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Featured Application: This study proposes an enhanced variational mode decomposition method
using the beetle antennae search optimizer algorithm. Simulation signal analysis demonstrates
the effectiveness and superiority of the proposed method. Additionally, the study highlights that
the multifractal parameters of the acoustic emission frequency-domain spectrum can serve as a
reference for the early warning of coal damage and instability.

Abstract: Acoustic emission (AE) signal processing and interpretation are essential in mining engi-
neering to acquire source information about AE events. However, AE signals obtained from coal
mine monitoring systems often contain nonlinear noise, limiting the effectiveness of conventional
analysis methods. To address this issue, a novel denoising approach using enhanced variational mode
decomposition (VMD) and fuzzy entropy is proposed in this study. The denoised AE signal’s spectral
multifractal features are analyzed. The optimization algorithm based on VMD with a weighted
frequency index is introduced to avoid mode mixing and outperform other decomposition methods.
The characteristic parameter ∆α of the AE spectral multifractal parameter serves as an early warning
indicator of coal instability. These findings contribute to the accurate extraction of time–frequency
features and provide insights for on-site AE signal processing.

Keywords: acoustic emission; signal denoising; variational mode decomposition; multifractal

1. Introduction

Acoustic emission (AE) is a crucial technique in structural health monitoring. Many
studies have reported that the energy accumulated in coal and rock material under loading
can be partly released in the form of AE [1–3]. Through the processing and analysis of
the AE signal, the damage degree and damage mechanism inside the material can be
revealed [4–7], which can serve as a reference for analyzing on-site AE signals, and further
predict the structural life of coal mass [8].

However, the complex underground monitoring environment often introduces sig-
nificant environmental noise during AE signal transmission. These noises have obvious
nonlinear characteristics. These nonlinear noises hinder AE event identification and source
localization and reduce the accuracy of coal and rock mass disaster prediction. Therefore,
it is of great significance to develop a new noise reduction method for the structural life
prediction of coal mass.

The AE signal can be viewed as a composition of multifrequency information [9]. By
decomposing the AE signal, different frequency components can be obtained, allowing
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for the more precise extraction of time–frequency characteristics after noise frequency
filtering. Numerous methods have been developed for AE noise reduction, including fast
Fourier transform [10], wavelet decomposition [11], wavelet packet decomposition [12],
empirical mode decomposition (EMD) [13], and local mean decomposition [14]. However,
fast Fourier transform is limited to stationary signal analysis, providing only frequency
components within a signal segment and demonstrating poor performance with nonlinear
signals [15]. Wavelet decomposition and wavelet packet decomposition can better deal
with nonstationary signals, but it is necessary to select a suitable wavelet basis before signal
decomposition. Although the EMD and local mean decomposition methods are adaptive
techniques without the aforementioned limitations, they still encounter mode mixing and
end effects in practical applications.

Mode mixing refers to the blending and interference of different intrinsic mode func-
tions (IMFs) during the decomposition process. It occurs when the characteristics of a signal
cannot be accurately separated into distinct IMFs due to overlapping or mutual influence,
complicating signal analysis and interpretation. End effects occur at the boundaries of the
signal during decomposition, leading to distortions and instability in the generated IMFs.
Insufficient data near the signal edges exacerbate these effects, especially at the beginning
and end of the signal [16].

To address these challenges, variational mode decomposition (VMD) [17] has emerged
as an adaptive, non-recursive signal processing approach. VMD overcomes mode mixing
and end effects encountered in EMD while reducing nonstationarity in complex and highly
nonlinear time series. In recent years, VMD has been gradually applied in the field of signal
processing. For instance, An and Yang [18] employed VMD to denoise the vibration signal
from a hydropower unit, utilizing approximate entropy [19] to filter out the useful compo-
nents, demonstrating its superiority over wavelet analysis. Yang et al. [20] concluded that
VMD outperforms EMD in studying the wind speed influence by analyzing wind turbine
states. Zhang et al. [21] compared VMD and EMD in bearing defect feature extraction from
rolling bearing simulation signals, affirming VMD’s accurate extraction of the principal
bearing fault modes and superior performance over EMD. Zhang et al. [22] employed VMD
to identify microseismic signals and blasting signals, successfully separating each compo-
nent and accurately identifying the target signals. Xue et al. [23] utilized VMD for seismic
signal analysis, demonstrating higher spectral and spatial resolutions in the instantaneous
spectra compared with EMD.

However, in the aforementioned studies, the selection of mode number k in VMD was
often determined empirically and conveniently. For example, An and Yang [18] applied
VMD to analyze simulation and blasting signals, without providing a basis for choosing k.
Yang et al. [20] determined k based on the number of decomposition layers in EMD, which
is an empirical approach. Yang et al. [24] used correlation coefficients and energy ratios to
determine k, but this method is not suitable to AE signals and lacks physical meaning. The
accurate determination of k in VMD is crucial as it greatly impacts the decomposition results
and can lead to poor outcomes. Therefore, selecting an appropriate k holds significant
importance in VMD.

