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Abstract: Training Graph Neural Networks (GNNs) on large-scale graphs in the deep learning era
can be expensive. While graph condensation has recently emerged as a promising approach through
which to reduce training cost by compressing large graphs into smaller ones and for preserving most
knowledge, its capability in treating different node subgroups fairly during compression remains
unexplored. In this paper, we investigate current graph condensation techniques from a perspective
of fairness, and show that they bear severe disparate impact toward node subgroups. Specifically,
GNNs trained on condensed graphs become more biased than those trained on original graphs.
Since the condensed graphs comprise synthetic nodes, which are absent of explicit group IDs, the
current algorithms used to train fair GNNs fail in this case. To address this issue, we propose Graph
Condensation with Adversarial Regularization (GCARe) , which is a method that directly regularizes
the condensation process to distill the knowledge of different subgroups fairly into resulting graphs.
A comprehensive series of experiments substantiated that our method enhances the fairness in
condensed graphs without compromising accuracy, thus yielding more equitable GNN models.
Additionally, our discoveries underscore the significance of incorporating fairness considerations in
data condensation, and offer invaluable guidance for future inquiries in this domain.

Keywords: data distillation; graph neural networks; fairness; adversarial learning

1. Introduction

Graph neural networks (GNNs) have emerged as popular models for handling graph
data in various fields, such as social networks, recommender systems, molecular topol-
ogy, and chemistry, owing to their capacity to leverage graph structures and aggregate
neighborhood information [1–5]. However, modern deep GNNs are data-hungry and
demand extensive training data to realize their full potential. Training GNNs on large
graphs introduces challenges, leading to increased computational complexity, memory re-
quirements, training time, and carbon emissions [6]. Furthermore, hyperparameter tuning
and architecture searches [7] on large graphs exponentially exacerbate these complexities.
As a result, scalable GNN training has become increasingly important [8,9].

Graph condensation [10,11] is newly developed as a promising approach for compress-
ing large graphs into smaller ones, significantly reducing both training time and memory
consumption without sacrificing the performance of the GNNs trained on condensed
graphs. It achieves this by feeding both the original and condensed graphs into the GNN,
and by aligning the model gradients that correspond to each input at every iteration. The
condensed graph is treated as if it were learnable parameters upon which convergence
would induce GNNs, and this is such as if they were trained on the original graph. Once
the condensation is complete, training GNNs on the condensed graph can be efficient. For
instance, if the Ogbn-arxiv [12] dataset is condensed to a size of 0.05% for its nodes, training
on a condensed graph leads to a four-time greater acceleration compared to training on
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the original graph (measured on one NVIDIA RTX 2080ti GPU ). Thus, the condensed
graph can serve as a substitute for the original graph and can be utilized repeatedly. This is
particularly helpful in applications like continual learning [13] and hyperparameter search,
where one needs to train GNNs multiple times.

Although current graph condensation methods are capable of distilling most of the
knowledge from the original graphs, we find that this capability varies with respect to
different node subgroups, leading to severe fairness issues. Specifically, the GNNs trained
on condensed graphs exhibit much larger performance gaps between advantaged and dis-
advantaged node subgroups when compared to those trained on original graphs. Figure 1
demonstrates such phenomenon on two real-world datasets, namely Cora and Credit-
defaulter. In the Cora dataset, the node degrees follow a long-tail distribution; in it, we
split the nodes into 3 subgroups according to their degrees. In the Credit-defaulter dataset,
nodes are annotated with the Age attribute; in it, we used this attribute to split all of
the nodes into two subgroups. We evaluated two existing graph condensation methods,
GCond [11] and DosCond [10], and compared them against their use with the original full
graph. We report both the prediction accuracy and fairness metrics. For Cora, the subgroup
fairness was measured by ∆acc, which is the difference between the highest and lowest
subgroup accuracy; for Credit, the fairness metric was ∆EO, which is the difference in true
positive rates between two subgroups. As shown in the figure, while GNNs trained on
condensed graphs by GCond or DosCond can achieve similar overall accuracies to training
on full data, they are more biased toward certain advantaged groups, and the performance
on disadvantaged groups is sacrificed.

