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Abstract: Accurate parameter estimation is essential for modeling the statistical characteristics of
ocean clutter. Common parameter estimation methods in generalized Pareto distribution models
have limitations, such as restricted parameter ranges, lack of closed-form expressions, and low
estimation accuracy. In this study, the particle swarm optimization (PSO) algorithm is used to solve
the non-closed-form parameter estimation equations of the generalized Pareto distribution. The
goodness-of-fit experiments show that the PSO algorithm effectively solves the non-closed parameter
estimation problem and enhances the robustness of fitting the generalized Pareto distribution to
heavy-tailed oceanic clutter data. In addition, a new parameter estimation method for the generalized
Pareto distribution is proposed in this study. By using the difference between the statistical histogram
of the data and the probability density function/cumulative distribution function of the generalized
Pareto distribution as the target, an adaptive function with weighted coefficients is constructed to
estimate the distribution parameters. A hybrid PSO (HPSO) algorithm is used to search for the best
position of the fitness function to achieve the best parameter estimation of the generalized Pareto
distribution. Simulation analysis shows that the HPSO algorithm outperforms the PSO algorithm in
solving the parameter optimization task of the generalized Pareto distribution. A comparison with
other traditional parameter estimation methods for generalized Pareto distribution shows that the
HPSOHPSO algorithm exhibits strong parameter estimation performance, is efficient and stable, and
is not limited by the parameter range.

Keywords: sea clutter; generalized Pareto distributed; hybridized particles; particle swarm optimiza-
tion; parameter estimation; estimated performance

1. Introduction

Understanding the characteristics of sea clutter is crucial for designing effective radar
target-detection algorithms. The statistical properties of sea clutter play a significant role in
determining the constant false alarm characteristics of target detection [1–3]. Specifically,
the collected sea clutter data from shore-based radar exhibits a pronounced long trailing
behavior in its statistical distribution [4–8], commonly referred to as the phenomenon of
heavy trailing.

The composite Gaussian model is well-suited for capturing the heavy trailing charac-
teristics observed in sea clutter data [9–11]. This model comprises a slow-varying structural
component that modulates a fast-varying scattering component [12], providing a plausible
explanation for the formation mechanism of sea clutter. Depending on the composition of
the texture components, three distinct statistical distributions are commonly used, namely
the K distribution [13], generalized Pareto distribution [14], and IG-CG distribution [15].
The probability density function of the K distribution can be regarded as the product of the
texture component and the speckle component of sea clutter, with the texture component
following a gamma distribution. In contrast, the texture component of the generalized
Pareto distribution follows an inverse gamma distribution, while the IG-CG is a compound
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Gaussian distribution model with an inverse Gaussian texture. Each distribution model is
associated with its optimal detectors, and accurate parameter estimation plays a pivotal role
in determining the performance of these detectors. Hence, precise parameter estimation is
of utmost importance for the effective application of distribution models.

Parameter estimation methods for the generalized Pareto distribution can be cate-
gorized into moment estimation [16–19], maximum likelihood estimation [20,21], and
quantile parameter estimation [22,23]. Moment estimation involves estimating integer
order moments, fractional order moments, logarithmic moments, and other variants. The
accuracy of parameter estimation varies across different moment estimation methods,
with challenges such as non-closed expressions and a limited range for shape parameter
estimation. Maximum likelihood estimation provides the highest accuracy but involves
computationally intensive nonlinear expression solutions [24,25]. Sub-locality-based pa-
rameter estimation methods effectively mitigate estimation errors caused by anomalous
clutter data samples [23]. However, their utilization of echo data information is limited, and
practical application often requires combining estimation results from multiple sub-locality
points, thereby increasing computational complexity.

