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Abstract: Brain cancer is acknowledged as one of the most aggressive tumors, with a significant
impact on patient survival rates. Unfortunately, approximately 70% of patients diagnosed with this
malignant cancer do not survive. This paper introduces a method designed to detect and localize
brain cancer by proposing an automated approach for the detection and localization of brain cancer.
The method utilizes magnetic resonance imaging analysis. By leveraging the information provided
by brain medical images, the proposed method aims to enhance the detection and precise localization
of brain cancer to improve the prognosis and treatment outcomes for patients. We exploit the YOLO
model to automatically detect and localize brain cancer: in the analysis of 300 brain images we obtain
a precision of 0.943 and a recall of 0.923 in brain cancer detection while, relating to brain cancer
localization, an mAP_0.5 equal to 0.941 is reached, thus showing the effectiveness of the proposed
model for brain cancer detection and localization.

Keywords: brain; object detection; YOLO; deep learning; classification

1. Introduction

Brain cancer encompasses the growth of abnormal cells or a cluster of cells within the
brain or its adjacent structures. Brain tumors, which fall under the category of brain cancer,
can be classified as either malignant (i.e., cancerous) or benign (i.e., healthy). Malignant
brain tumors have the ability to invade neighboring tissues and potentially metastasize to
other parts of the body, while benign tumors typically do not invade surrounding tissues
or metastasize.

It is indeed true that brain tumors pose a significant risk for cancer-related fatalities in
children under the age of 20. As a matter of fact, brain tumors have surpassed acute lym-
phoblastic leukemia as the leading cause of solid tumor cancer deaths within this age group.
This highlights the critical importance of understanding and addressing brain tumors in the
field of pediatric oncology. Comprehensive knowledge and advancements in diagnosing
and treating brain tumors are crucial to improve outcomes and enhance the quality of life
of affected children (http://blog.braintumor.org/, accessed on 8 August 2023).

Brain tumors do indeed represent a substantial cause of solid-tumor cancer-related
deaths among young adults aged 20 to 39. They rank as the third leading cause of solid
tumor cancer fatalities in this age bracket [1]. Each year, over 5000 individuals succumb to
brain tumors, highlighting the significant toll this disease takes on affected individuals.

Moreover, in the United Kingdom, there is an estimated population of at least
102,000 children and adults currently living with brain tumors. This statistic emphasizes
the prevalence of brain tumors and the profound impact they have on individuals and their
families. The number of people living with brain tumors underscores the need for contin-
ued research [2], improved treatments [3], and support for affected individuals to enhance
their quality of life and overall outcomes (https://www.cancerresearchuk.org/health-

Appl. Sci. 2023, 13, 9158. https://doi.org/10.3390/app13169158 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13169158
https://doi.org/10.3390/app13169158
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-9425-1657
http://blog.braintumor.org/
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/brain-other-cns-and-intracranial-tumours
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/brain-other-cns-and-intracranial-tumours
https://doi.org/10.3390/app13169158
https://www.mdpi.com/journal/applsci
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/brain-other-cns-and-intracranial-tumours
https://www.mdpi.com/article/10.3390/app13169158?type=check_update&version=1


Appl. Sci. 2023, 13, 9158 2 of 17

professional/cancer-statistics/statistics-by-cancer-type/brain-other-cns-and-intracranial-
tumours, accessed on 8 August 2023).

Brain tumors can indeed have a profound impact on life expectancy. On average,
individuals diagnosed with brain tumors may experience a reduction in life expectancy of
approximately 20 years. This reduction in life expectancy is considered one of the highest
among all types of cancer.

However, it is crucial to note that survival rates for brain tumors can vary significantly
depending on various factors. These factors include the specific type of tumor, its grade
(degree of malignancy), location, and individual characteristics of the patient. The men-
tioned statistic stating that only 19% of adults survive for five years after a cancer diagnosis
is a general estimate and may not apply uniformly to all types and stages of brain tumors.
Survival rates can vary widely, and it is important to consider individual circumstances
and factors when assessing a prognosis and discussing treatment options with healthcare
professionals (https://www.cancer.net/cancer-types/brain-tumor/statistics, accessed on 8
August 2023).

Brain cancers can certainly have a significant impact on both physical and cognitive
abilities due to their location within the control center of the brain, which governs move-
ment and emotion. The brain plays a vital role in coordinating various bodily functions,
including motor skills, sensory perception, cognition, and emotional regulation. When
brain tumors develop in these crucial areas, they can disrupt the normal functioning of
these processes [4].

Treatment approaches for brain tumors, such as surgery, radiation therapy, and
chemotherapy, aim to target and manage the tumors while minimizing damage to sur-
rounding healthy brain tissue [5,6]. In addition to these treatments, rehabilitation therapies,
such as physical therapy, occupational therapy, and speech therapy, may be employed to
help patients regain or adapt to changes in their physical and cognitive abilities. These
rehabilitation therapies can assist in restoring or maximizing functional abilities, promot-
ing independence, and improving the overall quality of life for individuals affected by
brain tumors.

