisition/fluoroscopy
mode of the Artis Zeego), other means of obtaining these initial parameters are required.

One option is to track the C-Arm externally with inertia sensors [18,19]. These sensors
can be attached to the C-Arm and, after calibrating the sensors, they track the inertia in all
three dimensions. With this inertia data and a known starting position, the movement of
the C-Arm can be calculated.

Also possible is the use of 3D cameras [20,21]. Here, the position of the C-Arm is
observed by tracking optical markers through using either a camera attached to the X-ray
source or two external cameras.

This paper presents another option that uses a prior image to simulate forward projec-
tions from different angles, and then uses feature matching to find the one that fits bests for
each acquired projection. In this way, the parameters for each projection can be estimated.

2. Materials and Methods
2.1. Projection and Optimization Parameters

The algorithm uses an intrinsic coordinate system that is bound to the detector plane.
The three vectors to define the position and orientation of the acquired image are shown in
Figure 1. The vector ~d points from the middle of the detector to the source, and the length is
the distance between the detector and the source. The vectors ~u and~v describe the direction
and spacing of the detector elements, respectively, and they point from the center of one
detector element to the center of the left/top neighbor. The size of each vector is the spacing
between elements.

The three unit vectors ~x, ~y, and~z that make up the coordinate system are parallel to
the vectors ~u, ~v and ~d, respectively, and the point of origin is the isocenter, which is the
center of the CT image.

Figure 1. Overview of the coordinate system, parameters, and the degrees of freedom [10].

These vectors are also used for all movements and rotations. There are three rotations,
one around each of the vectors x, y, and z, and three translations that are also along
these vectors.

2.2. Feature Points Matching

The algorithm depends on feature points; these are found within each image through
using the AKAZE [22] algorithm. The parameters used for AKAZE were as follows—
threshold: 0.0005, four Octaves, and five Octave Layers. AKAZE also generates a descrip-
tion vector for each feature point, and these descriptors can be used to compare to points
through using the Hamming distance. To find the matching features between images,
the Hamming distances between all feature descriptors of one image to all descriptors from
the other image are calculated. Then, for every feature in the calibration image, the features
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with the lowest Hamming distance d1, and the one with the second lowest distance d2
are selected. On these two distances, Lowe’s ratio test [23] is applied. This compares the
distance with a ratio r, and this is performed in order to check that the smaller distance is
much smaller than the second best match (d1 < r ∗ d2). When the test succeeds, the feature
point with the smaller distance is used to form a matching pair of feature points. If the
distances do not comply with this test, no matching pair was found.

Afterward, all found pairs are filtered by finding the ones that match to the same
feature point and those are removed.

The last step involves discarding pairs where the Euclidean distance between the
points in the matched pairs is more than one standard deviation from the mean distance of
all pairs.

2.3. Algorithm

An overview of the estimation process is in Figure 2, and this will be explained in
more detail in the following section.
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The algorithm is initiated with the acquired images, a prior CT, and geometry informa-
tion about the size of the detector, as well as the distance to the source and to the isocenter.
The first step of the algorithm is to generate simulated projections in a regular grid around
the center of the prior CT image. The grid has 95 points each for the rotations around the
x- and y-axis, which results in a grid with a spacing of 3.8◦. Further, three different detector
rotations are used, 0◦, 120◦, and 240◦. On each of these images, the AKAZE algorithm
detects features and extracts the feature descriptors. The simulated projections are then
deleted, and only the feature points, descriptors, and projection rotations (α, β, and γ) are
saved. They are calculated once and then used for all further calibration.

To find the approximate position of an acquired image, the algorithm first detects
the features. They are then matched with each set of features from the simulated grid
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projections and the matched feature points are counted. To save time, the algorithm
operates along this grid with a step size of four, and it then selects the five grid points with
the most matched feature points. Next, the grid points surrounding these five points are
compared to the acquired image in the same way. For the grid point that has the most
matched pairs, the projection rotations are returned. These are the current approximation
of the rotations α̂1, β̂1, and γ̂1 (Figure 3a).