Several methods have been proposed for selecting mode number k, including correla-
tion coefficient [25,26], kurtosis index [27,28], and entropy [29]. In this study, we combine
the advantages of AE signal frequency characteristics and correlation coefficient to construct
a weighted frequency index as the objective for optimizing VMD parameters. Addition-
ally, we employ a novel optimization algorithm called beetle antennae search algorithm
(BAS) [30] to optimize VMD parameters. BAS is a simple method that has the advantages
of a simple-principle, parameter-efficient search algorithm that significantly reduces com-
putational requirements compared with the particle swarm optimization algorithm [31].

To address the difficulty in filtering out noise from AE signals, this paper proposes an
improved VMD method for AE signal analysis and noise reduction. The remaining sections
of this paper are organized as follows: Section 2 introduces the fundamental theory of
VMD and fuzzy entropy; Section 3 provides a brief overview of the improved VMD-related
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algorithms; Section 4 verifies the proposed method using simulation signals; Section 5
applies the proposed algorithm to reduce AE signal noise and analyzes the multifractal
characteristics of AE signals.

2. Basic Theory

This section introduces the calculation process of VMD and fuzzy entropy. Although
the decomposition effects of EMD and VMD are compared in this paper, due to space
limitations, the calculation process of EMD is not given in this section. The relevant
calculation process can be found in [13].

2.1. Variational Mode Decomposition

VMD is a novel non-recursive signal decomposition algorithm that is particularly well
suited to the analysis and processing of nonlinear and nonstationary signals. VMD can be
calculated as follows:{

min{ωk},{uk}

{
∑K

k=1 ‖∂t

[(
δ(t) + j

πt

)
uk(t)

]
e−jωkt‖2

}
∑K

k=1 uk = f (t)
. (1)

where {uk} = {u1, u2, u3, · · · , uk} represent mode components, with k being the mode
number; {ωk} = {ω1, ω2, ω3, · · · , ωk} corresponds to the center frequency of {uk}; and
f (t) denotes the original signal to be decomposed. To compute the solution of Equation (1),
penalty factor α and Lagrange multiplier λ(t) are introduced, transforming the constrained
problem into an unconstrained variational problem. The augmented Lagrange, L, can be
described as follows:

L({uk}, {ωk}, λ) = α ∑K
k=1 ‖∂t

[(
δ(t) +

j
πt

)
∗ uk(t)

]
e−jωkt‖2

2 + ‖ f (t)−∑K
k=1 uk(t)‖2

2 +
(

λ(t), f (t)−∑K
k=1 uk(t)

)
. (2)

where α is utilized to ensure signal reconstruction accuracy, while λ is employed to main-
tain the strictness of the constraint conditions. According to Equation (2), the Lagrange
expressions are sought by iteratively updating un+1

k , ωn+1
k , and λn+1:

ûn+1
k (ω) =

f̂ (ω)−∑i 6=k ûi(ω) +
λ̂(ω)

2

1 + 2α(ω−ωk)
2 , (3)

ωn+1
k =

∫ ∞
0 ω|ûk(ω)|2dω∫ ∞

0 |ûk(ω)|2dω
, (4)

λ̂n+1(ω) = λ̂n(ω) + τ
[

f (ω)−∑K
k=1 ûn+1

k (w)
]
. (5)

We update with repeated iterations until the iteration stopping condition is satisfied:

∑K
k=1

‖ûn+1
k − ûn

k ‖
2
2

‖ûn
k ‖

2
2

< ε. (6)

where n represents the number of iterations and τ denotes the iteration step length.

2.2. Introduction of Fuzzy Entropy

In this paper, fuzzy entropy [32] is used to determine the signal-to-noise boundary.
Fuzzy entropy is described as shown below.

For each time series [h(1), h(2), . . ., h(N)], we reconstruct U space by introducing
non-negative integers m (m ≤ N − 2), and the reconstructed signal is as follows:

Sm[i] = {h(i), h(i + 1), . . . , h(i + m− 1)} − h0(i), (7)
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where i = 1, 2, . . ., N − m + 1, and h0(i) can be defined as follows:

h0(i) =
1
m ∑m−1

j=0 h(i + j). (8)

The membership function is as follows:

A(x) =

{
1, x = 0

e[−ln(2)( x
r )

2], x > 0
, (9)

where r is similarity tolerance. According to Equation (9), the membership function is
defined as follows:

Am
ij = exp

− ln ln(2)·
(

dm
ij

r

)2
. (10)

We define distance dm
ij between two vectors Sm[i] and Sm[j] as the maximum absolute

difference between the two corresponding elements, and the distance is given by the
following:

dm
ij = (|h(i + p− 1)− h0(i)| − |h(j + p− 1)− h0(j)|), (11)

For each i value, the average value is obtained as follows:

Cm
i (r) =

1
N −m ∑N−m+1

j=1,j 6=i Am
ij , (12)

ϕm(r) =
1

N −m + 1 ∑N−m+1
i=1 Cm

i (r). (13)

Therefore, the fuzzy entropy of the sequence is defined as follows:

FuzzyEn(m, r, N) = lnϕm(r)− lnϕm+1. (14)

Based on the findings of previous research [33], we set m = 2, r = 0.2, and N = 1000.