In recent years, we witnessed a growing interest in artificial intelligence, with particu-
lar regard to object detection, a computer vision technique that involves identifying and
locating objects of interest within digital images or video frames. It represents a fundamen-
tal task in many applications, including autonomous vehicles, surveillance systems, image
and video analysis [7], robotics, and more [8].

The aim of object detection is to not only recognize the presence of objects but also
determine their precise locations and boundaries within an image or a video. This is typically
achieved by drawing bounding boxes around the objects and labeling them with correspond-
ing class labels, indicating the type of objects detected (e.g., cars, pedestrians, animals).

Starting from these considerations, in this paper, we investigate the possibility to detect
and localize brain cancer starting from magnetic resonance images (MRI), analyzed with
object detection techniques. In particular, the You Only Look Once (YOLO) object detection
model is exploited for this purpose. The key idea behind the YOLO model is that it treats
object detection as a regression problem, where a neural network is trained to directly
predict the bounding boxes and class probabilities of objects within an image. Unlike
traditional object detection methods that use complex multi-stage pipelines, YOLO uses a
single neural network to simultaneously predict the bounding boxes and class probabilities
for multiple objects in an image. We exploit this model by considering its efficiency and
real-time performance and its ability to achieve high accuracy while maintaining fast
inference speeds.

The paper proceeds as follows: in the next section the proposed method for brain
cancer detection and localization is presented; in Section 3, the experimental analysis results
are discussed; in Section 4, the state-of-the-art literature is presented; and finally, in the last
section, the conclusion and future research lines are drawn.
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2. The Method

In this section, we describe the proposed method for automatic detection and local-
ization of brain cancer by analyzing brain MRIs. The focus of this paper is specifically on
brain MRIs, but the proposed method can be readily applied to other types of bioimages,
such as those related to the lung or other organs.

Figure 1 shows the workflow of the proposed method, designed to detect and localize
brain cancer.

Figure 1. The workflow of the proposed method for brain cancer detection and localization.

In order to build an effective deep learning model for the detection and localization
of brain cancer from MRI scans, it is essential to have a dataset that consists of brain
cancer MRIs along with corresponding annotations (i.e., bounding boxes) indicating the
localization of the cancerous regions.

We highlight the importance of having a high-quality dataset that includes both
the MRIs and precise annotations of the cancer localization. Such a dataset serves as
the foundation for training the object detection model effectively. By having accurate
annotations, the model can learn to identify and locate the specific regions within the brain
MRI scans that indicate the presence of cancer.

Having a reliable and well-annotated dataset is crucial in the development of a robust
and accurate object detection model for brain cancer detection and localization. It ensures
that the model is trained on representative and informative data, enabling it to make precise
predictions when applied to new, unseen MRI scans.

In Figure 2, we show an example of an MRI related to brain cancer.

Figure 2. An example of brain MRI.

Within the MRI shown in Figure 2, it is possible to observe a lighter gray, almost white
area on the left side of the image, indicating where the brain tumor is located.
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In order to construct a model that is both efficient and capable of accurately predicting
unseen images, a diverse dataset was compiled. This dataset comprises images captured
from various angles, under different conditions, and featuring different types of tumors.
Each image within the dataset has a unique size. However, to facilitate further analysis,
a preprocessing step is required to resize all the images to a consistent dimension.

Once the images are obtained, we need to define the class for the detection of the
bounding box for the brain MRI: in this case, we have one class that is tumor, related to the
brain cancer presence.

We annotated each image by drawing bounding boxes around each detected object.
This annotation process was carried out using the Labelbox web application (https://
labelbox.com/, accessed on 8 August 2023), i.e., a platform designed to perform data
annotation tasks.

The subsequent step involves image augmentation, which refers to a collection of
techniques that expand the existing dataset without the need for gathering new samples.
Data augmentation involves applying controlled random modifications to existing images
and generating modified versions of them. This technique is commonly employed in
training artificial neural networks, as it enables them to “learn” more effectively and
accurately as the size of the training dataset grows.

Specifically, we employ data augmentation techniques to generate modified images
of brain MRIs with controlled random variations, such as rotations, flips, cuts, and trims.
The objective behind applying data augmentation in this context is to make the model
capable of effectively detecting tumors regardless of their position within the image. Addi-
tionally, augmented data are utilized to address the issue of overfitting, which occurs when
a statistical model becomes too specialized in fitting the observed data sample due to an
excessive number of parameters compared to the number of observations.

By introducing variations through data augmentation, the structured neural network
can learn to recognize recurring patterns from the augmented data, rather than simply
memorizing specific examples. This helps the model develop more generalized rules and
reduces the chances of misclassifying unseen patterns. Data augmentation plays a crucial
role in improving the model’s ability to generalize and perform well on unseen images.

After acquiring the augmented brain MRIs, along with the corresponding information
regarding cancer localization (i.e., the class) and bounding boxes, the next step is to develop
a deep learning model.

As stated in the introduction section, in this paper we utilize the YOLO model [9–11].
The YOLO model [12], which was introduced by J. Redmon et al. in 2016, serves as

the pioneering one-stage deep learning detector. YOLO is specifically designed as an object
detection model that performs both image classification and accurate object localization
within the images.