This selected grid position is most likely the closest to the target position, but it can
also be a projection from the opposite side. These projections, simulated from the wrong
side, will be corrected later.

Before that, the detector rotation is approximated. The average value of the feature
point coordinates is used as the center point; this is performed separately for the real
and simulated image. Then, the coordinates of the feature points are converted to polar
coordinates by using the averaged center point as the zero point. The angle for each feature
point in the simulated image is subtracted from the angle of the matching feature point in
the real image. The median of these differences is the new approximated detector rotation
γ̂2. Listing 1 shows this in pseudocode.

Listing 1. Approximation function for the detector rotation.

1 def approximate_detector_rotation(current_parameters):
2 # simulate projection and track features
3 simulated_projection = ForwardProjection(current_parameters)
4 simulated_feature_points = trackFeatures(simultaded_projection,

real_projection)↪→

5 # calculate center point
6 simulated_mid = mean(real_feature_points, axis=0)
7 real_mid = mean(simulated_feature_points, axis=0)
8 sim_points = simulated_feature_points - simulated_mid
9 real_points = real_feature_points - real_mid

10 # calculate angle
11 angles = (arctan2(sim_points[:,0], sim_points[:,1])
12 -arctan2(real_points[:,0], real_points[:,1])) * 180.0/PI
13 angles[angle<-180] += 360
14 angles[angle>180] -= 360
15 detector_angle = median(angles)
16 # test in which direction to rotate
17 proj = ForwardProjection(applyRotation(current_parameters,

0,0,-detector_angle))↪→

18 points = trackFeatures(proj, real_projection)
19 diffn = points - real_feature_points
20 proj = ForwardProjection(applyRotation(current_parameters,

0,0,+detector_angle))↪→

21 points = trackFeatures(proj, real_projection)
22 diffp = points - real_feature_points
23 if sum( abs(diffn) ) < sum( abs(diffp) ):
24 return -detector_angle
25 else:
26 return detector_angle

A similar approach is taken to correct the projections taken from the opposite direction.
Four projections are simulated with different rotation parameters, as well as the approxi-
mate rotations with a detector rotation of 180° (γ̂2 +π). This is conducted from the opposite
side that rotates around the x-axis (α̂1 + π) and around the y-axis (β̂1 + π). For these four
projections, features are detected and matched, and the projection with the lowest mean
Euclidean distance between the matched points is then used.
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The result of this first step is a rough calibration. As such, in the next step, this rough
calibration is further refined. The translational misalignment is corrected using the method
described by Tönnes et al. [10]. The median Euclidean distance between the matching
points is used to move the projection in the x and y directions. The z-translation is corrected
by calculating the distance between the feature points within each image, and by then
dividing the distances of one image by those of the other image results in the zoom factor.
This ratio and the distance between the source and the isocenter are multiplied to give the
new distance.

After correcting the translations along the x-, y- and z-axis, the previously described
procedure that is used to correct the detector rotation is applied once more (Figure 3b).

The resulting parameters can then be used to run a state-of-the-art calibration algo-
rithm and fully calibrate the trajectory (Figure 3c).

(a) (b) (c)

Figure 3. The sinograms for the different steps in the algorithm. From left to right is as follows:
(a) coarse estimate, (b) refined estimate, and (c) the refined estimate with FORCASTER when using
the NGI objective.

2.4. Image Data

In this paper, the data from Tönnes et al. [10] were used, which were obtained from a
CT scan of a lumbal spine phantom with an inserted metal object. The reconstructions can
be seen in Figure 4.

(a) (b) (c)

Figure 4. CBCT used as a prior image. (a) Transversal slice. (b) Sagittal slice. (c) Coronal slice.

Furthermore, a sinusoidal trajectory, acquired shortly after the abovementioned CT
scan, is used. The phantom is not moved in between. The sinusoidal trajectory is acquired
in a step-and-shoot mode, which means moving the C-Arm to each of the 161 positions on
this trajectory, and then acquiring a single X-ray image with the standard protocol called
“P16_DR_L” at 70 keV and with the mAs controlled by the Artis Zeego System.

