
Citation: Huang, Y.; Sun, W.; Xie, Q.;

You, H.; Wu, K. Discrete Element

Simulation of the Shear Behavior of

Binary Mixtures Composed of

Spherical and Cubic Particles. Appl.

Sci. 2023, 13, 9163. https://doi.org/

10.3390/app13169163

Academic Editor: Camelia Cerbu

Received: 21 June 2023

Revised: 10 August 2023

Accepted: 10 August 2023

Published: 11 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Discrete Element Simulation of the Shear Behavior of Binary
Mixtures Composed of Spherical and Cubic Particles
Yun Huang 1, Weichen Sun 2 , Qiang Xie 2 , Hongyi You 3 and Kai Wu 3,*

1 PowerChina Chengdu Engineering Corporation Limited, Chengdu 610000, China; huangyun@chidi.com.cn
2 School of Civil Engineering, Chongqing University, Chongqing 400045, China; wcsun@cqu.edu.cn (W.S.);

xieqiang2000@163.com (Q.X.)
3 School of Transportation, Southeast University, Nanjing 210096, China
* Correspondence: wukai2018@seu.edu.cn

Abstract: This research paper presents an investigation into the shear behavior of binary mixtures
composed of cubic and spherical particles, employing the discrete element method (DEM) through
triaxial tests simulations. A range of binary particle samples with varying volume fractions of cubic
and spherical particles is generated for analysis. The study primarily focuses on examining the
contracting-dilatancy relationship of binary granular material samples by scrutinizing deviatoric
stress and volumetric strain curves, while considering the influence of confining pressure, initial
porosity, and particle size ratio. Furthermore, the paper sheds light on the evolution of microstructures
during the shearing process by presenting coordination numbers and rotational velocity fields for
different particle types (overall particles, cubic particles, spherical particles), as well as between cubic-
spherical particles. The findings demonstrate the substantial impact of both the volume fraction of
cubic particles and the particle size ratio on the shear behavior of binary particles at both macroscopic
and microscopic scales. Additionally, a comprehensive investigation reveals the dependence of
anisotropy in normal contact forces, tangent contact forces, and contact orientations on the volume
fraction of cubic particles.

Keywords: DEM; triaxial test; binary mixtures; particle shape; shear

1. Introduction

Granular materials have garnered significant attention as a distinct state of matter,
finding wide-ranging applications in nature, everyday life, manufacturing, and technology.
Examples include sand, soil, sugar, salt, and various industrial chemicals. The mechanical
behavior of granular materials is influenced by multiple factors, such as particle size [1],
particle shape [2], particle arrangement [3], and inter-particle friction [4]. However, due to
the intricate interplay of these factors, isolating the specific impact of each one presents a
challenge for researchers. To overcome this challenge, binary mixtures have emerged as a
valuable approach for investigating the mechanical behavior of granular materials, wherein
a specific influential factor is varied between two distinct states. By employing binary
mixtures, researchers can effectively examine the isolated effects of individual factors,
enabling a deeper understanding of granular material behavior.

Researchers have dedicated considerable efforts to investigating binary mixtures of
granular materials using both experimental and numerical simulation approaches. Previous
studies have highlighted the significant influence of volume fraction on the shear behavior
of granular materials, wherein particle size heterogeneity affects packing density, shear
strength, and energy dissipation. Moreover, the anisotropic fabric and stress tensors of
granular media are directly related to integrated packing properties, which in turn, depend
on particle size distribution. Additionally, it has been observed that fine and coarse particles
play distinct roles in the formation of contact force chains. In the presence of coarse particles,
fine particles dominate the contact force chains when in a floating state, whereas coarse
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particles determine the force chain networks in a non-floating state. While existing studies
have predominantly focused on the impact of particle size, limited research has explored
the effects of particle shape. Notably, the shape of particles, whether non-spherical or
spherical, has pronounced implications for the macro- and micro-mechanical properties
of granular media. Non-spherical particles face greater resistance to rolling compared
to spherical particles when subjected to forces and moments due to their shape barriers.
Consequently, it is essential to investigate how particle shape influences the behavior of
binary mixtures.

The discrete element method (DEM), proposed by Cundall and Strack [5], is a powerful
tool for studying the mechanical behavior of granular materials [6–8]. The discrete element
method offers advantages over the finite element method (FEM) in this topic, because
FEM is a numerical simulation technique designed for continuous media. Specifically,
when studying the physical and mechanical properties of granular media, the discrete
element method proves to be more advantageous. DEM addresses individual particles
and their interactions, making it ideal for studying granular media behavior [9]. DEM can
capture the key response features of granular media at the macroscopic level, including
those involved in large-displacement geomechanics problems, and can also be used to
investigate microstructural changes such as contact force chains, displacement, and rotation
field distribution, and coordination number fluctuation [10,11]. DEM has been used to
simulate binary mixtures and to investigate the impact of particle shape. Non-spherical
particles can be modeled using clump particles [12–15] or polygon particles [16–19]. The
former modeling method uses multiple spherical particles to generate one clump particle,
while the latter uses one spherical particle to create one polygon particle. In some cases, the
rolling friction coefficient is used to reduce the rolling efficiency of spherical particles when
modeling non-spherical particles [20–23]. The concept of polygon particles is simulated in
the binary media to investigate the impact of particle shape on binary mixtures. Superel-
lipsoid is a special polygon model for non-spherical particles that was first introduced by
Williams et al. [24] and later extended to 3D by Cleary et al. [25]. It can describe 80% of
solid shapes [26–29]. In this study, the cube, which is a unique shape of superellipsoid is
used to characterize non-spherical particles.