Liang et al. [26] proposed a multi-scan recursive Bayesian estimation method for
the parameter estimation of the generalized Pareto distribution in large-scale sea clutter
scenes, which demonstrated convergence and robustness. Shui et al. [20] addressed sea
clutter modeling with outliers using the generalized Pareto distribution and proposed
an iterative algorithm to efficiently solve the truncated maximum likelihood equation.
Yu et al. [23] employed a double-percentile parameter estimation method for effective
parameter estimation of the generalized Pareto distribution measured sea clutter waves,
providing an analysis of its effectiveness. Solving non-closed expressions poses challenges
for parameter estimators in practical applications of the generalized Pareto distribution.
These non-closed expressions can be treated as nonlinear optimization problems of the
objective function, and population intelligence search methods from the field of artificial
intelligence [27,28] offer common approaches for solving such problems. The application
of artificial intelligence methods to parameter estimation of sea clutter distribution models
is a relatively new research direction [29].

In response to the problem of non-closed parameter estimation equations in some
parameter estimation methods for the generalized Pareto distribution model, this study pro-
poses the use of the particle swarm optimization (PSO) algorithm to search for non-closed
expressions and solve the parameter estimation problem. The PSO algorithm is applied
to nonlinear optimization problems, including the non-closed expressions of parameter
estimation methods such as 0.5th/1st-order moment estimation, 0.25th-order logarithmic
moment estimation, and maximum likelihood estimation. Furthermore, to address the
limitations of low estimation accuracy, restricted estimation range, and non-closed expres-
sions in traditional parameter estimation methods for the generalized Pareto distribution,
this study aims to find an optimal parameter estimation model for the generalized Pareto
distribution that does not rely on complex mathematical expressions. To achieve this, a
hybrid particle swarm optimization algorithm (HPSO) is proposed to perform the optimal
parameter search task for the target objectives in parameter estimation of the generalized
Pareto distribution.

The main work and innovations of this study are summarized as follows:

• In response to the non-closed expression phenomenon in different parameter estima-
tion methods, this study investigates the construction of fitness functions for PSO
algorithm and HPSO when solving target optimization problems.

• By using simulated random data samples of the generalized Pareto distribution, the
impact of parameters such as population size and iteration count in the PSO algorithm
on its performance is examined, and the optimal parameter configuration for each
targeted objective is determined.
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• A goodness-of-fit test experiment is conducted on two sets of high-intensity ocean
wave clutter measured data to compare the fitting performance of the generalized
Pareto distribution models obtained through different parameter estimation methods.

• The performance of the HPSO algorithm and the PSO algorithm is compared using
simulated data based on the parameter estimation fitness function constructed in this
study.

The experimental results demonstrate that the PSO algorithm not only expands the
parameter estimation range of the generalized Pareto distribution but also significantly
improves its fitting performance to observed data, particularly in the case of heavy-tailed
ocean clutter data. Furthermore, simulation experiments reveal that the HPSO algorithm
outperforms the PSO algorithm when it comes to solving the task of optimal parameter
search for the generalized Pareto distribution.

The remaining sections of the paper are organized as follows. Section 2 provides
background information on the generalized Pareto distribution model and its fundamental
parameter estimation techniques. In Section 3, we present a comprehensive explanation
of the parameter estimation methods for the generalized Pareto distribution model, with
a specific focus on the PSO-based approach and the proposed HPSO method. Section 4
presents the experimental results, followed by analysis and discussion. Finally, in Section 5,
we present the conclusions drawn from our findings and discuss potential avenues for
future research.

2. Background

In this section, we briefly introduce the necessary background of the generalized
Pareto distribution model and its basic parameter estimation methods.

2.1. Generalized Pareto Distribution Model

The generalized Pareto distribution is a kind of composite Gaussian model, which
is widely used in the statistical modeling of sea clutter data of high-resolution sea-going
radar [30]. The composite Gaussian model is formed by a random process modulating
an independent distribution, which can be expressed as the result of the slow-varying
structural component τ modulating the fast-varying scattering component µ. In the study
of the backscattering mechanism at the sea surface [31], it is known that the structural
component is formed by the large-scale steep wave crests and white caps in the sea surface
structure, while the scattering component is mainly composed of the small-scale tension
waves and surges at the sea surface. The mathematical form of the above stochastic process
is as follows:

c(t) =
√

τ(t)µ(t), t = 1, 2, · · · (1)

where the scattered component µ is a complex Gaussian random variable with zero mean
and unit covariance, the structural component τ is a positive random process obeying the
inverse gamma distribution, i.e., 1/τ satisfies the gamma distribution, and the probability
density function is defined as

fτ(τ; a, b) =
1

baΓ(a)
τ−(a+1)e−

1
bτ (2)

where a is the shape parameter, reflecting the dragging degree of the statistical distribution
of sea clutter data, the larger the shape parameter a, the more obvious the dragging
phenomenon; b is the scale parameter, characterizing the intensity level of the echo signal.
According to the product form of two random processes in Equation (1), the amplitude
probability density function (PDF) of the generalized Pareto distribution can be deduced as

fx(x) =
∫ ∞

0
fτ(τ; a, b) fµ( x|τ)dτ (3)
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where fτ(x|τ) is the PDF of the scattered component µ, which has the following mathe-
matical expression:

fu( x|τ) = 2x
τ

e
−x2

τ (4)

Substituting Equations (2) and (4) into Equation (3) above, the following generalized
Pareto distribution magnitude PDF derivation can be obtained:

fx(x) =
∫ ∞

0
1

baΓ(a)
τ−(a+1)e−

1
bτ

2x
τ

e
−x2

τ dτ

=
2xb

(1 + bx2)
a+1Γ(a)

∫ ∞
0 yae−ydy

=
2xab

(1 + bx2)
a+1

(5)

where the variable x is replaced by y =
(
1 + bx2)/bτ. In addition, when the structural

component in Equation (3) is in the form of an exponential distribution, the intensity
distribution of the generalized Pareto distribution can be deduced as

p(x) =
ab

(1 + bx)(a+1)
(6)

From the above Equation (5), it can be seen that the amplitude PDF of the generalized
Pareto distribution approximates the Rayleigh distribution when the shape parameter
a→ ∞ , and the sea clutter amplitude trailing phenomenon is gradually aggravated when
a→ 0 . The fixed scale parameter b, the variation of the amplitude PDF curve of the
generalized Pareto distribution with the shape parameter a, is shown in Figure 1. As can
be seen from Figure 1, when the scale parameter b is fixed to 1.5, the wave crest of the
amplitude PDF curve of the generalized Pareto distribution increases with the increase in
the shape parameter, the wave crest gradually moves in the direction of smaller amplitude,
and the trailing becomes shorter.
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Figure 1. Generalized Pareto distribution amplitude PDF curve.

2.2. Basic Parameter Estimation Methods for the Generalized Pareto Distribution

The most critical step in the practical application of the generalized Pareto distribu-
tion for modeling the statistical properties of sea clutter is to achieve accurate parameter
estimation and to improve the detection performance of sea radar. For different distribu-
tion models, a robust parameter estimation method is the basis for the application of the
distribution model. The commonly used parameter estimation methods include moment
estimation class methods, maximum likelihood estimation methods, quantile parameter
estimation methods, and artificial intelligence class parameter estimation methods.
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Among the moment estimation class methods, both positive 2nd/4th-order moment
estimation and 1st-order logarithmic moment estimation have closed expressions for pa-
rameter estimation, which can easily obtain the results of parameter estimation, but are
limited by the estimation range of shape parameters. The positive 0.5th/1st-order moment
estimation extends the estimation range of the shape parameter to the fractional domain,
but the method does not have a closed expression. The positive 0.25th-order logarith-
mic moment estimation method can achieve a further extension of the shape parameter,
thus widening the space where the generalized Pareto distribution should be used in the
statistical modeling of sea clutter, but the method also cannot derive a closed parameter
estimation expression. The maximum likelihood estimation can obtain a relatively high
accuracy of parameter estimation, but the parametric results of the scale parameters are
given by a nonlinear system of equations, which again does not have a displayed solution.
In the following, the mathematical forms of each type of parameter estimation method
introduced above will be derived one by one and used as the basis for the optimization of
parameter estimation of the generalized Pareto distribution later.