0 5 10 15 20 25
node degree

0

100

200

300

400

500

600

# 
of

 n
od

es

(a) Cora node degree distribution.

0 1
node sensitive attribute

0

1000

2000

3000

4000

5000

# 
of

 n
od

es

(b) Credit-defaulter imbalanced sensitive attribute
distribution.

Cora Credit
50

55

60

65

70

75

80

85

90

Ac
cu

ra
cy

80.06

74.3

80.98

74.53

81.92

75.22

DosCond
GCond
Full Data

(c) Overall accuracy.

Cora Credit
8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

ac
c

9.43

11.39

9.8

8.878.95

8.21

DosCond
GCond
Full Data

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

EO

(d) Fairness evaluation.

Figure 1. Empirical evaluation on the Cora and Credit-defaulter datasets. For Cora, we used node
degree to split the subgroups. For Credit, we used the node attribute Age. (a): The node degrees
of Cora follow a long-tail distribution. (b): The Credit dataset was highly imbalanced regarding a
specific attribute. (c): GCond and DosCond yielded comparable overall accuracy on both datasets.
(d): GCond and DosCond resulted in a larger disparate impact for GNNs when compared to training
on the original full data.
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In this paper, we investigate the issue of the exacerbated subgroup unfairness that
is present in current graph condensation techniques. Although a substantial body of
literature exists on the topic of GNN fairness, existing algorithms of fair GNN training
cannot be trivially applied in this case because they require that nodes in the training
data are explicitly annotated with group IDs. However, current graph condensation
methods do not preserve node attributes or group IDs during the compression process.
Furthermore, current graph condensation methods are embedded within a complex bi-level
optimization framework [10,11,14], making it even harder to integrate with modules like
data augmentation [15], graph contrastive learning [16], or pseudo label prediction [17]. To
address this problem, we propose Graph Condensation with Adversarial Regularization
(GCARe), which is a light-weight, efficient, and effective regularization term. GCARe
renders condensed graphs that preserve the knowledge of different subgroups fairly to
alleviate the unfairness of GNNs that are trained afterward. It achieves this by directly
regularizing the condensation process with adversarial training. Specifically, we treat the
condensation model as a generator, and append a discriminator to the output layer of the
condensation model. During condensation, both the node features and group IDs are fed
to the generator in order to produce hidden embeddings, from which the discriminator
tries to predict the group IDs of the input nodes. Meanwhile, the generator is trained
to fool the discriminator and to prevent it from making correct predictions. In this way,
the group ID information is eliminated from the node representations, thus making the
condensation model unbiased. Intuitively, GNNs trained on condensed graphs would
inherit the unfairness of the GNNs that are utilized during the condensation procedure (i.e.,
the condensation model); this is because the latter one acts as the information bottleneck
between the original graph and the former one. Therefore, it is necessary to impose a fair
GNN to condense the graphs appropriately.

Our contributions can be summarized as follows:

1. We provide broad empirical evaluations, which reveal that performance disparities
between advantaged and disadvantaged subgroups become more pronounced for
GNNs that are trained on condensed graphs.

2. We introduce GCARe, an innovative paradigm that leverages adversarial learning to
debias the condensation model, thereby achieving fair graph condensation. Notably,
our proposed method maintains the same level of complexity as existing condensation
techniques, and it can be implemented as a regularization term that is easy to plug
and play.

3. Our comprehensive experiments demonstrate that GCARe not only mitigates fairness
issues, but also enhances the overall performance of condensed graphs. For example,
when applied to the Recidivism dataset, GCARe reduces the ∆SP value from 4.47% to
3.98%, as well as the ∆EO value from 3.40% to 2.52%, while simultaneously increasing
the accuracy from 80.04% to 81.97%.