The discrete element method (DEM), initially proposed by Cundall and Strack [5], has
emerged as a powerful tool for investigating the mechanical behavior of granular materi-
als [6–8]. The discrete element method offers several advantages over the finite element
method, a numerical simulation technique designed for continuous media. Specifically,
when studying the physical and mechanical properties of granular media, the discrete
element method proves to be more advantageous [9]. At the macroscopic level, DEM
can capture essential response features of granular media, including those relevant to
large-displacement geomechanics problems. Furthermore, it enables the investigation of
microstructural changes, such as contact force chains, displacement and rotation field dis-
tribution, and coordination number fluctuations [10,11]. DEM has been widely employed
to simulate binary mixtures and explore the influence of particle shape. Non-spherical
particles can be effectively modeled using clump particles, where multiple spherical par-
ticles combine to form a single clump particle [12–15]. Alternatively, polygon particles,
where one spherical particle represents a polygon particle, have also been utilized [16–19].
In some cases, the rolling friction coefficient is adjusted to reduce the rolling efficiency
of spherical particles when modeling non-spherical particles [20–23]. To investigate the
impact of particle shape on binary mixtures, The concept of polygon particles, specifically
employing the cube, a unique shape derived from the superellipsoid model introduced by
Williams et al. [24] and extended to three dimensions by Cleary et al. [25] is adopted. The
superellipsoid model has been demonstrated to accurately represent approximately 80% of
solid shapes [26–29]. In this study, the cube, a distinctive superellipsoid shape, is utilized
to characterize non-spherical particles within the binary media.

This study aims to explore the influence of the volume proportion of cubic to spheri-
cal particles on the shear behavior of binary mixtures, considering the impact of particle
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shape. Binary samples comprising both spherical and cubic particles with varying vol-
ume fractions are prepared, and their shear strength and volumetric strain are analyzed
from a macroscopic perspective. In addition to the macroscopic analysis, the microscopic
metrics such as mechanical coordination number, contact force chains, and the anisotropy
of normal and tangential forces are applied. These comprehensive analyses shed light
on the underlying mechanisms governing the behavior of binary mixtures and provide
valuable insights into the role of particle shape in shaping their macro and micromechanical
properties.

2. Discrete Element Simulation
2.1. Contact Law

In this study, the PFC 3D software [30] (https://www.itascacg.com/software/PFC,
accessed on 20 June 2023) is applied to perform discrete element method (DEM) simulations.
The Hertz contact model is utilized as the contact law, which consists of a nonlinear
Hertzian component based on the theory of Mindlin and Deresiewicz to calculate the
normal forces [31]. The interaction force between two contacting particles is determined by
their overlap, and a dissipative component is also incorporated.

The normal force can be calculated as follows

Fh
n =

{
− hn|gc|αh ,gc < 0.0

0.0 ,otherwise.
(1)

The coefficient hn depends on the geometrical and mechanical properties of the con-
tacting pieces as

hn =
2G
√

2R̄
3(1− ν)

(2)

where G, ν, and R̄ are the effective shear modulus, Poisson’s ratio, and contact radius,
respectively. The effective shear modulus and Poisson’s ratio can be input directly, or
inherited from the contacting pieces as detailed below.

The effective radius of the contact is computed via the radii of the contacting piece

surfaces as R̄ =
R1R2

2(R1 + R2)
.

The tangential component Fs is based on Coulomb’s friction law, which is given by
Equation (4) as follows:

F∗s = (Fh
s )0 + ks∆δs (3)

where (Fh
s )0 is the hertz shear force at the beginning of the timestep and ∆δs is the relative

shear increment. ks is the initial tangent shear stiffness, which depends on the current
normal force as

ks =
2(1− ν)

2− ν
αh(hn)

1/αh(Fh
n )

(αh−1)/αh (4)

The value of (Fh
s )0 depends on the scaling mode Ms:

(Fh
s )0 =


ks

(ks)0
(Fh

s )0 , i f Ms = 1 and Fh
n < (Fh

n )0

(Fh
s )0 , otherwise.

(5)

where (Fh
n )0, (Fh

s )0, and (ks)0 are the normal force, the shear force, and the tangent shear
stiffness computed at the beginning of the timestep, respectively. Ms = 1 means that the
shear-force scaling is active.

Compute the shear strength:
Fµ

s = µFh
n (6)

https://www.itascacg.com/software/PFC
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The Hertz shear force is calculated as

Fh
s =

{
F∗s ,||F∗s || < Fµ

s

Fµ
s (F∗s /||F∗s ||) , otherwise.

(7)

Update the slip state

s =

true ,
∣∣∣|Fh

s

∣∣∣| = Fµ
s

f alse , otherwise.
(8)

If the slip state is true, then the contact is sliding. Whenever the slip states change, the
slip change callback event occurs.

2.2. Generation of Cubic Particles

The cubic shape is in fact a variant of superellipsoid. The surface function of a super
ellipsoidal particle in local Cartesian coordinates is defined in Equation (9):(

| x
a
|m + |y

b
|m
) n

m
+ | z

c
|n = 1.0 (9)

where x, y, z are the coordinates of a point on the surface of the superellipsoidal particle.
The variables, a, b, c denote the half-length of the particle along the principal axis of the
local coordinate system of the superellipsoidal particle. The shape indexes m and n are
two shape factors to determine the particle shape and the surface blockness. The shape
index m affects the upper and bottom margins, while the shape index n controls the four
side edges [32,33]. Simultaneous variation of m and n transforms the sphere into a cube.
Keeping m constant, increasing n leads to sphere-to-cylinder conversion. Constant n and
increased m yield walnut-like tetrahedron. m influences upper/lower surfaces, and n
defines lateral shape. Cross-sectionally, augmented m shifts the upper surface from circular
to square; increased n shifts the side from circular to square. Thus, simultaneous m and
n increase results in sphere-to-cube transformation. Figure 1 shows the evolution path of
superellipsoids from sphere to cube.