The method of moment estimation class parameter estimation equates the moments
of each order of the probability distribution model of the sample to the cumulants of the
statistical distribution model and obtains all parameter values of the distribution model by
solving the system of moment equations of each order. Assuming the unknown parameter
θ = (a, b) of the generalized Pareto distribution, the r-th-order moments of the origin of the
probability density function can be calculated from Equation (5) as

E(xr) =
∫ ∞

0 xr f (x; θ)dx, {r ∈ R and r 6= 0}

=
∫ ∞

0
2abxr+1

(1 + bx2)
(a+1)

dx =
a

b
r
2

∫ ∞
0

λr/2

(1 + λ)(a+1)
dλ

=
1

br/2

Γ
(
1 + r

2
)
Γ
(
a− r

2
)

Γ(a)

(7)

where the variable λ = bx2, the solution process involves some of the relevant properties
of the gamma function operation, and it is known from its properties that the above
equation needs to satisfy a > r/2 to hold, i.e., the estimation range of the shape parameter
will be limited. If the sea clutter sample data X = [x1, x2, · · · , xn] are known, the r-th-
order sample origin moment of the random data X is mr = 1/n ∑n

1 xr
i . The generalized

Pareto distribution contains two parameters to be estimated, so it is necessary to list the
equations of two different order moments and complete the equation solution to obtain the
determined distribution model.

When r is taken as 2 and 4, respectively, the parameter estimation expression for
positive 2nd/4th-order moment estimation is:

â = 2 +
2m2

2
m4 − 2m2

2

b̂ =
1

(â− 1)m2

(8)

When r is taken as 0.5 and 1, respectively, the parameter estimation expression for
positive 0.5th/1st-order moment estimation is:

Γ(â− 0.5)Γ(â)
Γ2(â− 0.25)

=
Γ2(1.25)m1

Γ(1.5)m2
0.5

b̂ =

(
Γ(1.5)Γ(â− 0.5)

Γ(â)m1

) (9)

The above Equation (8) can be obtained by substituting the calculated sample 2nd-
and 4th-order moments of origin into the set of equations to obtain the estimation results
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of the parameters. From Equation (9), it can be seen that there is no closed expression
for the estimation of the shape parameters, so the parameter estimation results cannot be
calculated directly by substituting the values of the sample moments.

In addition, the method of estimating log moments of the generalized Pareto dis-
tribution proposed in the literature [32] also belongs to the moment estimation class of
parameter estimation methods, assuming Z = x2, then the r-th-order origin moments of
the intensity probability density function of the generalized Pareto distribution and the
corresponding sample moments can be defined as

E(zr) =
∫ ∞

0 zr ln z · p(z; θ)dz

κr =
1
n

n
∑

i=1
zr

i ln zi

, r ∈ R (10)

Replacing the overall moment with the sample moment in Equation (10) yields
κr

m2r
− κ0 = ψ(1 + r)− ψ(1) + ψ(â)− ψ(â− r)

b̂ = exp(ψ(1)− κ0 − ψ(a))
(11)

where Ψ(·) is the digamma function, which is obtained by taking the logarithm of the
gamma function and then deriving it, and satisfies Ψ(1 + x) = Ψ(x) + 1/x. By the nature
of the digamma function, it is known that the effective estimation range of the shape
parameter is a > r.

When r is equal to 1, the parameter estimation expression for positive 1st-order
logarithmic moment estimation is â = 1 +

1
κ1/m2 − κ0 − 1

b̂ = exp(ψ(1)− κ0 − ψ(â))
(12)

The positive 1st-order logarithmic moment estimation exists for the displayed solution,
and the parameter estimation can be obtained by calculating the logarithmic moment and
the integer order moment values of the corresponding order of the sample and then
substituting them into Equation (12).

When r is equal to 0.25, the logarithmic moment estimation corresponds to the positive
0.25th-order logarithmic moment estimation method, and it can be seen from Equation (11)
that the shape parameter estimator does not have a closed expression at this time, and the
parameters cannot be solved directly through the substitution of sample moments.

