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Abstract: Hydrological modeling relies on the inputs provided by General Circulation Model (GCM)
data, as this allows researchers to investigate the effects of climate change on water resources. But
there is high uncertainty in the climate projections with various ensembles and variables. Therefore,
it is very important to carry out bias correction in order to analyze the impacts of climate change at a
regional level. The performance evaluation of bias correction methods for precipitation, maximum
temperature, and minimum temperature in the Upper Bhima sub-basin has been investigated. Four
bias correction methods are applied for precipitation viz. linear scaling (LS), local intensity scaling
(LOCI), power transformation (PT), and distribution mapping (DM). Three bias correction methods
are applied for temperature viz. linear scaling (LS), variance scaling (VS), and distribution mapping
(DM). The evaluation of the results from these bias correction methods is performed using the
Kolmogorov–Smirnov non-parametric test. The results indicate that bias correction methods are
useful in reducing biases in model-simulated data, which improves their reliability. The results of the
distribution mapping bias correction method have been proven to be more effective for precipitation,
maximum temperature, and minimum temperature data from CMIP5-simulated data.

Keywords: global climate models; coupled model intercomparison project phase 5; Australian
community climate and earth-system simulator; bias correction; Kolmogorov–Smirnov test; Upper
Bhima sub-basin

1. Introduction

The variability in precipitation has a significant impact on the agriculture-based Indian
economy [1]. The impact of climate change on hydrological processes at a regional level
or watershed scale has been noted by the Intergovernmental Panel on Climate Change
(IPCC) [2]. The importance and influence of General Circulation Models (GCMs) are widely
known for climate change scenarios, providing climate forecasts and dealing with unpropi-
tious climate variability. The datasets related to atmosphere and meteorological parameters
provided by GCMs simulations are good for studies to some extent, but their coarser
spatial resolution restricts their application at the regional level [3]. Hence, a relatable
climate prediction is essential for adaptation, mitigation, and policymaking for agriculture,
the environment, and water resources. Variations in precipitation and temperature are
considered significant driving parameters due to their pronounced influence on regional
hydrological processes [4,5]. Historical and future changes in the meteorological variables
at global and regional scales have been increasingly studied using daily weather datasets
and GCM simulations [6–10].

Recently, the development of various bias correction methods has led to their extensive
use in downscaling the authentic climate projection data of coarser-resolution at the regional
level [11]. The biases like overestimation or underestimation of rainfall and increased rainy
days with lesser rainfall intensities are present in the simulated datasets. The simulated
outputs of hydro-meteorological variables such as temperature, precipitation, and runoff
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with biases affect climatological and hydrological analyses when utilized directly for impact
studies [12]. Hence, to obtain the authentic climate projections from GCM outputs, it is
necessary to perform bias correction on the GCM outputs. Bias correction is the statistical
adjustment of GCM outputs towards the actual climatology. Bias correction methods
commonly assume that there is a statistical relationship between the models’ simulated raw
data and observed data that will continue in the future [13,14]. Despite the fact that bias
correction must be performed while using GCM outputs as inputs for various hydrological
models, there is still uncertainty in the bias-corrected results because of different bias
correction techniques [15–17].

Bias correction methods are developed to reduce biases and rectify the simulated data
produced by GCM models. Some of these techniques are simple scaling techniques and
some are refined techniques such as distribution mapping techniques [11]. The scaling
techniques generally take account of linear or nonlinear relationships of climatic factors to
adjust the differences between observed and GCM data, i.e., linear or nonlinear formulation.
The scaling techniques include the linear scaling method (LS) [18,19], local intensity scaling
(LIS) [20], and the power transformation method (PT) [21]. The distribution mapping (DM)
technique involves distribution-based and distribution-free mapping methods that utilize
the statistical distribution of GCM-simulated data to the distribution of observations. The
DM technique assumes that the GCM data follows a certain distribution like the Gamma
distribution and Gaussian distribution [22,23]. The maximum area of the Upper Bhima
sub-basin is a rainfall shadow zone/water scarcity zone and, hence, an evaluation and
performance assessment of the bias correction methods is essential here in order to study
the impacts of climate change on hydro-meteorological variables.

The objective of the study is to analyze and evaluate bias correction methods applied
to the precipitation, maximum temperature, and minimum temperature of the Coupled
Model Intercomparison Project Phase 5 (CMIP5) of the ARC Centre of Excellence for
Climate System Science (ACCESS1-3) historical model output in the Upper Bhima sub-
basin in Maharashtra, India. The ACCESS1-3 model of CMIP5 is selected for the study
purpose, although data from 34 simulation models are available. Four bias correction
methods are used for precipitation viz. linear scaling (LS), local intensity scaling (LIS),
power transformation (PT), and distribution mapping (DM); and three bias correction
methods are used for temperature viz. linear scaling (LS), variance scaling (VS) and
distribution mapping (DM). The evaluation of bias correction methods is performed by
using the Kolmogorov–Smirnov (K–S) non-parametric statistical test. This test assesses the
level of discrepancy between the cumulative distributions of the parameters to determine
the results. The novelty of the study is to evaluate the bias correction methods in the Upper
Bhima sub-basin, which has a very unique geographical location that contains diverse agro-
climatic zones such as the Western Ghat Zone, Transitions Zones, the Water Scarcity Zone,
and the Assured Rainfall Zone. The major area is occupied by the Water Scarcity Zone,
which is a rainfall shadow zone. Hence, it is very important to assess whether the CMIP5
model data are useful in analyzing the impacts of climate change at the regional level.

The objectives of the present study are: to perform bias correction on the precipitation,
maximum temperature, and minimum temperature data of the CMIP5-simulated data, of
the ACCESS1-3 historical model output data, in the Upper Bhima sub-basin in Maharashtra,
India; and to evaluate the bias correction methods applied on the CMIP5 model-simulated
precipitation, maximum temperature, and minimum temperature data with the help of
observed meteorological data using the K–S non-parametric test.