2. Related Work
2.1. Dataset Condensation

Dataset distillation and condensation are techniques aimed at reducing the size of
large datasets while maintaining their core information and utility for training machine
learning models. Wang et al. [18] distilled knowledge from massive image datasets into
a few synthetic images, while still keeping the comparable performances of the models
trained on them. Nonetheless, this method involves a nested loop optimization and is
computationally expensive. Zhao et al. [14] proposed to align the gradients of the model
parameters to correspond with real and synthetic training data. GCond [11] extends this
idea to graph data, whereby learning synthetic graphs with only hundreds of nodes have
training GNNs applied to them. DosCond [10] further accelerates the condensation process
by performing one-step updates for nested optimizations, i.e., it only updates the synthetic
graph without training the upstream GNNs that are used for condensation. Although these
methods can preserve the core utilities of the original graph, we observed degradation in
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the subgroup fairness for GNNs that were trained on synthetic graphs. In this work, our
primary focus is on how to effectively apply condensed graph representations that treat
node subgroups fairly in order to prevent possible harmful applications.

2.2. GNN Fairness

Fairness has always been an important topic in machine learning [19–22]. The bias
issue in GNNs arises due to several factors: (i) imbalanced node degree distribution [16,23];
(ii) spurious correlation between labels and specific node attributes, e.g., gender and
age [15,24]; and (iii) the homophily nature of real-world graph data where nodes with
similar characteristics tend to group together [25]. Training GNNs that are unbiased and
fair with respect to different subgroups of nodes is significant in the context of trustworthy
AI applications [26,27]. Graph contrastive learning [16,28], pseudo labels [17,23], and
sampling-based methods [29] have been proposed to tackle the structural bias of GNNs,
i.e., fairness with respect to nodes with different degrees. On the other hand, when nodes
are annotated with certain sensitive attributes, e.g., age, gender, and skin color, it has been
observed that GNNs discriminate against nodes with certain attribute values, as well as
make inferior predictions on these subgroups (which are called attribute bias). Adversarial
learning [24], data augmentation [15], and causal inference [30] have been utilized to
address these problems. In this paper, we simultaneously consider both structural and
attribute bias, and apply our findings to learning condensed graphs that can fairly treat
subgroups that have been divided according to node degrees and node attributes.

3. Background

In this section, we first introduce the notations to be used throughout this paper. Then,
we brief the readers on the idea and algorithm of graph condensation.

In this paper, we consider the task of transductive node classification. A graph
consisting of N nodes can be denoted as a triple (A, X, Y), where A ∈ RN×N is the adjacency
matrix, X ∈ RN×D is the feature matrix of the nodes, and Y ∈ {0, . . . , C− 1}N is the node
labels over the C classes. Given a GNN model, we use θ to denote its model parameters,
GNNθ(A, X) denotes the message-passing procedure, and L(GNNθ(A, X), Y) represents
the cross-entropy classification loss.

Graph Condensation via Gradient Matching

Given a target graph dataset T = (AT , XT , YT ) with NT nodes, graph condensation
aims at learning on such a synthetic graph dataset S = (AS , XS , YS ) with NS nodes
(NS � NT ), whereby a GNN trained on S performs comparably to one trained on T . To
achieve this goal, Zhao et al. [14] proposed to feed a model with batches from both the
original and condensed datasets, and match the model gradients at each iteration. The
intuition behind this is that, by forcing the gradients to be similar at any step, the model
is expected to converge to the same point when trained on either dataset. The gradient
matching loss is used to update the condensed data.