3. FCI-VMD Method Based on BAS

From the above descriptions, there are four parameters that require determination
before signal decomposition: mode number k, penalty parameter α, noise tolerance ξ,
and tolerance of convergence criterion ε. Among these parameters, ξ and ε have minimal
impact on decomposition. ξ is typically set to zero to ensure effective convergence of
the algorithm, while ε is set to a small positive value to ensure reconstruction accuracy.
Conversely, mode number k significantly influences the decomposition outcome. If k is set
too high, the signal is over-decomposed, resulting in different modes for signals at the same
frequency and causing mode mixing. On the other hand, setting k too low leads to under-
decomposition, where the same mode exhibits varying frequency characteristics. Thus,
selecting an appropriate value for k holds paramount importance in signal decomposition.
To address this issue, this paper proposes the FCI-VMD algorithm to optimize the selection
of k.

3.1. Weighted Frequency Index

The AE spectrum of coal failure carries valuable information about the progression of
fracture damage, with the main frequency being a crucial feature in the frequency domain.
Hence, it is essential to consider the impact of the main frequency on the selection of mode
number k during AE signal decomposition.
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After the original signal, f (t), is decomposed using VMD, the decomposed component
χk(t) undergoes the Hilbert transform:

χ̂k(t) =
1
π

∫ ∞

−∞

χk(τ)

t− τ
dτ. (15)

The signal is defined as follows:

z(t) = χk(t) + jχ̂k(t) = λ(t)ejθ(t), (16)

The instantaneous amplitude is as follows:

λ(t) =
√

χ2
k(t) + χ̂2

k(t). (17)

The instantaneous frequency is as follows:

ρ(t) =
1

2π

dθ(t)
dt

. (18)

The main frequency of the m mode is ρm, (2 < m ≤ K), and the weighted frequency
index, FCI, is defined as follows:

FCI =
FI
C

, (19)

FI = |ρm − ρm+1|. (20)

C =
E[(x− x)(y− y)]

E
[
(x− x)2

]
E
[
(y− y)2

] . (21)

where ρm is the main frequency of the modes and FI represents the main frequency distance
between the two modes. x and y represent adjacent modal components.

From Equations (19)–(21), we can know that a smaller FI suggests a higher likelihood
of mode mixing when the main frequencies of two signals are close. Conversely, if FI is
too large, further decomposition of the signal is necessary. Hence, finding a suitable FI
helps avoid these issues. In this study, the AE frequency range during coal sample failure
was primarily distributed between 100 kHz and 300 kHz. The decomposition results were
relatively stable when the minimum FI value exceeded 10 kHz, which was chosen as the
threshold in this paper. The correlation coefficient, C, can assess the degree of overlap
between modes and provide valuable insights. A higher correlation coefficient indicates a
greater overlap between modes. Considering the advantages and limitations of both indices,
this paper adopts the weighted frequency index as the objective function for optimizing
the k value.

3.2. Beetle Antennae Search

The beetle antennae search algorithm (BAS) is an intelligent algorithm that imitates
beetle foraging [30]. In nature, beetles rely on their antennae to detect chemical signals.
If the right antennae detect a stronger smell compared with the left antennae, the beetle
chooses to fly towards the right in the subsequent step; otherwise, it flies towards the left.
By mimicking this behavior, BAS performs a random search in the vicinity based on an
objective function to be optimized. Notably, BAS utilizes a single beetle, enabling it to
achieve high search speed. The specific steps of the BAS algorithm are reported below.

Assuming that the position of the beetle in the D-dimensional space is XD = (x1, x2,
x3, . . . , xD), the antennae on the left and right sides of the beetle can be defined by the
following formulas: {

Xr = Xi + ld
Xl = Xi − ld

, (22)
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where Xi is the current position of the beetle, Xr and Xl denote the positions of these two
antennae, l is the sensing length of antennae, and d represents the orientation of the beetle
in D space:

d =
rands(n, 1)
‖rands(n, 1)‖ , (23)

where n is the domain dimension and rands(·) represents a random function.
The update location of the beetle is described as follows:

Xi+1 = Xi + δidsign(Φ(Xr)−Φ(Xl)). (24)

where sign is the sign function, Φ(·) is the objective function, δi is the step size, and i is the
number of iterations. The beetle continuously updates the position with Equation (24) until
the objective function finally satisfies the optimal solution.