The structure of the article is as follows: Section 2 provides a comprehensive overview
of the study area, selected GCM simulated data, and the observed reanalysis dataset used
for the study. Section 3 presents the overall methodology adopted for the study, including
bias correction methods and a statistical analysis test, i.e., K–S test. The results and their
discussion are explained in Section 4. Based on the observed results and the main findings,
the paper concludes with the main outcomes and the concluding remarks are described in
Section 5.
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2. Study Area and Datasets Used
2.1. Study Area

The Bhima River is one of the main tributaries of the Krishna River. The Upper Bhima
sub-basin covers 17.6% of the area of the Krishna basin, which is 46,066 km2. The majority
of the sub-basin, accounting for approximately 98.4% of its area, is situated in Maharashtra,
while the remaining 1.6% is located in the state of Karnataka. The study area extends
between latitude 17.18 N to 19.24 N and longitude 73.20 E to 76.15 E. The elevation within
the watershed ranges from 160 m in the eastern region to 1472 m in the Western Ghat
Mountains region of the sub-basin. The location map and Digital Elevation Model (DEM),
providing information on the topography of the study area, are shown in Figure 1.
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Figure 1. Location map (left) and DEM (right) of the Upper Bhima sub-basin.

The Upper Bhima sub-basin has a very diverse climate, spatially and temporally.
The eastern part of the Western Ghats receives more than 4000 mm of annual precipita-
tion and less than 500 mm on the Deccan Plateau plains. The annual average rainfall is
872 mm/year for the whole sub-basin [24]. A total of 80–90% of the yearly precipitation
occurs between June to September, i.e., in the monsoon season. From 2002 to 2013, the
minimum temperature observed was 5 ◦C and the maximum temperature was 46 ◦C.

2.2. Datasets

The CMIP5 model data of 12 out of 34 of the CMIP5 model datasets have been used in
the analysis. Detailed information on the models used is given in Table 1. The simulation is
a historical experiment that gives historical climate data from 1850 to 2005 using historical
forcing such as solar variation, volcanic eruption, stratospheric and anthropogenic aerosol
emissions, and greenhouse gas concentrations [25].

Observed precipitation and temperature data are necessary for bias correction pur-
poses. Since observed data has problems such as missing data, an inadequate number of
weather stations, and discontinuity, a global reanalysis of weather data has been used. The
reanalysis data used in this study are obtained from CFSR (Climate Forecast System Reanal-
ysis), comprehensive global data with high-resolution, coupled atmosphere, ocean, land
surface, and sea ice systems, which provide the most accurate estimation of meteorological
data [26]. CFSR data are available from 1979 to the present, and comprise gridded weather
data with a spatial resolution of 0.35◦.
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Table 1. Detailed information on the 12 CMIP5 models datasets used.

Model Name Country Modeling Center Resolution

ACCESS1.3 Australia Australian Community Climate and Earth System
Simulator Coupled Model 1.875◦ × 1.25◦

CMCC-CESM Italy Euro-Mediterranean Center on Climate Change 1.875◦ × 2.5◦

CNRM-CM5 France Centre National de Recherches Météorologiques 1.4◦ × 1.4◦

GFDL-CM3 United States Geophysical Fluid Dynamics Laboratory 2.0◦ × 2.5◦

HadCM3 United Kingdom Met Office Hadley Centre 3.75◦ × 2.5◦

HADGEM2-ES United Kingdom Met Office Hadley Centre and the Climatic Research Unit 1.875◦ × 1.875◦

INM-CM4 Russia Institute of Numerical Mathematics (INM) of the Russian
Academy of Sciences 2.8◦ × 2.8◦

MIROC5 Japan
Japan Agency for Marine-Earth Science and Technology

(JAMSTEC), the National Institute for Environmental
Studies (NIES), and the University of Tokyo

1.4◦ × 1.4◦

MPI-ESM-P Germany Max Planck Institute for Meteorology (MPI-M), Germany 1.9◦ × 1.9◦

MRI-CGCM3 Japan Meteorological Research Institute (MRI) in Japan. The
institute under the Japan Meteorological Agency (JMA) 1.125◦ × 1.125◦

MRI-ESM1 Japan Meteorological Research Institute (MRI) in Japan. The
institute under the Japan Meteorological Agency (JMA) 1.125◦ × 1.875◦

NorESM1_M Norway

Norwegian Climate Centre, a part of the Norwegian
Meteorological Institute, and the Bjerknes Centre for

Climate Research, a collaborative research center involving
Norwegian institutions.

1.9◦ × 2.5◦

3. Methodology

Four bias correction methods are applied for precipitation viz. LS, LOCI, PT, and
DM, and three bias correction methods are applied for temperature viz. LS, VS, and
DM. All these bias correction methods are applied for daily precipitation and maximum
and minimum temperature data from 1979 to 2005. Then, bias-corrected outputs of the
precipitation and maximum and minimum temperature are evaluated using K–S non-
parametric test. The overall methodology used in this study is shown in Figure 2.

3.1. Bias Correction Methods

The bias correction methods used to correct the mean, variance, and distribution of
the modeled variable, by using a function h, are given in (1) [27,28]:

PObserved = h (PModeled) (1)

The aim is that the bias-corrected outputs of the variable parameter should match the
observed data more closely in comparison to the modeled parameter.

3.1.1. Linear Scaling (LS) of Precipitation and Temperature

LS method is a simple bias correction method and is widely used to adjust precipitation
and temperature from GCM [29]. This method reduces the biases by comparing the mean
of the bias-corrected values with the observed values [21]. The function of the LS method
is used to calculate the corrected values based on the differences between the observed
and GCM-simulated data. Precipitation data are rectified using a multiplier term where
the simulated precipitation data are multiplied by the scaling factor. On the other hand,
temperature is corrected using an additive term, where the simulated temperature data are
added to the scaling factor. LS equations of precipitation and temperature are given in (2)
and (3):
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For precipitation,

Pcor,m,d = Praw,m,d ×
µ(Pobs,m)

µ(Praw,m)
(2)
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For temperature,

Tcor,m,d = Traw,m,d + (µ(Tobs,m)− µ(Traw,m)) (3)

where Pcor,m,d and Tcor,m,d are corrected precipitation and temperature on the dth day of
mth month, respectively; Praw,m,d and Traw,m,d are raw precipitation and temperature on the
dth day of mth month, respectively; µ(Pobs,m) and µ(Tobs,m) are mean values of observed
precipitation and temperature at month m, respectively; and µ(Praw,m) and µ(Traw,m) are
mean values of raw precipitation and temperature at month m, respectively.