The distinctive feature of YOLO, setting it apart from other networks, is its self-
contained pipeline that carries out the entire process independently. In YOLO, the input
is an image, and the output consists of two components: a bounding box vector and the
associated class prediction for each cell.

During analysis, each image is divided into an S × S grid of cells. If an object falls
within the center of a cell, that cell is responsible for detecting the object. The bounding
box prediction consists of five components: (x, y, w, h, confidence). The (x, y) coordinates
represent the center of the bounding box relative to the cell’s position in the grid. These
coordinates are normalized to values between 0 and 1. The dimensions of the box (w, h) are
also normalized to a range of [0, 1], relative to the image dimensions. In total, the predictions
of the bounding boxes result in S × S × B × 5 outputs, where B denotes the number of
bounding boxes predicted per cell [13].

When compared to existing object detection models, YOLO has been demonstrated to
be notably faster [14,15].

This efficiency is primarily achieved because YOLO performs the recognition task
in a single phase, without dividing it into multiple stages. Instead of having separate

https://labelbox.com/
https://labelbox.com/


Appl. Sci. 2023, 13, 9158 5 of 17

stages for region proposal and object classification, YOLO directly predicts bounding boxes,
object probabilities, and classes of objects present in the input image. This streamlined
approach contributes to the significant speed advantage of YOLO compared to other object
detection models.

We choose to utilize the YOLO model for several reasons when compared to other deep
learning models for object detection. Despite the fact that YOLO may have more localization
errors [16], it exhibits a lower tendency to identify false positives in the background of an
image. Furthermore, YOLO is significantly faster than many other models [13,17]. These
factors contribute to YOLO being widely regarded as one of the top convolutional neural
network models for object detection.

It is important to note that there exist multiple versions of the YOLO model. For this
paper, we consider and implement YOLOv8s (https://docs.ultralytics.com/, accessed
on 8 August 2023) using the PyTorch framework (https://pytorch.org/, accessed on 8
August 2023).

The reason why we chose the YOLOv8 model is the significant improvement over
previous YOLO models in a number of ways, including the following:

• Anchor-free detection. YOLOv8 does away with the use of anchor boxes, which were
a key component of previous YOLO models. Anchor boxes are pre-defined bounding
boxes that are used to classify objects in an image. However, anchor boxes can be
restrictive, and they can make it difficult for the model to learn to detect objects that
are not well-represented by the anchor boxes. YOLOv8 uses a new technique called
anchor-free detection, which allows the model to learn to detect objects of any size
and shape.

• C3 convolutions. YOLOv8 uses a new type of convolution called C3 convolutions.
C3 convolutions are more efficient than traditional convolutions, and they allow the
model to learn more complex features.

• Mosaic augmentation. YOLOv8 uses a new type of data augmentation called mosaic
augmentation. Mosaic augmentation creates a new image by stitching together four
randomly cropped images. This helps the model to learn to generalize to different
object appearances and different lighting conditions.

As a result of these improvements, YOLOv8 is able to achieve state-of-the-art object
detection performance on a number of benchmarks. For example, YOLOv8 achieves a
mean average precision (mAP) of 50.1% on the COCO dataset, which is a benchmark for
object detection.

Adopting YOLO in medical image classification offers several benefits and advantages:

• Real-time detection: YOLO is known for its real-time object detection capabilities.
In the context of medical image classification, this means that YOLO can quickly and
efficiently identify abnormalities, lesions, or specific medical conditions in real-time,
allowing for faster diagnosis and treatment planning.

• Object localization: YOLO is designed to not only classify objects but also precisely
localize them within the image. In medical imaging, this localization can be crucial for
identifying the exact location and extent of abnormalities, aiding medical professionals
in making accurate diagnoses.

• Handling multiple classes: YOLO can handle multiple classes or categories simultane-
ously. In medical image classification, this is advantageous as it allows the model to
detect and classify various medical conditions or abnormalities within a single image.

• Single-pass approach: YOLO follows a single-pass approach, making predictions in
one pass through the neural network. This design makes YOLO faster and more
computationally efficient compared to some other object detection models, making it
suitable for large-scale medical image datasets.

• Transfer learning: YOLO can leverage pre-trained models on large image datasets
(e.g., ImageNet) for feature extraction and then fine-tune the model on medical image
datasets. This transfer learning approach allows the model to learn relevant features

https://docs.ultralytics.com/
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from general images and then adapt them to medical images, even with limited labeled
medical data.

• Generalizability: YOLO has shown promising generalization capabilities across differ-
ent domains and tasks. This is essential in medical image classification, as medical
datasets can vary in terms of image quality, patient demographics, and equipment,
and a model that can generalize well is desirable.

• Ongoing research and development: YOLO is an actively researched object detection
architecture, and advancements in its design and training methodologies continue
to improve its performance. This ongoing research ensures that adopting YOLO in
medical image classification can benefit from the latest advancements in computer
vision and deep learning.