3.3. Proposed Method

The FCI-VMD method proposed in this paper takes the weighted frequency index as
the objective function. The signal–noise separation point is determined by the fuzzy entropy.
Since BAS is an algorithm for finding the minimum value, according to Equation (24), the
parameter optimization process can be described as follows:{

Φ(Xr), Φ(Xl) = min{FCI}
k = 3, 4, . . . , 10

. (25)

where FCI is the objective function to be optimized and k is the parameter to be optimized
for VMD. Generally speaking, k is an integer between 3 and 10. The specific steps are
as follows:

(1) Set the VMD initial parameters of the original signal, f (t), and set the initial parame-
ters of BAS, such as the range of parameter k, number of iterations, and iteration step
size.

(2) Decompose the AE signal using VMD, and calculate the Φ(Xr) and Φ(Xl) of all
modes.

(3) Determine if an iteration termination condition is reached: If Φ(Xr), Φ(Xl) > FCI,
then k = k + 1, and continue the iteration; else, k = k − 1, and stop the iteration.

(4) Decompose the signal again with the optimized parameters.
(5) Determine the antennae for the decomposed signal by calculating the fuzzy entropy;

then, reconstruct the effective signal.

4. Analysis of the Simulation Signal

To verify the effectiveness of the method proposed in this paper for denoising AE
signals, simulation signals with different frequencies are used to verify the proposed
method. The mathematical model of AE constructed by [34] is expressed as follows:

f (t) = ∑n
i=1 Aie[−Pi(t−ti)

2] sin[2πρm(t− ti)]. (26)

where Ai, Pi, ti, and ρm are the amplitude, attenuation coefficient, delay time and dominant
frequency of the superimposed signal of i, respectively. β is the number of superimposed
signals in the model.

The AE signal is obtained by using the above model, and its parameters are shown in
Table 1.
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Table 1. AE simulation parameters.

β Ai Pi ti/ms ρm/kHz

1 2 6 × 108 0.4 70
2 2 8 × 108 0.6 40
3 2 7 × 108 0.8 110

To simulate the AE signal more realistically, white noise with signal-to-noise ratios
(SNRs) of 5 dB, 8 dB, and 10 dB is added to the simulation signal. This section only
specifically analyzes the AE simulation signal with an SNR of 10 dB (Figure 1).
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Figure 1. Original simulation signal. SNR = 10 dB.

4.1. Results of Simulation Signal Decomposition

After determining the value of k using the FCI-VMD algorithm, the simulation signal
is decomposed using VMD with a selected number of decomposition layers, namely, k = 4
(see Figure 2). The spectrogram reveals that IMF2, IMF3, and IMF4 correspond to the main
frequencies ρ3 = 110 kHz, ρ2 = 70 kHz, and ρ1 = 40 kHz, respectively. In contrast, the IMF1
component exhibits a wider frequency band with high frequency and low energy, indicating
it as the noise signal. To verify the effectiveness of the proposed optimization algorithm, we
also decompose the signal with k = 5 using VMD, and the resulting components are shown
in Figure 3. Notably, the main frequencies of the IMF2 and IMF3 components in Figure 3
are found to be relatively close, indicating the occurrence of mode mixing. Consequently,
the optimal number of decomposition layers, k, for the signal is determined to be 4.

To evaluate the advantages of the FCI-VMD method, a comparison is made with two
alternative approaches: EMD and EVMD. The decomposition results obtained using EMD
are depicted in Figure 4. As illustrated in the figure, IMF2 to IMF5 all exhibit varying
degrees of mode mixing, making it challenging to distinguish between effective modes
and noise modes. On the other hand, EVMD (empirical variational mode decomposition)
is a variational mode decomposition method in which mode number k is empirically
determined. Figure 5 showcases the decomposition results obtained using EVMD, clearly
indicating excessive decomposition of the signal.
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4.2. Signal-to-Noise Separation with Fuzzy Entropy

Entropy serves as a metric for assessing the complexity of a signal. with higher entropy
indicating greater complexity. Using VMD decomposition, the AE signal is separated
into several components with distinct characteristic frequencies. A higher entropy value
signifies a more chaotic nature of the signal. In comparison to the effective signal, the AE
noise signal exhibits heightened complexity and uncertainty, resulting in higher entropy.
Consequently, in this section, fuzzy entropy is employed to eliminate noise components
from the AE signals.

The fuzzy entropy of different modes obtained using EMD, EVMD, and FCI-VMD is
computed and illustrated in Figure 6. From Figure 6, it can be observed that EMD yields
larger fuzzy entropy values for IMF1 and IMF2. VMD, on the other hand, produces a
larger fuzzy entropy value for the IMF1 component. Notably, EVMD introduces more noise
components due to signal over-decomposition. To remove noise, modes with fuzzy entropy
exceeding 0.2 are eliminated, while the remaining IMF components are retained as optimal
components. The denoised simulation AE signal is subsequently reconstructed based on
these optimal components.