Figure 1. Evolution of superellipsoids from sphere to cube by changing two shape factors m and n to
determine the particle shape and the surface blockness.

2.3. DEM Simulation Procedure

The aim of this study is to investigate the shear strength of binary mixture samples
using three-dimensional discrete element method (DEM) simulations of triaxial tests under
the boundary condition of a rigid cylindrical wall in dry condition. The influence of water
has not been considered in the simulations. The simulation procedure consists of three
steps: sample generation, isotropic consolidation, and shearing process. Six binary mixture
samples with different volume fractions of cubes and spheres, denoted as CxSy (where x
and y represent the volume fraction of cubes and spheres, respectively) are examined. The
samples under investigation are C100S0, C80S20, C60S40, C40S60, C20S80, and C0S100 (see
Figure 2 for sample visualization). Each sample has a diameter of 50 mm and a height of
125 mm, with approximately 5000 particles of the equivalent diameter of 4 mm for both
spherical and cubic particles. The L/D ratio of the sample is 2.5. The initial porosity of the
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samples is approximately 0.45 monitored by measuring a circle in the middle of the sample.
Default parameters for DEM simulations are employed (refer to Table 1 for specific DEM
parameters). Following the sample generation, a stress servo-controlled rigid cylindrical
wall boundary condition is applied to regulate the confining pressure throughout the
isotropic consolidation and shearing stages. The servo-controlled boundary adjusts the
radius of the rigid cylindrical wall in response to changes in lateral pressure, utilizing the
Lame formula of Equation (10) [34] (see Figure 3) .

Figure 2. Mixture samples composed of varying volume fractions of spheres and cubes: (a) C100S0,
(b) C80S20, (c) C60S40, (d) C40S60, (e) C20S80, (f) C0S100.

Table 1. Default parameters for DEM simulations of triaxial test on superellisoidal particles [35].

Parameter Value Unity

Shear modulus, G 650 MPa
Poisson ratio, ν 0.3
Exponent of hertz model, αh 1.5 -
Local damping coefficient, c 0.7 -
Density, ρ 2530 kg/m3

Friction coefficient inter-particles, µ 0.3 -
Friction coefficient of wall-particles, µw 0.0 -
Confining pressure, P1 1.0, 2.0 MPa

Figure 3. Cutting section of rigid cylinder boundary condition based on Lame formula [34].
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∆r =
1
E

[
(1− ν)(r2

1P1 − r2
2P2)

r2
2 − r2

1
r +

(1 + ν)r2
1r2

2(P1 − P2)

r2
2 − r2

1

1
r

]
(10)

where ∆r is the radius variation, E is Young’s modulus of the cylinder, r1 and r2 are,
respectively, the internal and external radius of cylindrical boundary condition, and r is
the radius between r1 and r2. The confining pressure P1 is determined by dividing the
total force exerted by the particles in contact with the cylinder boundary by the lateral
surface area of the cylinder. To achieve the desired pressure, the servo-controlled rigid
cylindrical boundary adjusts P1 at each time step to match the target pressure P2. The
isotropic consolidation process is considered complete when P1 reaches the target pressure
P2. During the shearing process, the confining pressure P1 is maintained at a constant
value while the servo-controlled cylindrical wall is adjusted. Simultaneously, the sample is
subjected to compression by the upper and bottom platens. The shearing rate is controlled
by the inertia number I (Equation (11)), which determines the quasi-static state of the
granular system [9].

I = ε̇

√
M

P1d
(11)

where ε̇ is the shear strain rate, M and d are the mass and diameter of the particle, and P1 is
the confining pressure. In our simulations, the shear strain rate is fixed at 1.0 /s to maintain
an inertia number I below 10−3. This choice ensures that the granular system remains
in a quasi-static state throughout the shearing process. The axial strain is continuously
monitored to assess the progress of shearing. The simulation is concluded once the axial
strain reaches a predetermined threshold of 30%.

The effective mean stress p and the deviatoric stress q are defined as follows:

p = (σ1 + 2P1)/3 (12)

q = σ1 − P1 (13)

where σ1 denotes the axial stress obtained by dividing the applied force on the upper platen
by the surface area of the upper platen.

The axial strain εz and volumetric strain εv are derived from the movements of rigid
walls as follows:

εz = (h− h0)/h0 (14)

εv = (v− v0)/v0 (15)

where h0 is the initial height of the sample, h is the current height of the sample, v0 is the
initial volume of the sample, and v is the current volume of the sample.

3. Macroscopic Behavior
3.1. Influence of Volume Fraction of Cubic Particles

Figures 4a and 5a illustrate the evolution of deviatoric stress as a function of axial
strain for binary mixtures under different confinement conditions of 1.0 MPa and 2.0 MPa,
respectively. The data exhibit a strain-softening behavior with increasing axial strain, which
aligns with previous investigations on dense granular materials [36–38]. The porosity
values of the sample vary from 0.44 to 0.51 during the simulation. Notably, when the
volume fraction of cubes (FC) decreases from 100% to 80%, the deviatoric stress at the
peak rises from 3.8 MPa to 4.2 MPa. However, as FC continues to decrease, the deviatoric
stress at the peak decreases from 4.2 MPa to 3.9 MPa. For FC values below or equal to
60%, the deviatoric stress at an axial strain of 30% remains relatively constant. In contrast,
the deviatoric stress at the residual state generally exhibits an increasing trend as FC
increases. Consequently, the volume fraction of cubes significantly influences both the peak
and critical-state shear strength of the mixtures. Furthermore, as the confining pressure
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increases from 1.0 MPa to 2.0 MPa, the shear strength of granular mixtures nearly doubles.
This finding underscores the substantial impact of confining pressure on the shear behavior
of granular mixtures.