The third trajectory is acquired using the continuous acquisition mode and by moving
the C-Arm during acquisition. This one has the problem that was mentioned in the
introduction in that it does not contain positional information for the individual frames.
This trajectory is an arc around the object tilted by 28◦, with 70 keV and 30 frames per s.
The exposure time and tube current are managed by the Artis Zeego System; furthermore,
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the average pulse width is 3.5 ms, with an average current of 35 mA. It consists of 666
individual projections.

All three sinograms are shown in Figure 5. Since the sinograms are three-dimensional,
only two slices are shown, and each of them is cut through the center of all individual
projections, both horizontally and vertically.

Figure 5. Two slices through the acquired three-dimensional sinograms. The top row is the standard
CBCT, the middle row is the sinusoidal trajectory, and the bottom row is a continuous acquisition of a
circular arc of 400◦.
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2.5. Evaluation

To evaluate the quality of the estimator, the estimated parameters were used as inputs
for the FORCASTER [10] algorithm and the algorithm by Oudah et al. [17] (which uses
a CMA-ES minimizer with the normalized gradient information (NGI) as the objective
function).

The calibrated trajectories are then reconstructed with the FDK algorithm, which is
part of the astra toolbox [24]. The images become cropped to the field of view, and no
further post-processing is performed. The calibrated parameters are also used to generate
a forward projection using the prior image; this simulated sinogram is compared to the
simulated forward projections of the state-of-the-art calibration algorithm. The continu-
ous acquisition sinogram is compared to the acquired data since there are no correctly
calibrated parameters.

2.5.1. Metrics

The structural similarity index (SSIM) [25] (Equation (1)) is the normalized gradient in-
formation (NGI) [26], and the normalized root mean squared error (NRMSE) (Equation (2))
are evaluated on the projections that are simulated with the parameters from the calibrated
trajectory in comparison to the forward projections of the reference calibration.

SSIM(x, y) =
2µxµy(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(1)

NRMSE(x, y) =
RMSE(x, y)
||x||F

(2)

RMSE(x, y) =

√√√√ 1
N

N

∑
i
(xi − yi)2 (3)

In this equation, µx is the mean value of x; σx the standard deviation; c1 and c2 are
the constants; N : This is changed to be italics format to keep consistent with the equation,
please confirm. Same below. is the number of voxels; and ||x||F is the Frobenius norm of x.

The reconstructions obtained after calibration and cropping to the point of view are
also compared through using the same metrics. Additionally, the vertical part of the large
metal object in the center of the phantom is segmented, and the Dice coefficient on the
segmentations is then calculated. All metrics are applied to each 2D slice of the images and
then averaged.

2.5.2. System Specifications

The algorithms were run on a system with an AMD Ryzen 9 7900X CPU, 128 GB RAM,
and NVIDIA GeForce RTX 2070 SUPER. Due to each projection being independent of the
others, the algorithm can be easily parallelized. In this paper, ten parallel processes were
used. Python version 3.9.9 the following packages was used: astra-toolbox 2.0 [24], scipy
1.7.3, skimage 0.19, numpy 1.21.4, and opencv 4.5.4.

3. Results

The results obtained from comparing the sinograms are in Table 1. The similarity index
and NGI are low for the coarse estimate, but they increased significantly after refining.
When using the FORCASTER algorithm with the estimated positions, the SSIM and NRMSE
were comparable to the ones reported by Tönnes et al. [10].

Similar to the results from the sinograms, the metrics evaluated on the reconstructions,
shown in Table 2, showed a significant improvement in the refined estimate over the coarse
one. Here, the NRMSE and Dice functions, after estimating and applying FORCASTER,
were also comparable to the ones previously reported. There was no significant difference
(p = 0.56) between the Dice values of the two reconstructions when using the state-of-the-art
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algorithms and refined estimates; however, the other metrics—NGI, SSIM, and NRMSE—
were significantly better for the CMA-ES calibration.