Figure 7 depicts the denoising results obtained with the EMD method applied to a
noise-contaminated analog AE signal. It can be observed that the 110 kHz frequency signal
is filtered out, leading to waveform distortion. This indicates that filtering the complex
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simulation AE signal using EMD decomposition compromises the integrity of the effective
signal. Conversely, upon decomposing the simulation AE signal using FCI-VMD, the
desirable frequencies of 40 kHz, 70 kHz, and 110 kHz are successfully extracted, allowing
for the separation of noise and effective signals.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 19 
 

the AE noise signal exhibits heightened complexity and uncertainty, resulting in higher 
entropy. Consequently, in this section, fuzzy entropy is employed to eliminate noise 
components from the AE signals. 

The fuzzy entropy of different modes obtained using EMD, EVMD, and FCI-VMD is 
computed and illustrated in Figure 6. From Figure 6, it can be observed that EMD yields 
larger fuzzy entropy values for IMF1 and IMF2. VMD, on the other hand, produces a 
larger fuzzy entropy value for the IMF1 component. Notably, EVMD introduces more 
noise components due to signal over-decomposition. To remove noise, modes with fuzzy 
entropy exceeding 0.2 are eliminated, while the remaining IMF components are retained 
as optimal components. The denoised simulation AE signal is subsequently recon-
structed based on these optimal components. 

 
Figure 6. Fuzzy entropy for different IMFs. 

Figure 7 depicts the denoising results obtained with the EMD method applied to a 
noise-contaminated analog AE signal. It can be observed that the 110 kHz frequency 
signal is filtered out, leading to waveform distortion. This indicates that filtering the 
complex simulation AE signal using EMD decomposition compromises the integrity of 
the effective signal. Conversely, upon decomposing the simulation AE signal using 
FCI-VMD, the desirable frequencies of 40 kHz, 70 kHz, and 110 kHz are successfully ex-
tracted, allowing for the separation of noise and effective signals. 

 
(a) 

Figure 6. Fuzzy entropy for different IMFs.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 19 
 

the AE noise signal exhibits heightened complexity and uncertainty, resulting in higher 
entropy. Consequently, in this section, fuzzy entropy is employed to eliminate noise 
components from the AE signals. 

The fuzzy entropy of different modes obtained using EMD, EVMD, and FCI-VMD is 
computed and illustrated in Figure 6. From Figure 6, it can be observed that EMD yields 
larger fuzzy entropy values for IMF1 and IMF2. VMD, on the other hand, produces a 
larger fuzzy entropy value for the IMF1 component. Notably, EVMD introduces more 
noise components due to signal over-decomposition. To remove noise, modes with fuzzy 
entropy exceeding 0.2 are eliminated, while the remaining IMF components are retained 
as optimal components. The denoised simulation AE signal is subsequently recon-
structed based on these optimal components. 

 
Figure 6. Fuzzy entropy for different IMFs. 

Figure 7 depicts the denoising results obtained with the EMD method applied to a 
noise-contaminated analog AE signal. It can be observed that the 110 kHz frequency 
signal is filtered out, leading to waveform distortion. This indicates that filtering the 
complex simulation AE signal using EMD decomposition compromises the integrity of 
the effective signal. Conversely, upon decomposing the simulation AE signal using 
FCI-VMD, the desirable frequencies of 40 kHz, 70 kHz, and 110 kHz are successfully ex-
tracted, allowing for the separation of noise and effective signals. 

 
(a) 

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 19 
 

 
(b) 

Figure 7. Waveform and spectrum of the simulated AE signal with noise after denoising. (a) Dis-
tribution of different waveform components. (b) Spectrum of different waveform components. 

4.3. Evaluation Indicators 
To compare the noise reduction effect of these three methods, the percentage of 

signal energy after noise reduction to the original signal energy (ESN) and the root mean 
square error (RMSE) are used as noise reduction evaluation indicators. ESN is defined as 
follows: 𝐸𝑆𝑁 = 𝐸ᇱ𝐸 . (27)

where E is the total energy of the original signal and 𝐸ᇱ is the energy of the signal after 
noise reduction. The RMSE can be defined as follows: 

𝑅𝑀𝑆𝐸 = ඨ1𝑁 (𝑓(𝑡) − 𝑓(𝑡)ᇱ)ଶ. (28)

The results of EMD, EVMD, and FCI-VMD denoising evaluation indicators for sig-
nals with different SNRs are shown in Table 2. It is generally believed that the smaller the 
RMSE and the larger the ESN are, the closer the denoised signal is to the real signal. 
Compared with EMD and EVMD, after denoising the noisy analog AE signal with the 
FCI-VMD method, the signal retains a higher proportion of energy, and the RMSE is also 
smaller. This shows that at different noise levels, FCI-VMD is better than EMD and 
EVMD in processing AE signals. 

Table 2. Evaluation index of three noise reduction methods. 