Figure 4. Comparisons of (a) deviatoric stress and (b) volumetric strain between different mixture
samples under a confining pressure of 1.0 MPa.

Figure 5. Comparisons of (a) deviatoric stress and (b) volumetric strain between different mixture
samples under a confining pressure of 2.0 MPa.

Figures 4b and 5b present the evolution of volumetric strain as a function of axial
strain for the binary mixtures subjected to confining pressures of 1.0 MPa and 2.0 MPa,
respectively. Initially, the mixture samples undergo slight contraction followed by dilation.
As the sample approaches the residual state, the slope of the volume strain curve gradually
decreases, consistent with previous findings. This behavior can be attributed to the easier
compaction of spherical particles, which necessitates more void space for shear, leading to
enhanced dilation in granular systems with lower cubic particle content. Consequently, the
volumetric strain of the sample increases as the volume fraction of spheres during shearing
increases. Moreover, the confining pressure influences the volumetric strain response.
Samples exhibit greater resistance to deformation and dilation under higher confining
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pressures, as shown by the consistently higher volumetric strain under 1.0 MPa compared
to that under 2.0 MPa.

The deviatoric stress and volumetric strain curves obtained from the triaxial shear
test provide valuable insights into the intrinsic properties of granular materials, as demon-
strated in Figure 6. These mechanical parameters, such as the friction angle (ϕ), dilatancy
angle (ψ), Poisson’s ratio (ν), and stiffness modulus (E) offer further understanding of the
shear behavior of granular media under specific test conditions.

Figure 6. Mechanical parameters obtained from (a) deviatoric stress, and (b) volumetric strain curves
under the triaxial shear test.

The friction angle ϕ can be obtained from the deviatoric stress curve as a function of
the effective stress ratio M′, Equations (16) and (17):

M′ = q/p′ (16)

ϕ = arcsin
3M′

M′ + 6
(17)

where q denotes the deviatoric stress, p′ indicates the effective average stress and M′

denotes the effective stress ratio.
The dilatancy angle ψ is determined by Equation (18) at an inflection point of the axial

strain-volumetric strain curve as illustrated in Figure 6.

ψ = arcsin

( dεv
dεr

2 + dεv
dεr

)
(18)

The relationship between the peak internal friction angle (σpeak) and critical internal
friction angle (σresidual) with FC is depicted in Figure 7. As FC increases, the friction angles
at peak initially increase until reaching 80%, after which they start to decrease. However,
the friction angle at the residual stage consistently increases with FC, indicating that particle
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shape has a greater influence on the strength of the granular material in the residual stage.
Additionally, the dilatancy angle shows a decreasing trend as FC increases.

Figure 7. Evolution of friction angles at peak & residual stages and dilatancy angles as a function of
volume fraction of cubic particles.

The elastic modulus (E) can be determined from the slope of the line between the
point of 50% deviatoric stress and the origin. Figure 8a illustrates the variation of Young’s
modulus as a function of FC under confining pressures of 1.0 MPa and 2.0 MPa. It is
evident that Young’s modulus increases with FC, and it further increases with higher
confining pressure. Poisson’s ratio (v) measures the ratio of transverse to longitudinal
strain resulting from a change in normal stress during compression. A value of 0.5 implies
incompressibility, while a value of 0 indicates ease of compression. Poisson’s ratio can be
calculated using Equation (19). The variation of Poisson’s ratio with FC under confining
pressures of 1.0 MPa and 2.0 MPa is presented in Figure 8b. The Poisson’s ratio increases
with FC and also with an increase in confining pressure.

Figure 8. Comparisons of (a) Young’s Modulus and (b) Poisson’s ratio for different volume fraction
mixture samples under confining pressures of 1.0 MPa and 2.0 MPa.

v =
εa − εv

2εa
(19)
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3.2. Influence of Initial Porosity

Figure 9 illustrates the comparison of simulation results for different initial porosities,
highlighting the significant impact of initial porosity on the shear behavior of granular
materials. A clear inverse correlation between shear strength and initial porosity is observed,
indicating that an increase in initial porosity results in a decrease in the deviatoric stress at
the peak. However, the effect of initial porosity on shear strength at the residual state is not
evident, as the shear strength eventually converges as shearing progresses. Moreover, the
volumetric strain shows an inverse relationship with initial porosity, where the dilatation
of the sample volume weakens with increasing initial porosity.

Figure 9. Influence of initial porosity on the (a) deviatoric stress and (b) volumetric strain for the
mixture sample of C60S40 under the confining pressure of 1.0 MPa.

3.3. Influence of Particle Size Ratio

The influence of particle size ratio on the shear behavior of binary mixtures has
received considerable attention in previous studies. However, there has been a noticeable
gap in investigating the impact of particle shape on such behavior. To address this research
gap, the effect of particle shape on the shear behavior of binary samples has been focused
on, which consist of cubes and spheres with varying sizes. In this study, five mixtures
are generated with a volume ratio of 1:1 for cubes and spheres, as outlined in Table 2.
Sample SC represents a case where the particle sizes of cubes and spheres are equivalent.
In Samples SS1 and SS2, the size of cubes is maintained while reducing the size of spheres.
Conversely, for Samples SC1 and SC2, the size of spheres is kept constant while decreasing
the size of cubes.

Table 2. Different particle sizes for mixture samples composed of cubes and spheres.