The reconstructed images are shown in Figure 6. The top row contains the reconstruc-
tion after only performing the rough estimate. There were obvious artifacts visible, which
can be seen in the left column. These artifacts are regularly spaced and rotated around the
center in the plane of the acquisition trajectory. Several edges were reconstructed twice
with a slight offset. In the second row, the refined estimate was used for reconstruction.
The radial artifacts are still there, but the double edges are now consolidated. Finally, the
reconstruction without these radial artifacts is in the bottom row.

Figure 6. Reconstructions of the different steps of the algorithms. From top to bottom is as follows:
Coarse estimate, Refined estimate and Refined estimate + CMA-ES when using the NGI objective.

Table 1. Results for the metrics evaluation on the CBCT sinogram. The two bottom rows used the
refined estimate as the input for the FORCASTER algorithm, and this was achieved once with the
NGI objective and once with the objective when based on feature points. The values marked with an
* had significant (p < 0.05) changes compared to the refined estimate.

Algorithm Runtime [hh:mm] NGI SSIM NRMSE

Coarse Estimate 01:06 0.397 * 0.944 * 0.2327 *
Refined Estimate 01:26 0.753 0.992 0.0669
Est. + FORCASTER 03:28 0.919 * 0.999 * 0.0190 *
Est. + CMA-ES & NGI 05:39 0.983 * 1.000 * 0.0037 *
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Table 2. Results for the evaluation of the CBCT reconstructions. The dice † was evaluated on a
segmentation of the large metal object in the phantom. Values marked with an * had significant
(p < 0.05) changes compared to the refined estimate.

Algorithm NGI SSIM NRMSE Dice †

Coarse estimate 0.372 * 0.290 * 0.7898 * 0.60 *
Refined estimate 0.525 0.360 0.5485 0.96
Est. + FORCASTER 0.766 * 0.677 * 0.1627 * 0.99 *
Est. + CMA-ES & NGI 0.944 * 0.979 * 0.0295 * 1.00 *

Figure 7 shows the sinograms for the sinusoidal trajectory. The calibrated sinograms
are the forward projections of the prior CT image. Because this image does not contain the
complete object, these two sinograms are missing structures in comparison to the acquired
images. One easily spotted difference is in column (b) in the top right quadrant, which is
missing a high-contrast object. In the sinogram obtained with estimated starting parameters,
i.e., in the bottom row in column (a) and the right image in column (b), there is a distortion
visible at the top (column (a)) and left edge (column (b)). This is more pronounced in the
sinograms that were calibrated with FORCASTER than the ones calibrated with CMA-ES.
This is a projection where the algorithm did not estimate the starting parameters close to the
correct ones, and where the calibration did not succeed. This projection is shown in Figure 8
alongside the acquired image and the projection from the correctly calibrated parameters.

(a) (b)

Figure 7. Two slices out of the sinogram of the sinusoidal trajectory from the acquired data. The FOR-
CASTER calibration used nearly accurate starting parameters. The calibration with refined estimates
and FORCASTER, as well as the refined estimates with CMA-ES and NGI objective are shown. The
left column (a) is ordered from top to bottom as follows: acquired data, simulated projections from
the calibration with starting parameters, simulated projections from the FORCASTER calibration with
estimated starting parameters, and CMA-ES calibration with the estimated parameters. The right
columns (b) have the same order, also from left to right.

Figure 8. Example projections at a point where the parameter estimation fails. From left to right is
as follows: acquired projection, simulated projection from the calibration with starting parameters,
simulated projection from the calibration with estimated starting parameters and FORCASTER, and
the projections from estimated parameters with CMA-ES calibration.
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The values obtained from evaluating the metrics are shown in Table 3. Similar to the
calibration of the CBCT trajectory, the metrics improved with every step. The final calibra-
tion produced lower results than the CBCT calibration, which is in line with the distortions
visible in the sinogram. The runtime was much shorter because the sinusoidal trajectory
contained only 161 projections in comparison to the 496 contained in the CBCT trajectory.