Method Metrics 
Simulation AE Signal 

SNR = 5 SNR = 10 SNR = 8 

EMD ESN 0.7423 0.6490 0.7423 
RMSE 0.3254 0.2452 0.3154 

EVMD ESN 0.9047 0.9309 0.9122 
RMSE 0.0628 0.0942 0.0621 

FCI-VMD ESN 0.9273 0.9456 0.9742 
RMSE 0.0412 0.0878 0.0251 

5. Experiments 
Based on the above simulation signal analysis and verification of the effectiveness of 

the proposed optimization algorithm, we carried out a uniaxial compression test on coal 
samples to investigate the AE characteristics in different stress stages. Following the de-

Figure 7. Waveform and spectrum of the simulated AE signal with noise after denoising. (a) Distri-
bution of different waveform components. (b) Spectrum of different waveform components.



Appl. Sci. 2023, 13, 9140 12 of 20

4.3. Evaluation Indicators

To compare the noise reduction effect of these three methods, the percentage of signal
energy after noise reduction to the original signal energy (ESN) and the root mean square
error (RMSE) are used as noise reduction evaluation indicators. ESN is defined as follows:

ESN =
E′

E
. (27)

where E is the total energy of the original signal and E′ is the energy of the signal after
noise reduction. The RMSE can be defined as follows:

RMSE =

√
1
N

(
f (t)− f (t)′

)2
. (28)

The results of EMD, EVMD, and FCI-VMD denoising evaluation indicators for signals
with different SNRs are shown in Table 2. It is generally believed that the smaller the RMSE
and the larger the ESN are, the closer the denoised signal is to the real signal. Compared
with EMD and EVMD, after denoising the noisy analog AE signal with the FCI-VMD
method, the signal retains a higher proportion of energy, and the RMSE is also smaller. This
shows that at different noise levels, FCI-VMD is better than EMD and EVMD in processing
AE signals.

Table 2. Evaluation index of three noise reduction methods.

Method Metrics
Simulation AE Signal

SNR = 5 SNR = 10 SNR = 8

EMD
ESN 0.7423 0.6490 0.7423

RMSE 0.3254 0.2452 0.3154

EVMD
ESN 0.9047 0.9309 0.9122

RMSE 0.0628 0.0942 0.0621

FCI-VMD
ESN 0.9273 0.9456 0.9742

RMSE 0.0412 0.0878 0.0251

5. Experiments

Based on the above simulation signal analysis and verification of the effectiveness
of the proposed optimization algorithm, we carried out a uniaxial compression test on
coal samples to investigate the AE characteristics in different stress stages. Following
the denoising of the AE signal, we further extracted the spectral characteristics using the
Hilbert transform and explored the multifractal properties of the spectrogram.

5.1. Uniaxial Compression Test

The experimental system includes a loading system and an AE system. An MTS
C45.104 testing machine is used in the loading system. The AE instrument utilizes a
PCI-Express8 multi-channel AE system manufactured by American Physical Acoustics
Company, along with Nano 30 miniature sensors. The sensor has a frequency range
of 125~750 kHz, and it is equipped with a 2/4/6 voltage preamplifier that allows for a
selectable range of 20, 40, and 60 dB. Before the test, the sampling rate is set to 1 Msample/s.
The tests are displacement-controlled at a rate of 1 mm/min.

All the coal samples tested are taken from Wanglou Coal Mine, Shandong Province,
China. All samples are prepared in accordance with the ISRM-suggested shape and size
and are processed into cylinders with a diameter of 50 mm and a height of 100 mm. Five
samples are prepared, numbered wl-2, wl-3, wl-5, wl-6, and wl-8. The stress–strain curve is
shown in Figure 8, and the basic physical and mechanical parameters are shown in Table 3.
It can be observed that the uniaxial compressive strength of specimens wl-5, wl-6, and
wl-8 is relatively low. This is because coal is a material with significant heterogeneity, con-
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taining many inherent fractures and voids. Additionally, for coal samples with significant
differences in porosity, the uniaxial compressive strength tends to vary significantly.
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Table 3. Physical and mechanical properties of coal samples.

Number Density
(g/cm3)

P-Wave Velocity
(m/s)

Uniaxial Compressive
Strength (MPa)

Young’s
Modulus (GPa)

wl-2 1.45 2023.79 12.15 2.59

wl-3 1.37 2050.09 12.35 2.48

wl-5 1.37 1550.46 9.7 2.12

wl-6 1.32 1981.38 8.67 2.17

wl-8 1.37 1532.41 6.25 1.26

The stress–AE count–cumulative AE count curve of coal under uniaxial compression
is presented in Figure 9. In the initial stages of low stress, the coal sample undergoes pore
compaction, resulting in a relatively small number of AE counts. As the stress gradually
increases, microcracks begin to form in the coal sample, leading to a continuous increase in
AE counts. When the coal sample approaches its peak strength, a significant number of
dense, high-amplitude signals are generated, indicating the occurrence of instability failure.
The above observations demonstrate that AE signals can effectively reflect the internal
damage and propagation of microcracks in coal. By processing and analyzing the collected
AE signals, it becomes possible to assess the stress stage of coal damage, offering a valuable
reference for early warning systems pertaining to coal damage and instability.
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5.2. AE Signal Noise Reduction