ID Cube Size VF of
Cube

No. of
Cube

Sphere
Size

VF of
Sphere

No. of
Sphere

SC 4.0 mm 50% 2422 4.0 mm 50% 2381
SS1 4.0 mm 50% 2398 3.0 mm 50% 5634
SS2 4.0 mm 50% 2425 2.0 mm 50% 18,873
SC1 3.0 mm 50% 5663 4.0 mm 50% 2381
SC2 2.0 mm 50% 18,938 4.0 mm 50% 2381

Figure 10a presents the deviatoric stress profiles of the five prepared mixture samples.
It is observed that the deviatoric stress decreases as the particle size decreases, irrespective
of the particle shape. For example, when comparing samples SS1/SC1 or SS2/SC2 with
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the same particle sizes, their peak strengths are nearly identical. However, the stress at
the peak for samples SS1/SC1 is higher. Additionally, samples SC1 and SC2 exhibit a
delayed attainment of peak strength compared to SS1 and SS2, indicating that smaller cube
particle sizes result in a lower Young’s modulus. Although the shear strengths of the five
samples are almost identical at the residual state, suggesting that particle size has minimal
effect on the residual state, the deviatoric stress curve exhibits the characteristic stick-slip
phenomenon. This phenomenon can be attributed to variations in force networks under
shear stress [39–42]. Previous studies have indicated that reducing the size of cube particles
can amplify the amplitude of stick-slips.

Figure 10b presents the volumetric strain profiles of the five mixture samples with
equivalent volume fractions of cubic and spherical particles but varying particle sizes under
a confining pressure of 1.0 MPa. The results demonstrate that reducing the particle size
has a substantial influence on sample expansion, as samples with smaller particle sizes
display smaller expansions. This effect can be attributed to the ability of small particles to
efficiently fill the void spaces between larger particles without significantly displacing the
surrounding particles. Furthermore, it is observed that cubic particles exhibit less dilation
compared to spherical particles of the same size. This behavior arises from the inherent
characteristics of the particle shapes: spherical particles have a higher tendency to form
dense packing structures, while cubic particles of the same volume exhibit a comparatively
looser arrangement.

Figure 10. Comparisons of (a) deviatoric stress and (b) volumetric strain for mixture samples with
different particle size ratios of cubes and spheres.

4. Microscopic Behavior
4.1. Coordination Number

The coordination number, defined by Equation (20), serves as a metric for quantifying
the contact number of individual particles and provides insights into the packing density
at the particle level [8,9,43].

Z = 2× C
N

(20)

where Z is the coordination number, C is the total contact number, and N is the total particle
number. However, it is worth noting that certain particles may have either no contact or
only one contact with adjacent particles during the shearing process, rendering them less
influential in maintaining a stable stress state. To address this issue, the mechanical average
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coordination number, denoted as Zm, is introduced (as shown in Equation (21)), which
excludes the contribution of these floating particles.

Zm =
2C− N1

N − N0 − N1
(21)

Zmc =
2Cc − N1c

Nc − N0c − N1c
(22)

Zms =
2Cs − N1s

Ns − N0s − N1s
(23)

where Zm is the number of total particles, Zmc is the number of cubic particles, and Zms is
the number of spherical particles. N1 and N0 are the numbers of particles with only one or
no contacts, and the subscripts c and s represent cubic and spherical particles, respectively.

Figure 11a presents the temporal evolution of the mechanical average coordination
number, denoted as Zm, for mixture samples with different volume fractions of cubic and
spherical particles under a confining pressure of 1.0 MPa. The initial coordination number,
Zm, is relatively high and gradually decreases during the shearing process. Furthermore, it
is observed that the coordination number, Zm, decreases as the volume fraction of cubic
particles increases. To further investigate the coordination number, Figure 11b showcases
the evolution of the mechanical average coordination number, Zmc, specifically between
cubic particles, for samples with varying volume fractions of cubic particles under the
confining pressure of 1.0 MPa. Interestingly, it is evident that Zmc decreases as the volume
fraction of cubic particles decreases. In contrast, Figure 11c demonstrates the evolution of
the mechanical average coordination number, Zms, specifically between spherical particles,
under the confining pressure of 1.0 MPa. The results indicate that Zms increases with
a decrease in the volume fraction of cubic particles. Moreover, Figure 11d illustrates
the evolution of the mechanical average coordination number, Zmsc, between cubic and
spherical particles for samples with varying volume fractions of cubic particles under the
confining pressure of 1.0 MPa. It is noteworthy that Zmsc exhibits different initial values
and initially increases, followed by a subsequent decrease as the volume fraction of cubic
particles increases. This behavior arises due to the fact that the contact number between
cubic and spherical particles is highest when the number of particles of both shapes is
equal.

4.2. Rotational Velocity Field

The average rotational velocity is an important micromechanical metric for analyzing
the mechanical behavior of binary mixture samples, and is defined as the average angular
velocity of particles in a sample [43–45]. During shearing, the rotational velocity field of
particles with different shapes is expected to differ. Figure 12 shows the variation of the
average particle rotational velocity field for different mixture samples. The results indicate
that the average particle rotational velocity increases as the FC decreases. Furthermore,
Figure 13 depicts the rotational velocity of cubic and spherical particles during shearing.
The rotational velocity of particles increases with the volume fraction of the corresponding
particle shape. Previous studies [46,47] have suggested that particle rolling can offset the
strengthening effect of inter-granular friction, while smaller particles tend to undermine
the inter-particle locking effect due to their lubrication effect. In our study, cubic particles
are demonstrated to tend to inhibit particle rotation.