3.1.2. Local Intensity Scaling (LOCI) of Precipitation

The LOCI method [20] adjusts the biases in the frequency and intensity of precipitation
which prevents the model-simulated raw data having an excessively large number of drizzle
days. It is a two-step process; first, a threshold for a wet day for a month, m Pthreshold, m
is determined from the time series of model-simulated raw precipitation data (Praw,m,d),
so that the threshold should match the observed (Pobs,m,d) wet day frequency, and in the
second step, scaling factor (Sm), is calculated using (4):

Sm =
µ(Pobs,m,d | Pobs,m,d > 0)

µ(Praw,m,d | Praw,m,d > Pthreshold,m)
(4)

Equation (4) is used to verify that the corrected model precipitation mean is equal to
that of the observed precipitation data and calculated using (5):

Pcor,m,d =

{
0 , if Praw,m,d < Pthreshold,m
Praw,m,d × Sm otherwise

(5)

3.1.3. Power Transformation (PT) of Precipitation

The LS and LOCI methods remove the biases in the precipitation data without taking
the variance into account, so the PT method adjusts the standard deviation of the time
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series data using an exponential form. In the PT method, initially, we have to estimate bm,
which can be minimized using (6):

f (bm) =
σ(Pobs,m)

µ(Pobs,m)
−

σ
(

Pbm
LOCI,m

)
µ
(

Pbm
LOCI,m

) (6)

where bm is the exponent for the mth month; σ represents the standard deviation operator;
and PLOCI,m is the LOCI corrected precipitation in the mth month.

If bm > 1, the LOCI-corrected precipitation data underestimate the coefficient of
variance in month, m. Once the optimum value of bm is found, the scaling factor is
determined using (7):

Sm =
µ(Pobs,m)

µ(PLOCI,m)
(7)

The calculated scaling factor, Sm, should match the mean of the corrected values and
observed values. Then, the corrected precipitation data are calculated using the LOCI-
corrected precipitation data, PLOCI,m,d, using (8):

Pcor,m,d = Sm × Pbm
LOCI,m,d (8)

3.1.4. Variance Scaling (VARI) of Temperature

The PT method is suitable for the correction of the mean and variance of precipitation,
but not appropriate for the bias correction of temperature, because the temperature is
known to have an approximately normal distribution [30]. The VARI method was de-
veloped to correct both the mean and variance of normally distributed variables such as
temperature [4,30]. Hence, temperature data are corrected using the VARI method using (9):

Tcor,m,d = [Traw,m,d − µ(Traw,m)]×
σ(Tobs,m)

σ(raw, m)
+ µ(Tobs,m) (9)

3.1.5. Distribution Mapping (DM) of Precipitation and Temperature

In the DM method, the distribution function of the simulated GCM model data is
corrected with that of the distribution function of the observed data. The DM method
adjusts the mean, standard deviation, and quantiles. In addition, it retains the extreme
data values [31]. This method assumes that the observed data and model-simulated raw
data of variables follow the same distribution function, which leads to the addition of new
unnecessary biases.

For precipitation, the gamma distribution function [32] with shape parameter α and
scale parameter β is used for distribution (10) and has been verified to be effective [31,32]:

fγ(x | α, β) = xα−1 × 1
βα × d(α) × e

−x
β ; x ≥ 0, α, β > 0 (10)

where x is the observed variable; d(.) is Gamma function; α is form parameter; and β is
scale parameter.

As previously discussed regarding the LOCI method (Section 3.1.2), a precise threshold
value is used to define a wet day as a large number of drizzle days are recorded in the raw
GCM-simulated precipitation data, causing distortion in the distribution of raw data. The
bias correction is performed like LOCI-corrected precipitation data, PLOCI,m,d using (11):

Pcor,m,d = F−1
γ

(
Fγ(PLOCI,m,d

∣∣ αLOCI,m, βLOCI,m)
∣∣ αobs,m, βobs,m

)
(11)

where Fγ( ) and F−1
γ ( ) are the gamma CDF (cumulative distribution function) and its

inverse; αLOCI,m and βLOCI,m are the fitted gamma parameters for the LOCI-corrected
precipitation in a given month m; and αobs,m and βobs,m are the fitted gamma parameters
for observed data.
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For temperature, the Gaussian cumulative distribution function shown in (12), or
normal distribution with mean µ and standard deviation σ, is assumed to fit temperature
best [4]:

fN(x | µ, σ) =
1

σ ×
√

2π
× e

−(x−µ)2

2σ2 ; xε R (12)

Similarly, the corrected temperature can be estimated using (13):

Tcor,m,d = F−1
N
(

FN(Traw,m,d
∣∣ µraw,m,σraw,m)

∣∣ µobs,m,σobs,m
)

(13)

where FN( ) and F−1
N ( ) are the Gaussian CDF and its inverse; µraw,m and µobs,m are fitted

and observed means for the raw and observed temperature data at a given month, m;
and σraw,m and σobs,m are fitted and observed standard variation for the raw and observed
temperature time series at a given month, m.

3.2. Kolmogorov–Smirnov Non-Parametric Test

The K–S test [33,34] is a non-parametric test used to check equality and to relate
two samples (two-sample K–S test). The two-sample K–S test is the most useful non-
parametric method that compares two variable samples by checking differences in the
maximum vertical distance between two empirical distribution functions. The previous
studies reveal that the K–S test is highly applicable to hydro-meteorological studies [35]
and to the evaluation of bias correction techniques [36]. Thus, this test is used to evaluate
bias correction methods.