GCond [11] extends this idea to the graph field. Specifically, the node features of
the synthetic graph, i.e., XS , are treated as learnable parameters, and are initialized first.
The adjacency matrix is modeled as a function of the node features via the parameters Φ:
AS = Φ(XS ). A GNN model is then employed as the agent for compressing the graph,
which we refer to as the upstream GNN. Then, at the t-th iteration, both the original graph
and condensed graph are fed to the GNN, and the corresponding gradients are computed
through backpropagation:

gSt = ∇θ L
(

GNNθt

(
Φ(XS ), XS

)
, YS

)
(1)

gTt = ∇θ L
(

GNNθt

(
AT , XT

)
, YT

)
(2)
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The distance between the two gradients are computed layer by layer via cosine simi-
larity to obtain the gradient matching loss D(gSt , gTt ), which is then backwarded to update
both Φ and XS . Note that this involves computing the second-order derivatives ∂2L

∂θ ∂XS
,

which is time-consuming. Then, the upstream GNN is trained for several steps on the
updated synthetic graph. This is achieved by aligning the gradients at each iteration,
whereby the synthetic graph imitates the whole trajectory of the model updates on the
original graph. GCond gained remarkable success on graph condensation. For instance,
it was able to approximate the accuracy by up to 95.3% on reddit, and 99.0% on Citeseer
while reducing the graph sizes by 99.9%.

While GCond suffers from the time complexity that occurs when interchangeably
updating the synthetic graph and the upstream GNN, DosCond [10], on the other hand,
skips the latter and only updates the synthetic graph. This significantly accelerates the
condensation process without sacrificing the performance.

Our method is highly flexible and can be easily integrated with either condensation
method. In this paper, we utilize both methods as the backbone.

4. Graph Condensation with Adversarial Regularization

In this section, we introduce our proposed method, namely GCARe, which is used to
regularize the graph condensation process for a more fair distillation of all node subgroups.

A rich body of literature focuses on GNN fairness from different perspectives, includ-
ing data augmentation [15], graph contrastive learning [16], pseudo label prediction [17],
adversarial training [24], and fairness constraints [26]. While one cannot directly apply
these methods to GNN training on condensed graphs owing to the absence of explicit
group IDs after condensation, we chose to regularize the condensation GNNs during con-
densation. The intuition behind this choice is that, the condensation GNN plays the role of
information bottleneck between the original graph and the GNNs trained on condensed
graphs, and the latter will inherit the bias and unfairness from the former.

The framework of our proposed method GCARe is depicted in Figure 2. At its core,
GCARe adopts a Generative Adversarial Network (GAN) [24,31,32] to debias condensation
GNNs. We treat condensation GNNs as the generator, and it generates hidden embeddings
for the node v from the original graph:

hv = GNNθ(Gv, xv)

where Gv is the adjacency associated with v, and xv is the input node feature. On the other
hand, a linear classification layer f was adopted as the discriminator to predict which
subgroup v comes from. The generator plays a minimax game against the discriminator to
prevent correct group prediction. The game can be formulated as follows:

max
θ

min
f

Ladv := − ∑
v∈X

K

∑
k=1

1{sv=k} log f (GNNθ(Gv, xv))k

where 1 is the indicator function, f (·) is a vector containing the predictive probabilities
for each subgroup, f (·)k is the probability specifically for the k-th subgroup, and K is the
number of all of the subgroups. We add this loss term to the original condensation loss,
weighted by a hyperparameter λ, as a regularization of the condensation GNN. Thus, the
total loss at the t-th iteration is as follows:

Lt := D(gSt , gTt ) + λLadv

In practice, we adopt an alternative optimization scheme. Specifically, in each itera-
tion, we first freeze the condensation GNN, and minimize D(gSt , gTt ) with respect to the
condensed graph. Then, we minimize the adversarial loss with respect to f . Lastly, we
unfreeze the GNN and maximize the adversarial loss with respect to it.



Appl. Sci. 2023, 13, 9166 6 of 11

Condensation GNN
h5

h7
h6

h8

h2
h1

h9

h3

h4

Condensation GNN

Adversary

Condensed
Graph

h1
h2

h3

h5 h6

h4

Gradient
Matching

Original
Graph

Figure 2. Framework of our method. At each iteration, both the original graph and condensed graph
were fed to the condensation GNN, which is regularized by the proposed adversary term. Red dotted
lines indicate a backward gradient.