Table 3. Results of the evaluation on the sinusoidal trajectory. Values marked with an * had significant
(p < 0.05) changes compared to the refined estimate.

Algorithm Runtime [hh:mm] NGI SSIM NRMSE

Coarse estimate 00:24 0.259 * 0.885 * 0.4513 *
Refined estimate 00:27 0.662 0.992 0.0851
Est. + FORCASTER 00:54 0.836* 0.997 0.0369 *
Est. + CMA-ES & NGI 01:50 0.955 * 0.999 * 0.0106 *

The results for the continuous arc trajectory are shown in Table 4. Because there was
no correct calibration for this trajectory (since there were no starting parameters for the
individual projections), the metrics were not evaluated on the simulated projections but
were instead evaluated on the acquired images. The metric values were much lower there
than for the ones for the two previous trajectories. Still, they significantly improved with
each step, and there were no significant differences in the SSIM (p = 0.5) and NRMSE
(p = 0.9) metrics between the two state-of-the-art algorithms.

For comparison, the calibrations for the other two trajectories on the acquired images
were evaluated and are included in the results located in the lower part of the table.

Table 4. Results of the evaluation on the continuous arc trajectory. Here, the forward projection
is compared to the acquired data, and the evaluation results for the other two trajectories are also
included if the forward projections from the correct calibration were compared to the acquired data.
Values marked with an * had significant (p < 0.05) changes compared to the refined estimate.

Algorithm Runtime [hh:mm] NGI SSIM NRMSE

Coarse estimate 01:26 0.123 * 0.532 * 0.7019 *
Refined estimate 01:31 0.205 0.626 0.6359
Est. + FORCASTER 03:43 0.240 * 0.641 * 0.6283 *
Est. + CMA-ES & NGI 07:23 0.259 * 0.643 * 0.6284 *

Correct cal. CBCT traj. 00:35 0.294 0.377 0.7894
Est. + FORCASTER CBCT traj. 03:28 0.286 0.392 0.7817
Correct cal. sinus traj. 00:10 0.194 0.486 0.7291
Est. + FORCASTER sinus traj. 00:37 0.183 0.481 0.7311

In Figure 9, the acquired sinogram and the simulated sinogram that used the estimated
parameters, which was also calibrated by the CMA-ES with the NGI objective, are shown.
Similar to the sinusoidal trajectory, there were some projections where the estimated
parameters were wrong. These can be seen in the lower half of column (a), and on the right
of column (b). Apart from these few slices, no major misalignment can be seen.

The reconstructed image that used the continuous arc and the calibration is in Figure 10.
The image was reconstructed using the FDK algorithm from the astra toolbox without any
postprocessing. The images show that the object was reconstructed with just a few artifacts
(which came from miscalibration). The results of the metrics are in Table 5. Since there exists
no correct calibration and reconstruction of this set of projections, the image was compared
with the image obtained by reconstructing the CBCT trajectory. The NGI, SSIM, and NRMSE
metrics all increased significantly with each step. There was no significant increase for
the Dice value in the reconstruction with refined estimates and the reconstruction after
applying the two calibration algorithms. Still, the high Dice score shows that the metal
object was reconstructed with a good quality and at the correct position. The SSIM and
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NGI metrics were not as high as the results from the calibration of the CBCT trajectory. In
addition, the misaligned projections generated a few artifacts.

(a)

(b)

Figure 9. Two slices out of the arc trajectory sinogram from the acquired data, as well as from the
calibration with refined estimates and CMA-ES with the NGI objective. The left column is (a) ordered
from top to bottom as follows: acquired data, and the simulated projections from the calibration with
estimated starting parameters. The right columns (b) have the same order, also from left to right.
Since there were no positional data reported by the Artis Zeego System, there was no calibration
without estimated parameters conducted.

Figure 10. Reconstructions of the continuous arc when using the proposed estimator, as well as
CMA-ES with the NGI objective and the FDK algorithm from the astra toolbox.