Different datasets provide different cumulative distribution functions. Every cumu-
lative distribution function starts with the lowest value and extends up to the highest
value of that series. The K–S test estimates the statistic D (14), which is the maximum
distance between the cumulative distribution function of the observed time series and the
cumulative distribution function of the bias-corrected data series.

Here, the null hypothesis, H0: SN1(x) = SN2(x), i.e., two distribution functions are equal
and the alternative hypothesis, H1: SN1(x) 6= SN2(x), i.e., two distribution functions are not
equal. The comparison of different cumulative functions using the K–S test, i.e., SN1(x) and
SN2(x) is given in (14):

D = max−∞<x<∞ |SN1(x)− SN2(x)| (14)

In the K–S test, the calculated p-value represents the level of significance at which it
should not reject the hypothesis that SN1(x) and SN2(x) have the same distribution. As n1,
n2→∞, the p-value for this statistic is given in (15):

p = Q
(

T
√

n1n2

n1 + n2

)
(15)

where n1 and n2 are the number of sizes of two samples, and Q(z) = 2 ∑∞
k=1(−1)k−1e−2k2z2

.
The K–S test is more sensitive to variations in both location and form of the empirical

cumulative distribution functions of the two samples than the Mann–Whitney U test and
Wilcoxon Signed Rank test [37].

4. Results and Discussion
4.1. Evaluation of CMIP5 Global Climate Models Used in the Analysis

The mean bias error, mean absolute error, Root mean square error, Nash–Sutcliffe
coefficient, and correlation coefficient for each model used in the analysis have been
calculated for precipitation, maximum temperature, and minimum temperature.

4.1.1. Precipitation

An analytical exploration into the diverse climate models for precipitation offers an
intriguing narrative, as summarized in Table 2. These models, evaluated against several
statistical measures, display a range of outcomes that echo the multifaceted reality of
precipitation forecasting.
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Table 2. Statistical summary of the climate models for precipitation.

Models MBE MAE RMSE NSE Correlation Coefficient

ACCESS1.3 24.894 81.325 204.212 0.078 0.372
CMCC-CESM 19.867 82.018 207.444 0.048 0.34
CNRM-CM5 21.924 75.804 203.435 0.085 0.352
GFDL-CM3 24.625 74.052 196.425 0.147 0.421

HadCM3 23.19 117.517 247.197 −0.351 0.231
HADGEM2-ES 23.149 105.925 235.032 −0.222 0.253

INM-CM4 24.282 81.326 207.357 0.049 0.36
MIROC5 23.725 84.115 206.778 0.105 0.345

MPI-ESM-P 22.116 70.709 196.853 0.143 0.408
MRI-CGCM3 22.397 82.868 203.073 0.088 0.379

MRI-ESM1 24.207 89.007 223.448 −0.104 0.237
NorESM1_M 22.194 78.137 201.475 0.102 0.385

Examining the Mean Bias Error (MBE), it becomes evident that models such as AC-
CESS1.3 and CMCC-CESM exhibit a stark divergence, with MBE values of 24.894 and
19.867, respectively. This difference underscores the inherent disparities in the model’s fore-
cast tendencies, from potential overestimations to underestimations. The Mean Absolute
Error (MAE) metric brings forth another layer of discrepancy. The HadCM3 model, with
an MAE value of 117.517, contrasts significantly with the MPI-ESM-P model which demon-
strates a lower MAE value of 70.709. This difference represents the diverse magnitude of
absolute differences between the models’ predictions and actual observations. The Root
Mean Square Error (RMSE) values further delineate the differences in the model’s ability to
predict precipitation accurately. Models like GFDL-CM3 and HadCM3 showcase RMSE
values of 196.425 and 247.197, respectively, reflecting varying levels of prediction accuracy.
Nash–Sutcliffe Efficiency (NSE) values bring a more discerning evaluation, as models like
HadCM3 venture into negative territories (−0.351), demonstrating a level of prediction
accuracy that falls below the mean of the observed data. The correlation coefficients present
an aspect of association between model predictions and observed data. A positive cor-
relation, as seen in the GFDL-CM3 model (0.421), indicates a closer agreement with the
observations, as opposed to a lower correlation coefficient in the HadCM3 model (0.231).

In conclusion, the performance of these diverse climate models for precipitation
varies significantly, underlining the complexity of precipitation modeling. These variances,
as revealed through the different statistical metrics, contribute to our comprehensive
understanding of the climate model performance for precipitation forecasting.

4.1.2. Maximum and Minimum Temperature

An analytical exploration into the diverse climate models for maximum and minimum
temperature offers an intriguing narrative, as summarized in Tables 3 and 4. These models,
evaluated against several statistical measures, display a range of outcomes that echo the
multifaceted reality of precipitation forecasting.

Maximum Temperature

Considering MBE values, the MIROC5 and CMCC-CESM models denote the lowest
and highest biases with 0.926 and 1.092, respectively. This disparity reiterates the inherent
differences in the models’ ability to minimize systematic errors. However, it is noteworthy
that models such as ACCESS1.3 and CNRM-CM5 also present relatively low bias errors of
0.959 and 1.018, respectively, showcasing the varied degree of tendency towards over or
underprediction among models.

The MAE values exhibit a similar trend. Here, the MPI-ESM-P and HADG-EM2-ES
models demonstrate the minimum and maximum absolute deviations with 2.277 and 2.976,
respectively. This distinction provides insight into the absolute magnitude of errors in the
predictions. For instance, the GFDL-CM3 model posits an impressive 2.353, which is just
slightly higher than the minimum observed in the MPI-ESM-P model. On the other end of
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the spectrum, HadCM3, with 2.982, stands close to the HADG-EM2-ES model, reflecting a
higher degree of absolute error.