Overall, the use of YOLO in medical image classification can lead to faster, more
accurate, and more efficient diagnosis and analysis of medical conditions, ultimately
improving patient care and outcomes.

The architecture of the YOLOv8s is shown in Table 1.

Table 1. The architecture of the YOLOv8s model for object detection.

Layer From n Params Module Arguments

0 −1 1 928 modules.Conv [3, 32, 3, 2]

1 −1 1 18,560 modules.Conv [32, 64, 3, 2]

2 −1 1 29,056 modules.C2f [64, 64, 1, True]

3 −1 1 73,984 modules.Conv [64, 128, 3, 2]

4 −1 2 197,632 modules.C2f [128, 128, 2, True]

5 −1 1 295,424 modules.Conv [128, 256, 3, 2]

6 −1 2 788,480 modules.C2f [256, 256, 2, True]

7 −1 1 1,180,672 modules.Conv [256, 512, 3, 2]

8 −1 1 1,838,080 modules.C2f [512, 512, 1, True]

9 −1 1 656,896 modules.SPPF [512, 512, 5]

10 −1 1 0 upsampling.Upsample [None, 2, ‘nearest’]

11 [−1, 6] 1 0 modules.Concat [1]

12 −1 1 591,360 modules.C2f [768, 256, 1]

13 −1 1 0 upsampling.Upsample [None, 2, ‘nearest’]

14 [−1, 4] 1 0 modules.Concat [1]

15 −1 1 148,224 modules.C2f [384, 128, 1]

16 −1 1 147,712 modules.Conv [128, 128, 3, 2]

17 [−1, 12] 1 0 modules.Concat [1]

18 −1 1 493,056 modules.C2f [384, 256, 1]

19 −1 1 590,336 modules.Con [256, 256, 3, 2]

20 [−1, 9] 1 0 modules.Concat [1]

21 −1 1 1,969,152 modules.C2f [768, 512, 1]

22 [15, 18, 21] 1 2,116,822 modules.Detect [2, [128, 256, 512]]

As depicted in Figure 1, the YOLO network architecture comprises two main compo-
nents: the backbone and the head. The backbone, as illustrated in Table 1, is a convolutional
neural network responsible for extracting and consolidating image features at various
scales or granularities. On the other hand, the head, also shown in Table 1, takes in features
from the backbone and carries out the box and class prediction processes.
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Situated between the backbone and the head is the neck, which consists of a series of
layers that blend and merge image features before forwarding them to the prediction stage.
This intermediate step allows for effective combination and transformation of features,
enhancing the network’s ability to make accurate predictions.

Overall, the YOLO architecture integrates these components to enable comprehen-
sive feature extraction, feature fusion, and prediction steps, contributing to its object
detection capabilities.

Once the YOLO model is trained, it will be able to perform the following operations
on unseen brain MRIs:

1. Classify the image as cancerous;
2. Detect the area (i.e., localize) related to brain cancer;
3. Assign a probability of the cancer presence.

3. Experimental Analysis

In this section, we present the results of the proposed experimental analysis, which
aims to demonstrate the effectiveness of the proposed YOLO model in detecting and
localizing brain cancer.

3.1. The Dataset

We obtained the real-world data that we analyzed from a repository freely available
for research purposes [18]. The exploited dataset is composed of 300 brain MRIs. We
considered 70% of the dataset for training (210 images), 20% for validation (60 images),
and the remaining 10% for testing (30 images). The dataset is labeled with the “tumor”
label, with the detail related to the bounding box related to the label localization.

The dataset is composed of brain images relating to different types of brain tumors
(i.e., Meningioma, Pituitary, and Glioma), of different dimensions and located in different
areas of the brain. Considering that different types of tumors were considered (and that in
the dataset they are represented with the same number of images), the images of healthy
subjects are equal to 25% of the total images.

We resized all the images to the dimension of 512 × 512 pixels. Regarding the model
parameters, we used a batch size of 16 and we set the number of epochs to 50. As optimizer,
the stochastic gradient descent (SGD) was exploited. We set the patience parameter to 50,
the workers to 8, the maximum number of detections per image to 300, the momentum to
0.937, and the intersection over union (IoU) threshold for Non Maxima Suppression (NMS)
to 0.7.

We utilized the Roboflow web application to perform data augmentation (https://
roboflow.com/, accessed on 8 August 2023) by randomly rotating the pictures 90◦ clockwise,
90◦ counterclockwise, and upside down.

Roboflow is a platform that facilitates developers in managing computer vision projects
by providing data management capabilities. It enables the integration of images along with
annotations created on Labelbox and offers the ability to apply various transformations to
the images.

3.2. The Results

Figure 3 presents a collection of plots illustrating the performance of the proposed
model for detecting and localizing brain cancer.

The 50 epochs were completed in 0.095 h by exploiting an NVIDIA Tesla T4 graphic
card with 16 GB of memory, with a CUDA Version equal to 12.0. Moreover, we used the
3.10.12 version of the Python compiler with the Torch library (version 2.0.1).