The average rotational velocity serves as a crucial micromechanical parameter for
analyzing the mechanical behavior of binary mixture samples, representing the average
angular velocity of particles within a sample [43–45]. During shearing, it is expected that
particles with different shapes will exhibit varying rotational velocity fields. Figure 12
presents the variation of the average particle rotational velocity field for different mixture
samples. The results demonstrate that the average particle rotational velocity increases
as the volume fraction of cubic particles decreases. Furthermore, Figure 13 displays the
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rotational velocity of cubic and spherical particles during shearing. It is observed that
the rotational velocity of particles escalates with an increase in the volume fraction of the
corresponding particle shape. Notably, previous studies [46,47] have indicated that particle
rolling can counterbalance the strengthening effect of inter-granular friction, whereas
smaller particles tend to weaken the inter-particle locking effect due to their lubrication
effect. In our study, cubic particles have been found to tend to impede particle rotation,
supporting these prior findings.

Figure 11. Evolution of mechanical average coordination number of (a) total particles Zm, (b) cubic
particles Zmc, (c) spherical particles Zms, (d) cube-sphere particles Zmsc for different mixture samples
during the shearing stage.
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Figure 12. Evolution of average particle rotational velocity field for different mixture samples.

Figure 13. Evolution of average particle rotation velocity of (a) cubic particles and (b) spherical
particles for different mixture samples.

4.3. Contact Force Chains

Figure 14 illustrates the contact force chains in cubic-spherical mixture samples with
varying volume fractions of each particle shape. Each force is represented by a color line
connecting the particles in contact, with the color indicating the magnitude of the contact
force. Strong forces are depicted in red, while weak forces are shown in blue. The results
demonstrate that as the volume fraction of cubic particles increases, the strength of a single
force chain intensifies, but the force chain network becomes more dispersed. Conversely,
as the volume fraction of spherical particles increases, the strength of a single force chain
diminishes, but the force chain network becomes more compact. These findings indicate
that a decrease in the volume fraction of cubic particles leads to a decrease in the strength
of individual force chains, while simultaneously increasing the density of the force chain
network.



Appl. Sci. 2023, 13, 9163 15 of 19

Figure 14. Contact force chains in different cubic-spherical mixture samples: (a) C100S0, (b) C80S20,
(c) C60S40, (d) C40S60, (e) C20S80, (f) C0S100.

4.4. Fabric Anisotropy

The utilization of DEM simulation provides a significant advantage in examining the
micro-mechanical behavior at the particle scale by capturing crucial microscopic parameters,
including the anisotropy of normal and tangential forces, as well as contact orientations.
Following the shearing process, the anisotropy of normal and tangential contact forces,
along with contact orientations, was analyzed for mixture samples comprising cube-cube,
cube-sphere, and sphere-sphere contacts. To visualize the spatial distribution of contacts, a
3D rose diagram was constructed based on the collected data, as shown in Figures 15–17.
Each bar in the diagram represents the average contact number, average contact normal
force, and average contact tangential force in the respective 3D direction. Figure 15 presents
the anisotropy of normal stress among different contact types in the mixture samples.
Although the anisotropy of normal stress gradually decreases with decreasing FC, the
reduction is not significant. In contrast, the anisotropy of tangential stress increases as FC
decreases, as depicted in Figure 16. The shape of the 3D rose contact diagram transitions
from symmetrical cones to “X” shapes. Figure 17 showcases the anisotropy of contact
orientations for mixture samples involving cube-cube, cube-sphere, and sphere-sphere con-
tacts after shearing. The data indicates that contact orientations become more anisotropic
when one particle type dominates the system, while they become more isotropic when
the volume fractions of cubes and spheres are similar. The rose diagrams representing the
anisotropy of these parameters offer valuable insights into the microscopic behavior of
mixture samples.
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Figure 15. Anisotropy of normal contact forces for mixture samples between cube-cube, cube-sphere,
and sphere-sphere after shearing.

Figure 16. Anisotropy of tangent contact forces for mixture samples between cube-cube, cube-sphere,
and sphere-sphere after shearing.
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Figure 17. Anisotropy of contact orientations for mixture samples between cube-cube, cube-sphere,
and sphere-sphere after shearing.

5. Conclusions

The primary aim of this study is to explore the shear behavior of binary mixture
samples using DEM simulations of triaxial tests. These samples are composed of cubic
and spherical particles with different volume fractions and particle size ratios. The inves-
tigation analyzes the mechanical characteristics of the binary mixture samples from both
macroscopic and microscopic viewpoints. The obtained results yield several significant
conclusions, which can be summarized as follows:

• The macroscopic shear behavior of binary particle samples is profoundly influenced by
the volume fraction of cubic and spherical particles, as well as the particle size ratios.
Variations in the volume fraction of these particles result in noticeable changes in
deviatoric stress, volumetric deformation, as well as internal friction angles, dilatancy
angles, stiffness modulus, and Poisson’s ratio of the binary samples.

• From a microscopic standpoint, the analysis reveals the influence of particle char-
acteristics on the coordination number of the individual particles. As the volume
fraction of coarse particles increases, the overall coordination number of the system
decreases. More specifically, the coordination number Zmc of cubic particles decreases
as the volume fraction of spheres decreases. Conversely, the coordination number
Zms of spherical particles increases as the volume fraction of spheres decreases. These
findings demonstrate the intricate relationship between particle characteristics and
the coordination number at a microscopic level.

• The anisotropy of normal and tangential contact forces, as well as contact orientations,
is influenced by the volume fraction of particles with different shapes. The variation in
the volume fraction of particles with distinct shapes leads to changes in the directional
distribution of contact forces and orientations.

Author Contributions: Methodology, investigation, original draft preparation, Y.H.; Software, Sim-
ulation, Data curation, W.S.; Validation, Supervision, Q.X.; Validation, H.Y.; Conception, Writing—
review and editing, K.W. All authors have read and agreed to the published version of the manuscript.