Table 5. Metric results for the arc reconstruction. The dice † was evaluated on a segmentation of the
large metal object in the phantom in comparison to the segmentation of this object in the reconstructed
image from the regular CBCT trajectory. Values marked with an * had significant (p < 0.05) changes
compared to the refined estimate.

Algorithm NGI SSIM NRMSE Dice †

Coarse estimate 0.353 * 0.360 * 0.3567 * 0.00 *
Refined estimate 0.446 0.418 0.2379 0.82
Est. + FORCASTER 0.510 * 0.473 * 0.2114 * 0.84
Est. + CMA-ES & NGI 0.535 * 0.535 * 0.1958 * 0.84

4. Discussion

This paper describes the FORCAST-EST algorithm, which is able to approximate the
initial parameters for the calibration of arbitrary CBCT trajectories. Based on the literature
review, this algorithm is the first estimator that uses only online calibration techniques.
The results have shown that the estimated parameters are close enough to the correct pa-
rameters, such that state-of-the-art algorithms can successfully calibrate the trajectory. The
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reconstructed images are of comparable quality to those that have been reconstructed after
calibration with close-to-accurate starting positions. The Dice score achieved by both algo-
rithms was very high ≥0.99, which means the metal object in the center was reconstructed
correctly. The CBCT calibrations also produced very high SSIM values (>0.999), such that
they are very close to the reference calibration. These metric values are comparable to
those previously reported for the FORCASTER calibration [10]. The estimation, therefore,
does not reduce the quality of the reconstructed images. A comparison to the calibration
algorithm was developed by Oudah et al. [17], and this was meant to be used in this paper.
However, this was not possible since the calibration algorithm uses metrics that require
specific objects in the measured phantom, and these were not included in the object scanned
for this work.

For the CBCT trajectory, the refined estimate needed about one and a half hours, while
together with the CMA-ES algorithm it took five and a half hours for the calibration. As
such, the estimation was less than 30% of the total runtime; furthermore, this difference
was even higher for the arc calibration, where the estimation only contributed 20%.

Further, in contrast to the approaches by Grzeda et al. or Lemammer et al. [18,19],
no modification of the CBCT-Device was necessary to estimate the parameters. If the
modification of the C-Arm is possible and allowed, the addition of more sensors might be
the preferred option.

Removing the dependency on roughly accurate starting parameters comes with the
cost of a higher computation time. In the experiments, there was a steep increase in the
time when compared to the calibration that had its starting parameters provided by the
CBCT device. Still, every projection was optimized separately from one another, and they
also independently used the calibration algorithm. Therefore, parallelization was easily
implemented. The initial generation of the grid with projections can also be parallelized,
but this was not implemented since the data can be saved and reused for the next time the
calibration algorithm is run. This is possible as it only depends on the prior image, and the
same grid can be used for the calibration of different trajectories around the object.

One caveat are projections where the acquired image and simulation differ too much.
This can happen for projections that are too far out of the plane of the original CT trajectory.
The acquired projections contain parts of the object that are not in the prior CT because
the phantom is larger than the CT volume. This makes it harder to find enough matching
feature pairs. Therefore, the noise of the miss-matched features on one projection might
outweigh the low count of the correctly matched points on the correct projection; as such,
the estimated parameters would then be incorrect. During the development, it became
evident that the parameters like the ratio of Lowe’s ratio test had a high impact on how
far the projections would be miscalibrated. Further exploration of the different parameter
combinations, or other ways through which to filter out wrong matches, might improve
this algorithm. The filtering system for matched feature points could also be replaced with
the one used by Yang et al. [11] in their calibration algorithm.

More development should be conducted to reduce the runtime. The implementation
relies heavily on the CPU, but the graphic card could reduce the needed computation time
drastically, since graphic cards are designed for parallel computing.

5. Conclusions

In conclusion, this paper presents an algorithm that is able to roughly calibrate a tra-
jectory without initial parameters, and it is accurate enough for state-of-the-art algorithms
to further refine the produced image, as demonstrated when using CMA-ES with NGI and
the FORCASTER algorithm.
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