To reduce the computational load associated with the high sampling frequency and
large number of AE signal data, 100 sets of data are selected at equal intervals from the
time sequence. Each data set consists of 1024 sampling points. The FCI-VMD algorithm
is applied to decompose each set of signals, simultaneously calculating the fuzzy entropy
of the resulting IMF components. Figure 10 illustrates the decomposition results and the
corresponding fuzzy entropy values. In the figure, σ represents stress; σc represents peak
stress; and σ/σc represents different stress stages. It can be observed that the optimal
decomposition level for the AE signal is 5, and there is a significant variation in fuzzy
entropy among the IMF components. The fuzzy entropy values are arranged in descending
order, with IMF1 exhibiting the highest entropy, and IMF5, the lowest. This suggests that
IMF1 contains a greater proportion of noise signal components, and each layer of IMF
components contains noise modes. In this study, components with fuzzy entropy exceeding
a certain threshold are filtered out, while the remaining components are reconstructed to
obtain the effective signals. This approach avoids filtering out only IMF1 or selectively
filtering out some effective signals, thereby preventing the presence of residual noise in
the reconstructed signals. Based on statistical analysis of the fuzzy entropy values of each
IMF component, it is observed that the IMF component displays relative discreteness when
fuzzy entropy exceeds 0.015. Hence, a threshold of 0.015 is set in this study.
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After filtering the noise signal and reconstructing the effective signal, the signal after
noise reduction outcomes is shown in Figure 11.
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Figure 11 demonstrates that the AE signal waveform becomes smoother, and the high-
frequency noise is effectively eliminated after denoising using FCI-VMD. The improvement
is particularly noticeable in the frequency domain, where the elimination of noise is evident.
This indicates that the improved VMD approach not only filters out the noise signal but
also preserves the integrity of the effective signal without distortion or loss.

5.3. Time–Frequency Feature Extraction of the AE Signal

Time–frequency analysis is a signal analysis method that transforms time-domain
signals into time–frequency images. It describes the spectral components of the signal at
different times, so it contains more information [35]. In this paper, the Hilbert transform is
used to convert the denoised one-dimensional time-domain signal into a three-dimensional
time–frequency image, and the spectrum of typical AE signals in the four stages is selected,
as shown in Figure 12.
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Figure 12 shows the distinct spectral characteristics of the AE signal in different stages
of coal uniaxial compression. The main frequency range of AE during coal failure is predom-
inantly between 100 and 300 kHz. During the initial 20% σc of the test, the main frequency
band is narrow, centered around approximately 296 kHz. As the sample continues to be
loaded, the dominant frequency of AE spans between 100 and 300 kHz at 50% σc and 80%
σc, with a longer duration. When the sample reaches peak strength, the main frequency is
approximately 92.5 kHz. At this time, the main frequency bandwidth decreases, and the
amplitude increases. Therefore, the AE frequency bandwidth gradually widens during
the coal loading process, but the main frequency bandwidth suddenly decreases, and the
main frequency decreases when the coal is destroyed. There are differences in the spectral
characteristics of AE in the four typical stress stages. Thus, we can try to extract the spectral
characteristics of AE by using the multifractal spectrum.

5.4. AE Multifractal Spectrum

The fractal dimension can be used to describe nonlinear signals and images, and it is
an effective tool to describe complexity and inhomogeneity. Complex systems generally
have self-similar characteristics. In the critical instability stage of disordered media, there
is implicit complexity in space and time, generally forming multiscale features and fractal
structures. The spectral distribution of AE is relatively complex, and simple fractal dimen-
sions alone cannot accurately describe the fractal characteristics of the acoustic emission
spectrum. In this section, the box counting method [36] is used to calculate the multifractal
spectrum of the AE spectrum. First, the spectrogram is converted into a binary image; then,
the grid with side length r is divided into grids of the same size. Then, each grid with side
length r continues to be divided into small squares with grids with side length α. If there
are pixels in the small square, we define the square as black; otherwise, it is white. We
define the number of small black squares in each square with side length r as Nij; then, the
probability measure is as follows:

Pij(r) =
Nij

∑ij Nij
. (29)

In the scale-free self-similar region, probability measure Pij has the following relationship:

Pij(r) ∼ rαij . (30)
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where αij is the singularity index. We denote the number of all lattices with the same
singular index αij in the spectrogram by Nαij ; then, the following relationship also exists in
the scale-free self-similar interval:

Nαij(r) ∼ r− f (αij). (31)

where f (αij) represents the probability of a in all singularity index sets, also known as
the fractal dimension, when the singularity index is αij. The multifractal spectrum is
formed by plotting all

[
αij, f

(
αij
)]

in the Cartesian coordinate system, which can reflect the
inhomogeneity of the acoustic emission spectrum. The width of the multifractal spectrum
of ∆α is defined as follows:

∆α = αmax − αmin. (32)