For RMSE, the values range from 7.659 (INM-CM4 model) to 8.022 (HADG-EM2-ES
model), indicating diverse degrees of prediction accuracy. In this context, CNRM-CM5 and
MRI-ESM1 models present values of 7.768 and 7.791, respectively, situating themselves
closely to the most accurate INM-CM4 model. In terms of NSE, the INM-CM4 model excels,
with 0.253, while the HADG-EM2-ES model lags, with 0.181. Additionally, the MRI-ESM1
model’s value stands at 0.227, which is close to the MPI-ESM-P model’s performance,
suggesting that the former model’s prediction accuracy is commendable, relative to the
mean of the observed data.

Finally, the correlation coefficients showcase the varying degrees of linear relationship
between the predicted and observed values. The INM-CM4 model exhibits the strongest
correlation (0.515), contrasting with the relatively lower correlation (0.45) by the HADG-
EM2-ES model. Similarly, the NorESM1_M model exhibits a correlation of 0.481, placing it
midway in the spectrum of correlation coefficients among the models.

This analysis underscores the inherent diversity of performance across climate models
when forecasting maximum temperature, emphasizing the multifaceted nature of climate
modeling and prediction. Through this detailed comparison of climate models, we fur-
ther appreciate the spectrum of performance characteristics across models, all of which
contribute to our overall understanding of climate prediction mechanisms.

Table 3. Statistical summary of the climate models for maximum temperature.

Models MBE MAE RMSE NSE Correlation Coefficient

ACCESS1.3 0.959 2.358 7.806 0.224 0.486
CMCC-CESM 1.092 2.498 7.783 0.229 0.494
CNRM-CM5 1.018 2.428 7.768 0.232 0.495
GFDL-CM3 0.984 2.353 7.759 0.234 0.496

HadCM3 1.013 2.982 7.941 0.197 0.466
HADGEM2-ES 1.005 2.976 8.022 0.181 0.45

INM-CM4 0.993 2.308 7.659 0.253 0.515
MIROC5 0.926 2.425 7.772 0.231 0.492

MPI-ESM-P 1.029 2.277 7.715 0.242 0.506
MRI-CGCM3 1.034 2.64 7.855 0.215 0.479

MRI-ESM1 0.978 2.506 7.791 0.227 0.49
NorESM1_M 0.968 2.485 7.834 0.219 0.481

Minimum Temperature

Starting with the MBE, we see a span from 0.773 (MIROC5) to 0.914 (CMCC-CESM),
an indication of the diverse ability of models to control systematic discrepancies. Further
inspection shows models such as ACCESS1.3 and CNRM-CM5 as being not far behind,
with MBEs of 0.87 and 0.846, respectively, illustrating the differing propensity towards
over or underestimation across models. As for MAE, the variation extends from 1.757
(INM-CM4) to 2.181 (HadCM3), revealing the wide spectrum of absolute errors across
the models. In light of this, the GFDL-CM3 model scores an MAE of 1.792, only slightly
more than the best-performing INM-CM4 model, whereas the HadCM3 model lags behind,
showing higher absolute errors.

Concerning RMSE, values fluctuate between 6.771 (MRI-CGCM3) and 7.074 (HADG-
EM2-ES), suggesting disparate levels of model accuracy. Notably, the CNRM-CM5 and
MRI-ESM1 models have RMSEs of 6.895 and 6.944, respectively, aligning them more closely
with the highest accuracy model, MRI-CGCM3.

The NSE, another telling metric, sees the highest performance from the MRI-CGCM3
model at 0.229, with the lowest at 0.159 from the HADG-EM2-ES model. Here, the MRI-
ESM1 model performs admirably with an NSE of 0.189, trailing behind the MPI-ESM-P
model, which shows a significantly higher value. Lastly, the correlation coefficients range
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from 0.417 (HADG-EM2-ES) to 0.497 (MRI-CGCM3), reflecting the varying strengths of
linear relationships between the predicted and observed values. Here, the INM-CM4 model
shows a strong correlation of 0.462, while the NorESM1_M model shows a somewhat
weaker correlation of 0.444.

This assessment elucidates the nuanced performance characteristics across different
climate models in the context of minimum temperature prediction. By highlighting these
disparities, we enhance our understanding of the unique strengths and limitations of each
model, thereby aiding in the more effective utilization of climate prediction tools.

Table 4. Statistical summary of the climate models for minimum temperature.

Models MBE MAE RMSE NSE Correlation Coefficient

ACCESS1.3 0.87 1.693 6.862 0.208 0.472
CMCC-CESM 0.914 1.924 6.914 0.196 0.459
CNRM-CM5 0.846 1.762 6.895 0.201 0.462
GFDL-CM3 0.89 1.792 6.93 0.193 0.454

HadCM3 0.905 2.181 7.005 0.175 0.435
HADGEM2-ES 0.893 2.135 7.074 0.159 0.417

INM-CM4 0.893 1.757 6.9 0.2 0.462
MIROC5 0.773 1.895 6.908 0.198 0.456

MPI-ESM-P 0.847 1.818 6.819 0.218 0.482
MRI-CGCM3 0.907 1.83 6.771 0.229 0.497

MRI-ESM1 0.862 1.854 6.944 0.189 0.449
NorESM1_M 0.793 1.958 6.956 0.186 0.444

4.2. Statistical Analysis of Kolmogorov–Smirnov Test

The Kolmogorov–Smirnov (K–S) test is a statistical test used to compare the distri-
butions of two datasets and determine if they are significantly different. In the context
of analysis for the month of July and for different bias correction methods, the K–S test
is being used to assess the effectiveness of bias correction on the simulated climate data,
compared to the observed data, for precipitation and maximum and minimum temperature.
The results of the K–S test (cumulative distribution plots and K–S test statistics D) for all
the CMIP5 models mentioned in Table 1 are given in the Supplementary Data while, for
instance, the results of the ACCESS 1.3 model are detailed and explained in this section.

4.2.1. Precipitation

The four bias correction methods were applied to correct the GCM-simulated raw
daily precipitation data. To check its performance, the K–S test is used and bias-corrected
outputs are compared with the observed data. Figure 3 illustrates the K–S test applied
in July for the observed series with the model-simulated raw data (Figure 3a), the data
corrected using LS (Figure 3b), the data corrected by LOCI (Figure 3c), the data corrected
by PT (Figure 3d), the and data corrected by DM (Figure 3e). Figure 3 shows the plot of
cumulative frequency distributions on the same graph along with the maximum difference
D and p-value.