In detail, in Figure 3 there are 12 plots, 6 plots in each line.
The first plot in Figure 3 (i.e., the Box plot) shows the box loss metric trend. The plot

represents the training step, where the values of the loss are plotted on the y-axis (ordinates),
and the different epochs are represented on the x-axis (abscissa). In object detection tasks,
which involve both localization and classification, the primary method for localizing

https://roboflow.com/
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multiple objects in an image is through bounding boxes. The loss function used in this
context calculates the error between the predicted bounding boxes and the ground truth
bounding boxes. The goal of this loss function is to minimize the discrepancy between the
predicted and actual bounding boxes. As the loss decreases over epochs, it indicates that the
network is learning and improving its ability to accurately predict tight bounding boxes.

Figure 3. The experimental analysis results.

The second plot in Figure 3 (i.e., Objectness) shows the objectness loss. In the training
step, the plot represents the behavior of the objectness and class score in the deep learning
model for object detection. The objectness refers to the confidence of the model in the
presence of an object within a given bounding box. On the other hand, the class score
represents the conditional probability of a specific class, given that an object exists in that
box. The total confidence score for each class is obtained by multiplying the objectness and
the class score. In this scenario, it is desirable for the objectness to decrease towards zero
as the number of epochs increases. This indicates that the model becomes more confident
in accurately detecting the presence of objects. Therefore, the plot shows the trend of the
objectness scores over the epochs during the training process.

The third plot in Figure 3 is related to the Classification. In the training step, the plot
illustrates the classification aspect of the object detection task. The objective of classification
is twofold: to determine whether an object is present in the image and to identify the
specific class of the object. In the plot, the loss for classification is depicted, which assesses
the accuracy of the classification for each predicted bounding box. Each bounding box
can potentially contain an object class or be classified as “background”. The loss function
commonly employed for classification tasks is the cross-entropy loss. The plot showcases
the progression of the cross-entropy loss over the epochs during the training phase. It
reflects how well the model is learning to correctly classify objects within the predicted
bounding boxes.

The val Box, the val Objectness, and the val Classification plots are related to the loss
trends for the box loss metric, for the objectness, and for the classification loss relating to
the testing dataset: as in the previous plots, in these cases we expect a decreasing trend
when the number of epochs increases.

The fourth and the fifth plots (i.e., Precision and Recall) show the value for each epoch
for the precision and the recall metrics.

Precision is a metric that quantifies the proportion of positive predictions that are
accurately classified. It takes into consideration the occurrence of false positives, which
refers to cases that were incorrectly identified as positive or flagged for inclusion. Precision
can be computed as

Precision =
TP

TP + FP
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Recall, also known as sensitivity or true positive rate, is a metric that assesses the
proportion of actual positive instances that were correctly predicted as positive by the
model. It takes into account false negatives, which are cases that should have been flagged
for inclusion as positive but were incorrectly classified as negative by the model. Recall can
be computed as

Recall =
TP

TP + FN
As the number of epochs increases, both precision and recall should exhibit an upward

trend. This trend, indeed, is demonstrated in the graphs depicting these metrics. Notably,
precision and recall values ranging from 0 to 1 are considered desirable. Achieving precision
and recall values exceeding 0.9 in the final epochs is particularly noteworthy, as it indicates
that the deep learning model has effectively learned and achieved high performance in the
task at hand.

Specificity (also called true negative rate) represents the probability that an actual
negative will test negative. It is computed as follows:

Speci f icity =
TN

TN + FP

AP (i.e., average precision) is a widely used metric for evaluating the accuracy of
object detectors: it computes the average precision value by considering the recall values
ranging from 0 to 1. Average precision provides a comprehensive measure of the model’s
performance across different recall levels and is a valuable metric for assessing the accuracy
and effectiveness of object detection algorithms.

The computation of mean average precision (mAP) involves several components, in-
cluding intersection over union (IOU), precision, recall, precision–recall curve, and average
precision (AP).

In object detection, models predict both the bounding box and the category of objects
within an image. IOU is utilized to evaluate whether the predicted bounding box accurately
matches the ground truth bounding box. It quantifies the overlap between the predicted
and actual bounding boxes.

The precision–recall curve showcases the trade-off between precision and recall for
various classification thresholds. It provides insights into the model’s performance across
different operating points.

AP (average precision) is the average precision calculated at each point on the precision–
recall curve. It summarizes the model’s overall performance in object detection.

To calculate mAP, the AP values obtained from multiple classes or categories are
averaged, providing a comprehensive evaluation of the model’s performance across all
object classes.

IOU (intersection over union) is a measure that quantifies the extent of overlap between
two bounding boxes. It is calculated as the ratio of the intersection area to the union area
of the two bounding boxes. The IOU value ranges from 0.0 to 1.0, where 1.0 indicates a
perfect match or complete overlap, and 0.0 indicates no overlap at all.

The formula for computing the IOU is defined as follows:

IOU =
Area o f Intersection

Area o f Union

This formula compares the regions covered by two bounding boxes and provides
a standardized measure of their overlap, which is useful in evaluating the accuracy of
bounding box predictions in object detection tasks.