5. Experiments

In this section, we empirically validate the ability of GCARe in fair graph condensation.
We first introduce the experiment settings, then compare GCARe with baselines; finally, we
analyze the other characteristics of our method.

5.1. Experiment Settings
5.1.1. Datasets

We adopt four transductive node classification graph datasets for our experiments:
Cora [33], Ogbn-arxiv [12], Credit-defaulter [34], and Recidivism [34]. Statistics of the
three datasets can be found in Table 1. For Cora, we condensed the graph to 35 nodes,
resulting in a compression rate of 1.29%. For Ogbn-arxiv, we reduced the graph size to
90 nodes, resulting in a compression rate of 0.053%. For Credit-defaulter, the node number
and compression were 120 and 0.4% respectively, while for Recidivism they were 200
and 1.06%.

Table 1. Dataset Statistics. The first two datasets were divided into subgroups according to node
degrees, while the last two were divided according to their sensitive attributes.

Dataset #Nodes #Edges #Classes #Features Train/Valid/Test

Cora 2708 5429 7 1433 140/500/1000

Ogbn-arxiv 169,343 1,166,243 40 128 90,941/29,799/48,603

Credit-defaulter 30,000 2,873,716 2 13 6000/7500/7500

Recidivism 18,876 642,616 2 18 1000/4719/4719

5.1.2. Subgroup Division Evaluation Metrics

In this paper, we consider fairness with respect to both node degrees and attributes.
For Cora, the nodes were divided, according to their degrees, into three subgroups. The
thresholds of the degrees used to make divisions were chosen to generate subgroups of
comparable sizes. The subgroup sizes were (71, 48, 21) for the training nodes, and (400, 348,
252) for the testing nodes. For Ogbn-arxiv, the nodes were divided into five subgroups in
a similar manner. The subgroup sizes were (25,134, 16,597, 18,607, 17,183, 13,420) for the
training nodes, and (11,576, 10,557, 10,111, 9330, 7029) for the testing nodes. For Credit-
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defaulter, we followed [34] in using the binary sensitive attribute Age to split the subgroups,
whereby NoDefaultNextMonth was used as the label. The subgroups sizes were (5442, 578)
for the training nodes, and (6811, 689) for the testing nodes. For Recidivism, we also
followed the preprocessing method of [34]. The attribute Race was used to split the nodes
into two subgroups. The group sizes were (477, 523) for the training nodes, and (2303, 2416)
for the testing nodes.

For the degree bias, we evaluated the GNN’s fairness with respect to two metrics: ∆acc
was set as the accuracy gap between the most and least advantaged subgroups, and σacc
was set as the standard deviation of the accuracies across all subgroups. By denoting the
accuracy of group i as ai, ∀i ∈ G, the two metrics were computed as follows:

∆acc := max
i∈G

ai −min
j∈G

aj (3)

σacc :=
√
E[(ai − ā)2] (4)

For attribute bias, we focused on the fairness metrics commonly adopted, namely
statistical parity and equal opportunity [26], which evaluate the statistical dependencies be-
tween predictions and attributes. Suppose a binary attribute is denoted as s, and prediction
as ŷ, then these two metrics are defined as follows:

∆SP :=
∣∣p(ŷ = 1|s = 0)− p(ŷ = 1|s = 1)

∣∣ (5)

∆EO :=
∣∣p(ŷ = 1|y = 1, s = 0)− p(ŷ = 1|y = 1, s = 1)

∣∣ (6)

5.1.3. Baselines

We present a comparative analysis of our algorithm, GCARe, with two state-of-the-art
approaches: GCond [11] and DosCond [10]. GCond learns condensed graph representations
by aligning the model gradients with respect to the inputs from both the original and the
condensed graph. Furthermore, it trains condensation GNNs at each iteration during the
condensation process. In contrast, DosCond enhances this approach by eliminating the
training of condensation GNNs, thus leading to a remarkable acceleration. Our proposed
method, GCARe, offers a general approach to regularize the condensation process and to
achieve a fair graph condensation. To demonstrate the effectiveness of GCARe, we have
implemented it on both GCond and DosCond. The results were then compared with those
that were obtained from the vanilla methods.