Table 5 synthesizes the results of D (14) and the level of significance of the cumulative
distribution function (p-value) of the observed precipitation data, the model-simulated raw
data, and the data corrected using the LS, LOCI, PT, and DM methods.

Table 5 indicates that the bias correction improves the model-simulated raw data,
enhancing the K–S test statistic D and its level of significance, i.e., p-values. For better
understanding, the K–S test statistic D = 0.3871 and p-value 0.013 means that the two
distribution functions of the observed data and model-simulated data are different at
p = 0.013, i.e., at a 98.7% confidence level. The null hypothesis has been defined and both
cumulative distribution functions are equal. The K–S test statistic D value is decreased to
some extent after the application of bias correction methods, which reveals that it gives



Appl. Sci. 2023, 13, 9142 11 of 21

better results than the GCM model data. Table 5 illustrates that most of the D values are
improved, i.e., decreased after applying the bias correction methods.
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In the LS bias correction method, except for the month of January, all remaining
11 months show decreased D values with respect to the data without correction, although
the p-value is less than 5%. Similarly, after LOCI correction, except for the month of April,
all remaining 11 months show decreased D values. In comparison to the LS and LOCI
correction methods, the PT and DM methods give better results. In the PT method, the D
value is reduced in all months except April, which has an increased D value. The DM is
very effective, which significantly reduces the D value in all months throughout the year.
The p-value is also near 1, which signifies that the observed data’s cumulative distribution
and DM-corrected data’s cumulative distribution are equal.
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Table 5. The K–S test statistic D and its level of significance for the cumulative distribution functions
of the model-simulated data, the data corrected using the LS, LOCI, PT, and DM methods, with
respect to the observed precipitation data.

Month
No

Correction
Linear
Scaling

Local
Intensity Scaling

Power
Transformation

Distribution
Mapping

D p D p D p D p D p

January 0.3871 0.013 0.4839 0.001 0.2258 0.363 0.1613 0.778 0.1290 0.944
February 0.4286 0.008 0.2857 0.169 0.1071 0.995 0.1429 0.917 0.1429 0.917

March 0.1613 0.778 0.1290 0.944 0.0968 0.998 0.1290 0.944 0.1290 0.944
April 0.2 0.537 0.2333 0.342 0.2333 0.342 0.2333 0.342 0.1000 0.997
May 0.3548 0.03 0.1613 0.778 0.1613 0.778 0.1613 0.778 0.0968 0.998
June 0.9 0 0.2000 0.537 0.2 0.537 0.3 0.109 0.0667 1
July 0.7419 0 0.2258 0.363 0.2258 0.363 0.1290 0.944 0.0968 0.998

August 0.5806 0 0.1613 0.772 0.1613 0.778 0.0968 0.998 0.1290 0.944
September 0.8 0 0.4000 0.011 0.4 0.011 0.4 0.01 0.1000 0.997
October 0.4839 0.001 0.1935 0.559 0.1613 0.778 0.1613 0.778 0.0645 1
November 0.3333 0.055 0.1667 0.760 0.1667 0.76 0.2 0.537 0.1333 0.936
December 0.3548 0.03 0.2581 0.216 0.1935 0.559 0.0968 0.998 0.1429 0.917

The K–S test assessment index D represents the maximum difference between the
cumulative distribution functions of the model-simulated data and observed data in each
month, as shown in Figure 4. The line chart (Figure 4) shows that the K–S test statistics
D value in each month is maximum in the model-simulated uncorrected data series with
respect to the observed data and the results of the K–S test, which are improved after
applying all four correction techniques. Figure 4 also reveals that, out of all four methods,
the DM method gives better results as the D value is lowest in the DM method compared
to other methods.
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In general, all four bias correction methods succeeded in reducing the D value relative
to the model-simulated raw data. But the DM method is most appropriate as it improves
the significance (p-value) to near to 1 or 1 in almost all months, which is in agreement with
the results and findings of the authors of reference [36].

4.2.2. Maximum and Minimum Temperature (Tmax and Tmin)

Similarly, three bias correction methods were applied to correct the GCM-simulated
raw maximum and minimum temperature data and the K–S test is applied to check the
performance of the bias-corrected outputs with respect to the observed data. Plots of
both the cumulative frequency distributions on the same graph, along with the maximum
difference D and p-values, are illustrated in Figure 5 (maximum temperature) and Figure 6
(minimum temperature).
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Table 6 gives information on the results of the D value and its level of significance
(p-value) regarding the cumulative distribution function of the observed maximum temper-
ature data, the model-simulated data without correction, and the data corrected using the
LS, VS, and DM methods.

Table 6. The K–S test statistic D and level of significance for the cumulative distribution functions of
the model-simulated data without correction and data corrected using the LS, VS, and DM methods
with respect to the observed daily maximum temperature data.

Month
No

Correction
Linear
Scaling

Variance
Scaling

Distribution
Mapping

D p D p D p D p

January 0.6774 0.0 0.1613 0.7780 0.0645 1.0000 0.0968 0.9980
February 0.6071 0.0 0.1786 0.7200 0.0714 1.0000 0.1071 0.9950

March 0.6129 0.0 0.0968 0.9980 0.0968 0.9980 0.0968 0.9980
April 0.7000 0.0 0.1333 0.9360 0.1000 0.9970 0.1000 0.9970
May 0.6129 0.0 0.0968 0.9980 0.1290 0.9440 0.1290 0.9440
June 0.8000 0.0 0.3000 0.1090 0.1333 0.9360 0.1000 0.9970
July 1.0000 0.0 0.1290 0.9440 0.1935 0.5590 0.1290 0.9440

August 1.0000 0.0 0.1935 0.5590 0.1935 0.5590 0.1613 0.7780
September 1.0000 0.0 0.1000 0.9970 0.1000 0.9970 0.1000 0.9970