During the evaluation of object detection models, it is essential to establish a criterion
for determining successful recognition based on the overlap of bounding boxes with ground
truth data. IOUs (intersection over union) are employed for this purpose.
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The metric mAP@0.5 represents the accuracy when an IOU threshold of 0.5 is used.
In other words, if the overlap between the predicted bounding box and the ground truth
bounding box exceeds 50%, the detection is considered successful.

As the IOU threshold increases, the required accuracy for bounding box detection
becomes stricter, making it more challenging to achieve. Consequently, a higher IOU thresh-
old, such as mAP@0.75, typically yields a lower mAP value compared to mAP@0.5. This
indicates that achieving accurate bounding box detection with a higher overlap requirement
is more difficult.

The mean average precision (mAP) is calculated as an average of the average precision
(AP) values. Each AP value represents the precision–recall trade-off for a specific class in
object detection.

To compute mAP, the AP values obtained for all classes are further averaged, resulting
in a single metric that summarizes the overall performance of the object detection model
across multiple object classes. This aggregation allows for a comprehensive evaluation of
the model’s accuracy and effectiveness in detecting objects across various categories.

Figure 3 shows, in the mAP@0.5 and the mAP@0.5:0.95 plots, respectively, the mAP
value for IOU = 50 and IOU ranging from 50 to 95 (i.e., this value represents different IoU
thresholds from 0.5 to 0.95, with a step size equal to 0.05 on average mAP).

Table 2 shows the values obtained for Precision, Recall, mAP_0.5, and mAP_0.5:0.95
metrics.

Table 2. Classification results.

Step Image Labels Precision Recall Specificity mAP_0.5 mAP_0.5:0.95

Training 60 59 0.948 0.926 0.931 0.935 0.388
Testing 60 59 0.943 0.932 0.938 0.941 0.421

From Table 2, we can note that the precision and the recall metrics obtain interesting
values in both the training and testing steps: as a matter of fact, the precision is equal to
0.948 in training and 0.943 in testing, while the recall is equal to 0.926 in training and 0.932
in testing. Furthermore, the mAP_0.5 obtains good performances, equal to 0.935 and 0.941,
respectively, in the training and in the testing step.

To thoroughly analyze the performance achieved in terms of precision and recall, let
us delve into the details of the results; Figure 4 displays the precision and recall values
plotted on the precision–recall graph.

By examining the precision and recall values obtained, we can assess the model’s
performance in terms of both accuracy and completeness. A high-precision value indicates
a low false positive rate, while a high recall value indicates a low false negative rate.
Striking a balance between precision and recall is crucial for achieving an effective object
detection model.

The trend of the precision–recall plot is generally expected to be monotonically de-
creasing. This is because there is typically a trade-off between precision and recall in object
detection tasks. Increasing one metric often leads to a decrease in the other. The trade-off be-
tween precision and recall arises from the nature of the detection problem. Setting a higher
threshold for classification as a positive prediction may increase precision but decrease
recall, as only highly confident predictions are accepted. Conversely, lowering the thresh-
old to include more predictions can increase recall but potentially decrease precision by
including more false positives. However, it is important to note that there can be exceptions
and variations in the precision–recall graph. In certain cases, due to specific circumstances
or insufficient data, the graph may not exhibit a strictly monotonically decreasing trend.
These exceptions can arise from factors such as class imbalance, outliers, or unique char-
acteristics of the dataset. Therefore, while the monotonically decreasing trend is typical,
it is essential to carefully analyze the specific characteristics of the precision–recall graph
in each scenario. From the plot in Figure 4, we can see that this plot exhibits a decreasing
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trend. The precision–recall plot also shows the area under the curve (AUC) values related
to the brain tumor detection mAP@0.5. As previously stated, the precision–recall trend is
expected to be monotonically decreasing: this behavior is shown by the precision–recall
plot related to a value of mAP@0.5 (with an AUC equal to 0.941).

Figure 4. The precision–recall graph.

Figure 5 presents the normalized confusion matrix of the proposed YOLO model.
The confusion matrix is utilized to gain a more detailed understanding of the model’s
performance across different classes, identifying both the best-performing and worst-
performing classes. Furthermore, the confusion matrix helps in identifying the specific
instances that have been misclassified and provides insights into the misclassification
patterns. By examining the confusion matrix, one can observe the distribution of predictions
and actual labels for each class. It allows for a comprehensive evaluation of the model’s
accuracy, highlighting areas where misclassifications are more prominent and identifying
potential sources of errors. This information is valuable in guiding improvements and
refining the model’s performance in object detection tasks.

Figure 5. Normalized confusion matrix.

From the normalized confusion matrix, we can confirm the effectiveness of the model
for brain cancer detection and localization; as a matter of fact, the model is able to detect
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the brain tumor area and to discern between the brain and image background. In the case
of the YOLO confusion matrix, the columns represent the predicted classes, and they are
normalized (in our case the classes are tumor and background, i.e., everything that is not
part of the images relating to the tumor is therefore healthy tissue). As a result, the sum of
each of the columns would be equal to 1. Regarding the background class, according to the
YOLO developers, it is not predicted by the model.