Appl. Sci. 2023, 13, 9163 18 of 19

Funding: We gratefully acknowledge the financial supports provided by National Natural Science
Foundation of China No. 51608112, the Fundamental Research’Funds for the Central Universities
No.2242023K40018.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kumar, N.; Imole, O.I.; Magnanimo, V.; Luding, S. Effects of polydispersity on the micro-macro behavior of granular assemblies

under different deformation paths. Particuology 2014, 12, 64–79. [CrossRef]
2. Yang, J.; Luo, X.D. Exploring the relationship between critical state and particle shape for granular materials. J. Mech. Phys. Solids

2015, 84, 196–213.
3. Wiacek, J.; Molenda, M. Effect of particle polydispersity on micromechanical properties and energy dissipation in granular

mixtures. Particulogy 2014, 16, 91–99.
4. Cheung, G.; O’Sullivan, C. Effective simulation of flexible lateral boundaries in two- and three- dimensional DEM simulations.

Particuology 2008, 6, 483–500. [CrossRef]
5. Cundall, P.A.; Strack, O.D.L. A discrete numerical model for granular assemblies. Geotechnique 1979, 29, 47–65. [CrossRef]
6. Cho, G.C.; Dodds, J.; Santamarina, J.C. Particle shape effects on packing density, stiffness and strength: natural and crushed

sands. J. Geotech. Geoenviron. Eng. 2006, 132, 591–602.
7. Yang, J.; Wei, L.M. Collapse of loose sand with the addition of fines: The role of particle shape. Geotechnique 2012, 62, 1111–1125.
8. Gu, X.Q.; Yang, J. A discrete element analysis of elastic properties of granular materials. Granul. Matter 2013, 15, 139–147.

[CrossRef]
9. O’Sullivan, C. Particulate Discrete Element Modelling; CRC Press: Boca Raton, FL, USA, 2011.
10. Feng, Y.T. An energy-conserving contact theory for discrete element modelling of arbitrarily shaped particles: Basic framework

and general contact model. Comput. Methods Appl. Mech. Eng. 2021, 373, 113454.
11. Hu, J.Y.; Ma, T.; Ma, K. DEM-CFD simulation on clogging and degradation of air voids in double-layer porous asphalt pavement

under rainfall. J. Hydrol. 2021, 595, 126028.
12. Kodicherla, S.P.K.; Gong, G.B.; Yang, Z.X.; Krabbenhoft, K.; Fan, L.; Moy, C.K.S.; Wilkinson, S. The influence of particle elongations

on direct shear behaviour of granular materials using DEM. Granul. Matter 2019, 21, 86.
13. Qian, Q.; An, X.Z.; Zhao, H.Y.; Dong, K.J.; Yang, X.H. Numerical investigations on random close packings of cylindrical particles

with different aspect ratios. Powder Technol. 2019, 343, 79–86.
14. Jiang, M.J.; Zhang, A.; Fu, C. 3-D DEM simulations of drained triaxial tests on inherently anisotropic granulates. Eur. J. Environ.

Civ. Eng. 2017, 22, 37–56.
15. Salimi, M.J.; Lashkari, A. Undrained true triaxial response of initially anisotropic particulate assemblies using CFM-DEM. Comput.

Geotech. 2020, 124, 103509.
16. Cleary, P.W. DEM prediction of industrial and geophysical particle flows. Particuology 2010, 8, 106–118.
17. Wellmann, C.; Lillie, C.; Wriggers, P. Comparison of the macroscopic behavior of granular materials modeled by different

constitutive equations on the microscale. Finite Elem. Anal. Des. 2008, 44, 259–271.
18. Zhao, S.; Zhou, X.; Liu, W. Discrete element simulations of direct shear tests with particle angularity effect. Granul. Matter 2015,

17, 793–806.
19. Boton, M.; Azema, E.; Estrada, N.; Radja, F.; Lizcano, A. Quasistatic rheology and microstructural description of sheared granular

materials composed of platy particles. Phys. Rev. E 2013, 87, 032206.
20. Iwashita, K.; Oda, M. Rolling Resistance at Contacts in Simulation of Shear Band Development by DEM. J. Eng. Mech. 1998,

124, 285–292.
21. Ai, J.; Chen, J.F.; Rotter, J.M.; Ooi, J.Y. Assessment of rolling resistance models in discrete element simulations. Powder Technol.

2011, 206, 269–282.
22. Wu, W.; Ma, G.; Zhou, W.; Wang, D.; Chang, X.L. Force transmission and anisotropic characteristics of sheared granular materials

with rolling resistance. Granul. Matter 2019, 21, 88.
23. Xie, C.H.; Ma, H.Q.; Zhao, Y.Z. Investigation of modeling non-spherical particles by using spherical discrete element model with

rolling friction. Eng. Anal. Bound. Elem. 2019, 105, 207–220.
24. Williams, J.R.; Pentland, A.P. Superquadrics and model dynamics for discrete elements in interactive design. Eng. Comput. 1992,

9, 115–127.
25. Cleary, P.; Ha, J. Large scale industrial DEM modeling. Eng. Comput. 2000, 21, 169–204. [CrossRef]
26. Xie, C.H.; Song, T.; Zhao, Y.Z. Discrete element modling and simulation of non-spherical particles using polyhedrons and

super-ellipsoids. Powder Technol. 2020, 368, 253–267. [CrossRef]

http://doi.org/10.1016/j.partic.2013.07.011
http://dx.doi.org/10.1016/j.partic.2008.07.018
http://dx.doi.org/10.1680/geot.1979.29.1.47
http://dx.doi.org/10.1007/s10035-013-0390-3
http://dx.doi.org/10.1108/02644400410519730
http://dx.doi.org/10.1016/j.powtec.2020.05.008


Appl. Sci. 2023, 13, 9163 19 of 19

27. Zhao, Y.Z.; Xu, L.; Umbanhowar, P.B.; Lueptow, R.M. Discrete element simulation of cylindrical particles using super-ellipsoids.
Particuology 2019, 46, 55–66.