October 1.0000 0.0 0.0968 0.9980 0.1290 0.9440 0.0968 0.9980
November 0.9667 0.0 0.1667 0.7600 0.2000 0.5370 0.1000 0.9970
December 0.9032 0.0 0.2258 0.3630 0.1935 0.5590 0.0968 0.9980

As Table 6 specifies the K–S statistics D and p-value, it clearly shows that, in the
simulated data without correction, 4 out of 12 months give a maximum difference value
of 1, and, without correction data series, also shows zero significance throughout the year.
As bias correction methods are applied, all D values throughout the year are decreased
and p-values are increased to some extent. In the LS method, though all 12 months have
decreased D values in comparison to the uncorrected data, 6 months show a significant
p-value of more than 0.9. The VS method gave better results than the LS method and it
improved the p-value by more than 0.9 in 8 months except for July, August, November,
and December. Also, the months of January and February give 100% significance. The DM
methods give the best results compared to the other methods. In the DM method, D values
during all months of the year are decreased and 11 months also show a significance value
of more than 0.9, except August which has a significance value of 0.778.

In the case of minimum temperature (Table 7), the months of April and May show
greater values in comparison to the other months, even without correction. The plot in
Figure 6a shows both cumulative frequency distributions on the graph along with the
maximum difference D = 0.0968 and significance p-value = 0.998. Out of the 12 months, 7
show a significance value of zero in the uncorrected data. In the LS and VS methods, all D
and p-values show enhanced results with decreased D values and increased p-values of
more than 0.9. The DM method has better results than the LS and VS methods, as 4 months
out of 12 show 100% significance, and also decreased D values than uncorrected data.

Similarly, for maximum and minimum temperature, all three correction techniques
improved the K–S test assessment index D and significance p-value. The K–S test as-
sessment index D for maximum temperature and minimum temperature are shown in
Figures 7 and 8, respectively. Also in this case, based on the statistics estimated by the K–S
test, the DM method gives better results in comparison to the LS and VS methods.
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Table 7. The K–S test statistic D and level of significance for the cumulative distribution functions of
the model-simulated data without correction and data corrected using the LS, VS, and DM methods
with respect to the observed daily minimum temperature data.

Month
No

Correction
Linear
Scaling Variance Scaling Distribution

Mapping

D p D p D p D p

January 0.5161 0 0.1290 0.9440 0.1935 0.5590 0.1290 0.9440
February 0.4286 0.008 0.1429 0.9170 0.1429 0.9170 0.1071 0.9950

March 0.2581 0.216 0.0645 1.0000 0.1290 0.9440 0.0645 1.0000
April 0.0667 1 0.1000 0.9970 0.1000 0.9970 0.1000 0.9970
May 0.0968 0.998 0.0968 0.9980 0.0968 0.9980 0.0645 1.0000
June 0.3667 0.026 0.1000 0.9970 0.1333 0.9360 0.0667 1.0000
July 1.0000 0 0.0645 1.0000 0.0968 0.9980 0.0645 1.0000

August 1.0000 0 0.1290 0.9440 0.1290 0.9440 0.1613 0.7780
September 1.0000 0 0.1333 0.9360 0.1333 0.9360 0.1000 0.9970

October 0.8710 0 0.1290 0.9440 0.1613 0.7780 0.1290 0.9440
November 0.8000 0 0.1333 0.9360 0.1333 0.9360 0.1333 0.9360
December 0.7097 0 0.0968 0.9980 0.2581 0.2160 0.0968 0.9980
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4.3. Spatial Variation of Precipitation, Maximum Temperature, and Minimum Temperature
4.3.1. Precipitation

Precipitation shows considerable variation across the Upper Bhima sub-basin. The
spatial distribution of average annual precipitation over the study area, for uncorrected
output from the ACCESS1-3 CMIP5 GCM model and after applying various bias correction
methods, is compared against the observed precipitation data, as shown in Figure 9.
Figure 9a–f shows the spatial variation of the model-simulated raw precipitation data,
observed precipitation data, LS-corrected, LOCI-corrected, PT-corrected, and DM-corrected
data, respectively.
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There is a discrepancy in the pattern, as shown in Figure 9a, as there exists biases in the
model-simulated raw precipitation data. It shows a clear underestimation of precipitation
over the whole Upper Bhima sub-basin. The spatial variation of the model-simulated
raw data shows only two classes over the watershed, ranging from 200 to 500 mm per
year in the Western Ghat region and from 0 to 200 mm per year in the remaining area,
which is significantly less compared to the observed data. On the other hand, after bias
correction methods are applied, there is a remarkable enhancement in the model output
as its magnitude approaches the observed values. Figure 9b shows the spatial variation
of the observed precipitation data for various classes over the Upper Bhima sub-basin,
ranging from 200 to 500 mm per year in the central region, which is the lowest rainfall, and
increasing to 2500 to 3000 mm per year in the Western Ghat region.

All the bias correction methods show a significant and similar level of ability in
bringing the model output results closer when comparing the climatological distribution of
annual average precipitation over the Upper Bhima sub-basin against the observed data for
the uncorrected and corrected model data. Figure 9c–e are the spatial variations of the LS,
LOCI, and PT correction methods and they show a similar spatial pattern of precipitation
over the Upper Bhima sub-basin. But, Figure 9c–e do not show the class of lowest rainfall in
the central part of the study area, which is 200 to 500 mm per year, as seen in the observed
data (Figure 9b). The best improvement is seen in Figure 9f, showing the spatial variation of
the DM-corrected precipitation data and relatively matching the pattern of spatial variation
of the observed data, including all classes throughout the study area. Also, some central
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and eastern parts of the study area show the lowest rainfall, which can also be seen in the
spatial variation of the observed data (Figure 9b).