Spectral width ∆α reflects the complexity of the entire AE spectrogram. The larger
∆α is, the more complex the AE spectrogram and the wider the frequency band are. The
relationship between the fractal dimension of the small and large probability subsets can
be obtained with the following calculation:

∆ f = f (αmax)− f (αmin). (33)

where ∆ f reflects the morphological characteristics of the spectrogram. According to
multifractal theory, the multifractal spectra of coal in the four stress loading stages are
obtained, as shown in Figure 13.
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Figure 13 presents the multifractal spectra of AE spectral images obtained from coal
samples at different stress levels: 20% σc, 50% σc, 80% σc, and 100% σc. The results demon-
strate noticeable variations in the spectral width, ∆α, of the multifractal spectrum across
the different stress stages while exhibiting similar patterns among different coal samples.
In the middle stage of loading, multifractal spectral parameter ∆α is the largest, and in
the failure stage, ∆α reaches the minimum. Specifically, during the intermediate loading
stage, parameter ∆α exhibits the highest values, whereas it reaches its minimum during the
failure stage. This behavior primarily reflects the progressive evolution of cracks induced
by the coal loading process.

Table 4 summarizes the multifractal spectral parameters of different coal samples.
According to Table 4, in the initial loading stage (20% σc), ∆α = 0.1650. During this stage,
the coal sample experiences gradual closure of cracks, resulting in low acoustic emission
signal amplitude, high main frequency, and narrow main frequency bandwidth. With the
continuous loading of the coal sample, at 50% σc and 80% σc, the presence of microfractures
and of a limited number of larger fractures becomes more prominent. Consequently, the
main frequency bandwidth of AE widens, and ∆α values of 0.1695 and 0.1785 are observed,
respectively. These stages exhibit a gradual widening trend in ∆α. When the stress reaches
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its peak strength, macroscopic cracks develop, leading to subsequent instability failure. At
this time, the AE amplitude reaches its maximum; the main frequency decreases; the main
frequency bandwidth narrows; and ∆αmeasures 0.1402. The order of ∆α across different
loading stages is as follows: 80% σc > 50% σc > 20% σc > 100% σc. This order aligns with
the trend observed in the main frequency of AE, which first increases and then decreases
throughout the entire loading stage. These findings indicate that ∆α is related to the main
frequency of AE and can serve as an early warning indicator of coal damage and instability.

Table 4. The multifractal spectral characteristic parameters of AE spectral images in different stages.

Sample State
Characteristic Parameter of Multifractal Spectrum

αmin f (αmin) αmax f (αmax) ∆α ∆f

Wl-2

20% σc 2.0795 2.0795 2.2445 1.9967 0.1650 −0.0828
50% σc 2.0778 2.0778 2.2473 1.9987 0.1695 −0.0791
80% σc 2.0770 2.0770 2.2555 1.9960 0.1785 −0.0810

100% σc 2.0786 2.0034 2.2188 1.9901 0.1402 −0.0751

Wl-3

20% σc 2.0823 2.0823 2.2179 2.0081 0.1356 −0.0742
50% σc 2.0809 2.0809 2.2373 1.9987 0.1564 −0.0822
80% σc 2.0790 2.0790 2.2561 1.9907 0.1771 −0.0883

100% σc 2.0824 2.0824 2.2102 2.0126 0.1278 −0.0698

Another multifractal parameter, ∆ f , reflects the overall difference degree of the AE
spectrogram. ∆ f < 0 indicates that the grayscale image is dominated by a smaller grayscale,
which is due to the low proportion of the AE spectral distribution in the entire image. With
the continuous loading of coal samples, the AE frequency band changes from widening to
narrowing, and the spectral band is the narrowest in the destruction stage. ∆ f reaches its
maximum value.

6. Conclusions

To address the challenge of effectively filtering emitted noise, this paper proposes the
FCI-VMD algorithm based on variational mode decomposition and applies it to the study
of indoor sound emission signal separation and vibration characteristics. Additionally,
multiple fractal spectra are utilized to extract AE spectral features. The main findings are
summarized as follows:

• A weighted frequency index is proposed as the objective function to optimize VMD
decomposition level k. The BAS algorithm is used to automatically search for the
objective function and obtain the effective signal components. The results show that
the proposed method can effectively avoid the mode mixing issues and overcome
the need to determine the k value beforehand when employing VMD for AE signal
decomposition.

• In comparison to EMD and EVMD, FCI-VMD proves more suitable for AE signal
denoising. By utilizing fuzzy entropy as the basis for selecting the noise components
in the four stress stages, the method avoids the poor noise reduction effect caused by
filtering out only the components with more noise content.

• The multifractal parameter, ∆α, exhibits a sharp decrease as coal damage occurs,
aligning with the evolution pattern of the AE main frequency. Consequently, ∆α can
be employed as a quantitative analysis parameter for AE spectra. Moreover, ∆α can
serve as an early warning indicator for coal damage and instability.
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