3.3. Prediction Examples

With the aim to show how the proposed method can be employed in the real world,
in Figures 6 and 7 we respectively show a set of brain images with the tumor label (with
the bounding box added by radiologists) and the same images with the cancerous area
predicted by the proposed model.

Figure 6. Sixteen examples of brain images with the related label provided by radiologists, designed
to confirm the cancer localization.

In detail, in Figure 6, for each brain image there is the detail about the bounding box
(highlighted in red) related to the localization. We examine both brain images associated
with cancer and those depicting healthy individuals. In the case of healthy brain images,
the proposed method does not add the red bounding box.

In Figure 7, there are the same images shown in Figure 6, but in this case, the label is
provided by the proposed model: in this way, we can compare the cancerous area drawn
by radiologists with the ones automatically drawn by the proposed method.
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Figure 7. The sixteen images once processed by the proposed model: it is possible to note the
red bounding boxes, automatically added by the proposed model, related to the cancerous area.
Moreover, for each bounding box, there is the detail about the prediction percentage.

As shown in Figure 7, after processing the sixteen images using the proposed model,
it is evident that the model automatically adds red bounding boxes to indicate areas related
to cancer. Furthermore, each bounding box is accompanied by a prediction percentage.
As can be seen from Figure 7, tumors of different sizes were considered, to verify that the
model was able to generalize the brain tumor and not focus only on a certain type of cancer.
In fact, from the figure it is possible to note that the area relating to the cancer is correctly
identified regardless of the size, and regardless of the coloring of the area, which in some
cases is white, while in others it is gray and, in other cases, the same tumor area has both
white and gray areas. This aspect is symptomatic of a model that is able to adequately
generalize the area to be located, being able to correctly identify cancerous areas, regardless
of size, coloration, and the area in which they appear.

4. Related Work

In this section, we provide an overview of the current state-of-the-art methods in the
field of brain cancer detection using machine learning techniques.

Isselmou and colleagues [19] have presented a method aimed at discriminating be-
tween benign and malignant brain tumors by analyzing magnetic resonance images (MRI).
Their proposed approach has achieved an impressive accuracy of approximately 95%.
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In their study, Badran et al. [20] employed a neural network algorithm to classify
medical images as either benign or malignant tumors. However, their implementation of
the canny edge detection algorithm resulted in an inaccuracy rate of approximately 15–16%.

Authors in [21] investigated the utilization of the multi-layer perceptron (MLP) and
naive Bayes classification algorithms to differentiate between malignant and benign brain
tumors. They focused on analyzing texture features extracted from the medical images to
achieve accurate tumor classification.

Ramteke et al. [22] conducted a study where they explored statistical texture features
extracted from both normal and malignant medical images. They employed the nearest
neighbors classifier as the classification algorithm for their analysis. Their study reported a
classification rate of 80% for distinguishing between normal and malignant medical images
using these texture features.

Xuan et al. [23] proposed a method that involves extracting features based on texture,
symmetry, and intensity from brain medical images. They employed the AdaBoost algo-
rithm to construct a model for classifying the MR images as either normal or abnormal.
Their approach achieved an impressive accuracy of 96.82% in this classification task.

Gadpayle and colleagues [24] investigated the use of texture features along with neural
network and nearest neighbors classifiers for classifying brain medical images as either
normal or abnormal. Their study reported an accuracy of 70% when employing the nearest
neighbors classifier, and an accuracy of 72.5% when using the neural network classifier for
this classification task.

A hybrid approach combining a genetic algorithm and support vector machine (SVM)
was proposed in [25] for the classification of brain medical images. The features utilized in
this approach encompassed statistical, wavelet, and frequency transformations. The aver-
age accuracy achieved by this hybrid method was reported to be 83.22%, with the accuracy
range varying between 79% and 87%.

In a study conducted by researchers in [26], the effectiveness of neural networks in
detecting brain cancer in MRI images was investigated. The study focused on three types of
brain cancer: Acoustic glioma, Optic glioma, and Astrocytoma. They achieved an average
recognition rate of 78% using neural networks. The dataset used for the study consisted of
a total of 30 MRI images.

Reis and colleagues [27] proposed the YOLOv8 model as a generalized model for
real-time detection of flying objects that can be used for transfer learning. They achieve this
by training a first generalized model on a dataset containing 40 different classes of flying
objects, by extracting abstract feature representations. The first model obtains a mAP50-95
of 0.685 and the refined one obtains an improvement of the mAP50-95 metric equal to
0.835 when two datasets are considered: the first one of 11,998 images and the second
one of 15,064 images, for a total of 27,062 images. The results obtained by the authors
are extremely interesting; unlike them, we propose the detection of brain cancer cells,
which from a graphical point of view are objects not often different from the background
of the image and therefore difficult to identify. Moreover, differently from the proposed
method, our dataset is composed of a decidedly smaller number of images; in fact, typically
in the medical field, images that are accurately labeled by medical personnel are not
often available.