4.3.2. Maximum Temperature

The spatial distribution of average daily maximum temperature over the Upper Bhima
sub-basin for the uncorrected output from the ACCESS1-3 CMIP5 GCM model and its
corrected datasets, after applying various bias correction methods, are compared against
the observed precipitation data, as shown in Figure 10. Figure 10a–e shows the spatial
variation of the model-simulated raw maximum temperature data, observed maximum
temperature data, LS-corrected, VS-corrected, and DM-corrected datasets, respectively.
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As raw precipitation datasets show a discrepancy in the spatial pattern, this also
shows that the maximum temperature also shows dissimilarity in the spatial pattern of the
uncorrected data and observed data. The only difference is that, in the case of precipitation,
the model data underestimates the precipitation data and, in the case of the temperature
data, the model data overestimates the temperature throughout the study area.

In the spatial variation of the model-simulated raw data, as shown in Figure 10a, there
are only three classes of spatial patterns ranging from the lowest temperature of 34 ◦C
in the Western Ghat region and the highest maximum temperature of 40 to 42 ◦C in the
eastern part of the study area, which is very high in comparison to the observed data, as
shown in Figure 10b.

Although, after the application of bias correction, there is a comparative improvement
in the model output, Figure 10c–e show the spatial variation of the LS, VS, and DM
correction methods, showing similar spatial patterns of precipitation over the Upper Bhima
sub-basin. The overall spatial pattern of the maximum temperature distribution is the same
for all three bias correction methods over the Upper Bhima sub-basin.

4.3.3. Minimum Temperature

Likewise, the results of the average daily minimum temperature show a similar pattern
and change to the maximum temperature. The spatial distributions of the average daily
minimum temperature over the study area for the uncorrected output GCM model are
shown in Figure 11. The corrected datasets, after applying various bias correction methods,
are compared against the observed minimum temperature. Figure 11a–e shows the spatial
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variation of the model-simulated raw minimum temperature data, observed minimum
temperature data, LS-corrected, VS-corrected, and DM-corrected datasets, respectively.
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Similar to the raw precipitation and maximum temperature, the minimum temperature
also shows a difference in the spatial patterns of the uncorrected data and observed data. In
the case of the spatial variation of the minimum temperature uncorrected data (Figure 11a),
this shows conspicuous high-temperature values ranging from 23 to 24 ◦C in the Western
Ghat region. Since these are uncorrected raw model data, they may have some biases
and, hence, they show such unacceptable results. After bias correction, the results of the
corrected minimum temperature match the pattern of the spatial variation of the observed
data. The overall spatial pattern of the minimum temperature distribution is the same for
all three bias correction methods over the Upper Bhima sub-basin.

5. Conclusions

The bias correction of the GCM-simulated output data is an important step before
they can be used for the investigation of the impacts of climate change at the regional scale,
because of the existence of biases in the model-simulated data. In this study, four bias
correction techniques for precipitation, i.e., Linear Scaling, Local Intensity Scaling, Power
Transformation, and Distribution mapping methods, and three bias correction techniques
for temperature, i.e., Linear Scaling, Variance Scaling and Distribution Mapping methods,
are applied to the CMIP5 ACCESS1-3 model simulation daily precipitation data from 1979
to 2005.

For precipitation, the K–S test assessment index D value in each month is maximum
in the model-simulated uncorrected data series with respect to the observed data, and the
results of the K–S test are improved after applying all four correction techniques. Among
all four methods, the DM method gives better results, as the D value is lowest in the DM
method each month compared to the other methods.

Spatial variation analysis also reveals that the uncorrected simulated data is not
sufficiently accurate for use in climate change studies on a watershed scale because of
its coarser spatial resolution and the presence of biases within it. Spatial variation maps
show that the uncorrected model data underestimate the annual average precipitation
data as they show the lowest value of precipitation compared to that of the observed and
bias-corrected data. It seems that the spatial variation pattern of all the methods is similar
except for the DM method, which matches with the observed data. Hence, in general, the



Appl. Sci. 2023, 13, 9142 19 of 21

DM method resulted in greater improvements to the D and p-values in comparison to the
other methods. Hence, we conclude that the DM method is a better bias correction method
for daily precipitation data than other methods.

Similarly, for maximum and minimum temperature, all three correction techniques
improved the K–S test assessment index D and significance p-value. In this case, based
on the statistics estimated by the K–S test, the DM method also gives better results in
comparison to the LS and VS methods.

The spatial variation of the corrected maximum and minimum temperature shows a
similar pattern of variation to all the methods with the observed data. But the case of the
uncorrected simulated data of the minimum temperature shows conspicuous results in the
Western Ghat region in the study area. Hence, after overall statistical analysis and study,
we conclude that the DM method is a better bias correction method for daily maximum
and minimum temperature data in comparison to the LS, LOCI, PT, and VS methods.

Although this work showed that various bias correction approaches that were evalu-
ated for correcting the CMIP5-model-simulated daily precipitation and temperature data,
it did not focus on the efficacy of the specific bias correction method in replicating the
hydrological extremes. Hence, the future scope of this work could include an assessment
the effectiveness of the bias correction methods in terms of extreme precipitation and
temperature events. The future scope of the study will also concentrate on the various
distribution-based and spatial disaggregation bias correction techniques, which are crit-
ical for developing the most effective climate information system for the sub-basin. The
new bias correction methods may be developed by addressing extreme events, spatial
heterogeneity and non-stationarity in biases, ensemble-based bias correction methods,
and multivariate bias correction methods, by considering the interaction between pre-
cipitation and temperature which influences the regional climate conditions. The bias
correction methods should be combined with a downscaling process in order to improve
the spatial resolution and applicability of the CMIP5 model datasets. This would help to
improve the reliability of the assessment of the impact of climate change at the regional
and sub-basin levels.
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//www.mdpi.com/article/10.3390/app13169142/s1, Supplementary data: For precipitation: (a) sim-
ulated data without correction, (b) LS corrected, (c) LOCI corrected, (d) PT corrected and (e) DM
corrected precipitation data and for maximum and minimum temperature: (a) simulated data without
correction, (b) LS corrected, (c) VS corrected and (d) DM corrected temperature data.
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