We also compared against fairness constraint regularization [26]. Concretely, for a
task with k subgroups and c classes, the generalized statistical parity regularization was
defined as follows:

sp_reg =
1
k

k

∑
i=1

max
yj∈[c]

|P(ŷ = yj)− P(ŷ = yj|s = si)|

where ŷ is the predicted label. When k = c = 2, this formulation reduces to Equation (5).
We replaced the adversarial regularization term in GCARe with this statistical parity
regularization term for this variant.

5.1.4. Hyperparameters

We followed the hyperparameter settings in [10,11] for the baseline results on Cora
and Ogbn-arxiv, while on Credit-defaulter and Recidivism we searched for lr_adj and
lr_feat in the range [0.0001, 0.001, 0.01]. For GCARe, we fixed all other hyperparameters to
be the same as the baselines, and only tuned one new hyperparameter to be introduced by
our method, i.e., the regularization weight λ. For all datasets, we adopted SGC [9] as the
upstream GNN (used for condensation), and GCN [33] as the downstream GNN (used for
training and evaluation).
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5.2. Main Results and Analysis

The comparison between GCARe and the baselines is shown in Table 2. All exper-
iments were run with five different random seeds, and the average values are reported.
The results of the training GNNs on full data are also reported as an upper bound of our
method. We implemented both our method GCARe and the statistical parity regularization
based on GCond or DosCond, and they are referred to as +Ours and +SP, respectively.

Table 2. Results from the Cora, Ogbn-arxiv, and Credit-defaulter datasets. acc stands for overall
accuracy; ∆acc for the accuracy gap between the highest and lowest subgroups; σacc for the std. dev. of
the accuracies among all subgroups; ∆SP for statistical parity; and ∆EO for equal opportunity. GCARe
achieved superior performances regarding both accuracy and fairness metrics. All the numbers were
averaged over five random seeds. The best results are marked in bold.

Dataset Metric GCond +SP +Ours DosCond +SP +Ours Whole Dataset

Cora
acc ↑ 80.98 80.80 81.03 80.06 80.25 80.32 81.92

∆acc ↓ 9.80 9.83 9.56 9.43 9.31 9.07 8.95
σacc ↓ 4.50 4.41 4.28 4.18 4.14 4.15 3.96

Ogbn-arxiv
acc ↑ 59.23 58.89 59.37 58.61 58.08 57.81 71.21

∆acc ↓ 31.36 30.75 30.22 31.79 30.53 29.85 22.04
σacc ↓ 10.98 10.75 10.71 11.15 10.63 10.35 7.57

Credit-defaulter
acc ↑ 74.53 74.60 74.37 74.30 74.66 74.96 75.22

∆SP ↓ 11.21 11.20 10.98 13.99 10.10 10.90 10.23
∆EO ↓ 8.87 8.91 8.74 11.39 8.15 8.82 8.21

Recidivism
acc ↑ 80.04 82.43 81.97 80.08 80.88 81.16 81.01

∆SP ↓ 4.47 4.46 3.98 4.76 4.90 4.68 3.59
∆EO ↓ 3.40 2.76 2.52 3.45 3.61 3.43 1.21

5.2.1. Fairness

The results from all four datasets demonstrated that GCARe can generate condensed
graphs that accommodate fair GNN training. Note that all the fairness metrics reported
here are better the lower they are.