28. Liu, J.Y.; Nicot, F.; Zhou, W. Sustainability of internal structures during shear band forming in 2D granular materials. Powder
Technol. 2018, 338, 458–470.

29. Zhong, W.; Yu, A.; Liu, X.; Tong, Z.; Zhang, H. DEM/CFD-DEM modelling of non-spherical particulate systems: theoretical
developments and applications. Powder Technol. 2016, 302, 108–152.

30. Itasca. PFC 5.0 Documentation, PFC3D (Particle Flow Code in 3 Dimensions), version 5.0, user’s manual; Itasca: Minneapolis, MN,
USA, 2016.

31. Wu, K.; Remond, S.; Abriak, N.E.; Pizette, P.; Becquart, F.; Liu, S.Y. Study of the shear behavior of binary granular materials by
DEM simulations and experimental triaxial tests. Adv. Powder Technol. 2017, 28, 2198–2210.

32. Li, C.X.; Zhou, Z.Y.; Zou, R.P.; Pinson, D.; Shen, Y.S.; Yu, A.B. Experimental and numerical investigation on the packing of binary
mixtures of spheres and ellipsoids. Powder Technol. 2020, 360, 1210–1219.

33. Ji, S.Y.; Wang, S.Q.; Zhou, Z.Y. Influence of particle shape on mixing rate in rotating drums based on super-quadric DEM
simulations. Adv. Powder Technol. 2020, 31, 3540–3550.

34. Wu, K.; Pizette, P.; Becquart, F.; Remond, S.; Abriak, N.E.; Xu, W.Y.; Liu, S.Y. Experimental and numerical study of cylindrical
triaxial test on mono-sized glass beads under quasi-static loading condition. Adv. Powder Technol. 2017, 28, 155–166.

35. Wu, K.; Sun, W.C.; Liu, S.Y.; Cai., G.J. Influence of particle shape on the shear behavior of superellipsoids by discrete element
method in 3D. Adv. Powder Technol. 2021, 32, 4017–4029.

36. Tang, H.X.; Zhang, X.; Ji, S.Y. Discrete Element Analysis for Shear Band Modes of Granular Materials in Triaxial Tests. Part. Sci.
Technol. Int. J. 2016, 35, 277–290.

37. Wang, D.; Zheng, H.; Ji, Y.; Bares, J.; Behringer, R.P. Shear of granular materials composed of ellipses. Granul. Matter 2020, 22, 5.
38. Fazekas, S.; Torok, J.; Kertesz, J. Critical packing in granular shear bands. Phys. Rev. E 2007, 75, 011302.
39. Cui, D.S.; Wu, W.; Xiang, W.; Doanh, T.; Chen, Q.; Wang, S.; Liu, Q.B.; Wang, J.G. Stick-slip behaviours of dry glass beads in

triaxial compression. Granul. Matter 2017, 19, 1.
40. Adjemian, F.; Evesque, P. Experimental study of stick-slip behaviour. Int. J. Numer. Anal. Geomech. 2004, 28, 501–530. [CrossRef]
41. Alshibli, K.A.; Roussel, L.E. Experimental investigation of slip-stick behaviour in granular materials. Int. J. Numer. Anal. Meth.

Geomech. 2006, 30, 1391–1407.
42. Ozbay, A.; Cabalar, A.F. Effects of triaxial confining pressure and strain rate on stick-slip behavior of a dry granular material.

Granul. Matter 2016, 16, 60.
43. Gu, X.Q.; Huang, M.S.; Qian, J.G. Discrete element modeling of shear band in granular materials. Theor. Appl. Fract. Mech. 2014,

72, 37–49. [CrossRef]
44. Iwashita, K.; Oda, M. Micro-deformation mechanism of shear banding process based on modified distinct element method.

Powder Technol. 2000, 109, 192–205. [CrossRef]
45. Jiang, M.J.; Chen, H.; Tapias, M.; Arroyo, M.; Fang, R. Study of mechanical behavior and strain localization of methane hydrate

bearing sediments with different saturations by a new DEM model. Comput. Geotech. 2014, 57, 122–138. [CrossRef]
46. Oda, M.; Iwashita, K.; Kakiuchi, T. Importance of particle rotation in the mechanics of granular materials. Powders Grains 1997,

97, 207–210.
47. Zhou, W.; Xu, K.; Ma, G.; Yang, L.F.; Chang, X.L. Effects of particle size ratio on the macro- and microscopic behaviors of binary

mixtures at the maximum packing efficiency state. Granul. Matter 2016, 18, 81.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1002/nag.350
http://dx.doi.org/10.1016/j.tafmec.2014.06.008
http://dx.doi.org/10.1016/S0032-5910(99)00236-3
http://dx.doi.org/10.1016/j.compgeo.2014.01.012

	Introduction
	Discrete Element Simulation
	Contact Law
	Generation of Cubic Particles
	DEM Simulation Procedure

	Macroscopic Behavior
	Influence of Volume Fraction of Cubic Particles
	Influence of Initial Porosity
	Influence of Particle Size Ratio

	Microscopic Behavior
	Coordination Number
	Rotational Velocity Field
	Contact Force Chains
	Fabric Anisotropy

	Conclusions
	References