Paul and colleagues [28] considered the YOLOv5 model for the detection of the
following brain cancers: Meningioma, Pituitary, and Glioma. They exploited 720 images for
model training and 180 images for validation. The following performances were obtained:
with regard to the Meningiom detection, an accuracy of 0.129 was obtained; relating to
the Piuitary detection, an accuracy of 0.165 was reached; and for the Glioma identification,
the accuracy was 0.140. The mAP@0.5 metric was 0.145, while the mAP@05_0.95 was equal
to 0.08, thus demonstrating that the task to detect brain cancer is hard. In any case, we
obtain better performances with respect to the authors in [28]; in fact, while the authors
obtained values for the mAP@0.5 metric of 0.145 and for the mAP@05_0.95 equal to 0.08,
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the YOLOv8 model we adopted obtained values equal to 0.935 and 0.388, respectively, in
the validation step.

Selvy and colleagues [29] propose a method designed to detect whether a brain image
is related to cancer. Furthermore, they experimented with the application of different
segmentation algorithms (for instance, multilevel thresholding and OTSU thresholding).
Differently from the proposed method, we propose the adoption of a model designed
to perform the classification and the segmentation in one step, while authors in [29]
consider a neural network to perform the image classification and a set of algorithms to
perform the segmentation (i.e., the segmentation is performed without the adoption of
deep learning; as a matter of fact, in the paper, the authors do not present the mAP@0.5
and the mAP@05_0.95 metrics, considering that the main aim of their method is the brain
cancer image classification).

Alsubai and colleagues [30] propose a hybrid deep learning convolutional neural
network long short-term memory model for classifying and predicting brain tumors. Differ-
ently from the proposed method, the authors in [30] propose a method designed to classify
an image as cancerous or healthy, i.e., they do not aim to detect the cancerous area on the
image (whether the presence of cancer is detected); in fact, also in this paper, the authors
do not consider the mAP@0.5 and the mAP@05_0.95 metrics.

Saeedi and colleagues [31] propose several models to detect brain cancer from medical
images. They obtain the following accuracies: 0.86, 0.82, and 0.80 when the K-nearest
neighbors, the random forest, and the support vector machine are considered, respectively.
In contrast, the proposed method is able to reach a precision of 0.943 and a recall of 0.932 in
brain cancer detection, and, differently from the authors in [31], we also consider automatic
cancer localization.

Authors in [32] propose the adoption of the YOLOv7 model for gastric cancer detection
through the integration of a squeeze and excitation attention block. They obtain precision,
recall, F1-score, and mean average precision values of 0.72, 0.69, 0.71, and 0.71, respectively.
By employing the modified YOLOv7 model, the authors state that endoscopists can benefit
from real-time lesion detection and identification, leading to improved analysis of endo-
scopic images, facilitating early diagnosis, and diminishing the need for extensive operator
expertise. Differently from authors in [32], the proposed paper is focused on brain cancer
detection and localization, and we obtain following performances: a precision equal to
0.943, a recall of 0.932, and an mAP_0.5 of 0.941.

Masood and colleagues [33] propose the adoption of a Mask Region Based Con-
volutional Neural Networks (RCNN) to detect and localize brain cancer. They exploit
pre-trained weights obtained from the COCO dataset and employed transfer learning
to fine-tune the model on MRI datasets for brain cancer segmentation, by obtaining an
accuracy equal to 0.95 and a mAP of 0.94.

Dipu and colleagues [34] consider several deep learning models for the brain cancer
detection task: as a matter of fact, they exploit seven neural network-based object detection
algorithms, i.e., YOLO V3 Pytorch, YOLO V4 Darknet, Scaled YOLO V4, YOLO V4 Tiny,
YOLO V5, Faster-RCNN, and Detectron2. Their main outcome is that the YOLO V5 model
provided the best performance, as it was able to reach an mAP_0.5 score of 0.95; in contrast,
the YOLO V3 Pytorch model provided the worst accuracy, as it earned an mAP_0.5 equal
to 0.84.

5. Conclusions and Future Work

In this paper, we presented a method for detecting and localizing the presence of
cancer in brain MRIs. The proposed method aims to contribute to timely diagnosis and the
prompt initiation of therapy, recognizing the importance of early intervention in improving
patient outcomes. We exploit the YOLOv8s object detection: in the experimental analysis
performed on 300 brain MRIs, we achieved a precision of 0.943 and a recall of 0.923 in the
detection of brain cancer. Furthermore, in terms of brain cancer localization, we obtained
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an mAP of 0.941 at an IOU threshold of 0.5. These results demonstrate the effectiveness of
the proposed model for both the detection and localization of brain cancer.

In future work, we plan to consider the cancer grade detection [35] and to apply other
object detection models to compare the obtained performances as, for instance, the R-CNN,
the Fast R-CNN, and the Fast R-CNN. Moreover, considering that medical images are
typically composed of slices and not of single images, we will consider extending the
proposed approach with whole 3D images; as a matter of fact, in the state of the art, there is
an implementation of a 3D YOLO model (https://github.com/ruhyadi/yolo3d-lightning,
accessed on 8 August 2023), currently exploited for generic object detection.
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