Impressively, our technique outperforms both GCond and DosCond across all datasets.
When evaluating degree bias, the data from the Cora and Ogbn-arxiv datasets revealed that
GCARe achieves lower ∆acc and σacc compared to both GCond and DosCond. Similarly, in
terms of attribute bias, GCARe improves the ∆SP and ∆EO from the Credit-defaulter and
Recidivism datasets. It is worth noting that when our method is combined with GCond
(GCond + Ours), the ∆SP value was reduced from 4.47 to 3.98, and the ∆EO decreased
from 3.40 to 2.52 on the Credit-defaulter dataset. This equates to improvements of 10.96%
and 25.88%, respectively. Variants utilizing statistical parity regularization also exhibit
significant improvements over GCond and DosCond, although they are generally not as
effective as GCARe. These findings underscore the ability of our method to effectively
enhance the fairness of GNNs that are trained on condensed graphs.

5.2.2. Node Classification

Previous works often observe a trade-off between model fairness and accuracy [35,36].
Our method not only benefits fair graph condensation, but also improves the overall per-
formance in node classification tasks. As Table 2 shows, GCARe achieves a higher accuracy
over GCond and DosCond in almost all cases, and it also takes a further step toward
recovering the potentials of the original large graphs. In particular, on the Recidivism
dataset, GCARe even achieved a higher accuracy than training on the full graph (81.97
vs. 81.01). In addition, the statistical parity regularization approach also surpassed the
baselines. These results demonstrate that our method provides better representations for
condensed graphs.
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5.3. Cross Architecture Generalization

In all previous experiments, we fixed the condensation model to be SGC, and we
evaluated the performances of GCN on the condensed graphs. However, it is important to
assess whether the condensed graphs can accommodate the training of other types of GNNs.
In this section, we fixed the condensed graphs to the same as those reported in Table 2,
but we varied the GNNs used for evaluation among GCN [33], GraphSage [37], SGC [9],
APPNP [38], and Cheby [39]. We also included a two-layer feedforward neural network,
which uses only node features for prediction and is referred to as MLP. Specifically, once
the condensation process was finished, we utilized the same condensed graph and trained
various GNN architectures on it. We implemented GCARe with DosCond as the backbone
on the Credit-defaulter dataset, and choose GCN, GraphSage, SGC, MLP, APPNP, and
Cheby as the GNNs to evaluate. The results are shown in Table 3. We find that GCARe
can improve fairness and overall accuracy for a wide range of GNN architectures. This
demonstrates that our method generalizes well across different GNN models and can be
applied in various scenarios.

Table 3. Cross-architecture evaluation on the Credit-defaulter dataset. Different downstream GNNs
were evaluated on the graphs condensed by DosCond and GCARe. GCARe achieved superior
performances in both utility and fairness, and it showed better cross-architecture generalization on
all GNN variants. The best results are marked in bold.

Method Metric GCN GraphSage SGC MLP APPNP Cheby

DosCond
acc ↑ 74.30 74.73 74.63 74.64 75.11 77.77

∆SP ↓ 13.99 10.35 14.69 11.65 15.11 11.60
∆EO ↓ 11.39 8.34 12.00 9.61 12.65 8.51

GCARe
acc ↑ 74.96 73.97 75.82 75.01 75.56 78.12

∆SP ↓ 10.90 7.47 14.76 8.70 13.11 6.54
∆EO ↓ 8.82 5.99 11.83 6.79 10.48 4.37

6. Conclusions

Graph condensation is an important technique for efficient GNN training and deploy-
ment. In this paper, we showed the limitations of previous graph condensation methods
in exacerbating subgroup unfairness through empirical evaluations. Starting from the
intuition that condensation GNNs act as an information bottleneck, we propose GCARe,
which utilizes adversarial learning to regularize condensation GNNs during the conden-
sation process. Extensive experiments demonstrated GCARe’s ability in simultaneously
improving accuracy and fairness for condensed graphs.

Limitations and Broader Impact

Adversarial learning suffers from unstable training and mode collapse, which can
increase the difficulty of hyperparameter tuning in graph condensations. In addition,
when there are many subgroups, class-based sampling may not sample all of the nodes
from certain groups. This hinders the applicability of GCARe in settings of more fine-
grained subgroup divisions. Future work should be conducted on analyzing the adversarial
robustness and privacy of condensed graphs to take one step closer toward trustworthy AI.
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