Maximum likelihood estimation is a relatively common parameter estimation method
with specific applications in the estimation of parameters of various types of statistical
distribution models. The method has a relatively high accuracy of parameter estimation
and is close to the lower bound of what can be achieved in terms of parameter estimation
accuracy. The log-likelihood function of the generalized Pareto distribution is as follows:

L(a, b) = ln
n
∏
i=1

fx(xi; a, b) = ln

[
(2ab)n n

∏
i=1

xi(
1 + bx2

i
)a+1

]

= n ln(2ab)−
n
∑

i=1
(a + 1) ln

(
1 + bx2

i
)
+

n
∑

i=1
ln xi

(13)

To find the optimal parameters when the log-likelihood function is maximized, Equation (13)
is derived for the generalized Pareto distribution for the shape parameter a and the scale param-
eter b, respectively, and the derivative is set to zero, resulting in the following equation of the
likelihood function:
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
∂L(a, b)

∂a
=

n
a
−

n
∑

i=1
ln
(
1 + bx2

i
)
= 0

∂L(a, b)
∂b

=
n
b
− (a + 1)

n
∑

i=1

x2
i

bx2
i + 1

= 0
(14)

By eliminating the scale parameter b in the above set of equations through covariance
substitution, the maximum likelihood function estimator of the shape parameter a can be
obtained, and it is re-substituted into Equation (14) to obtain the estimator of the scale
parameter. The maximum likelihood estimator of the generalized Pareto distribution is as
follows: 

â = n

b̂
n
∑

i=1

x2
i

1+b̂x2
i

− 1

1
n

n
∑

i=1
ln
(

1 + b̂x2
i

)(
1− 1

n

n
∑

i=1

b̂x2
i

1+b̂x2
i

)
= 1

n

n
∑

i=1

b̂x2
i

1+b̂x2
i

(15)

where the calculation of the shape parameter â needs to obtain the value of the scale
parameter b̂ first, but the parameter b̂ cannot be obtained directly through calculation, and
the corresponding objective function can be established, and then the optimal value can be
obtained by searching for the optimal value.

The basic parameter estimation methods of the generalized Pareto distribution are
introduced above, the characteristics of various estimation methods are explained, specific
parameter estimation expressions are given, and Table 1 shows the comparison of the
characteristics of each parameter estimation method.

Table 1. Feature comparison of parameter estimation methods.

Parameter Estimation Methods Shape Parameter Estimated Range Estimated Expressions

Positive 2nd/4th-order moment estimation (MoM) (2, +∞) Closure
Positive 0.5th/1st-order moment estimation (MfoM) (0.5, +∞) Non-closed
Positive 1st-order logarithmic moment estimation () (1, +∞) Closure

Positive 0.25th-order logarithmic moment estimation (Zlogz) (0.25, +∞) Non-closed
Maximum Likelihood Estimation (MLE) (0, +∞) Non-closed

As can be seen from Table 1, some of the parameter estimation methods for the gener-
alized Pareto distribution have expressions that are non-closed, and to obtain parameter
estimation results for such parameter estimation methods, intelligent algorithms can be
used to solve the parameter estimation problem for non-closed expressions. All the non-
closed expressions involved in the table are nonlinear functions, so they can be transformed
into a nonlinear function of the optimization problem.

The intelligent algorithm itself has nonlinear characteristics, and a suitable intelligent
algorithm can be used to complete the search for the optimal solution of the nonlinear
function in the target feasible solution space in order to obtain the estimated values of
the non-closed expressions in the parameter estimation method of the partial generalized
Pareto distribution.

3. Method
3.1. Particle Swarm Optimization Algorithm

The particle swarm optimization (PSO) algorithm is a swarm intelligence class op-
timization algorithm that originated from the study of bird predation behavior, which
was proposed by Kennedy and Eberhart in 1995 [33] and has been widely used in many
fields after more than a decade of continuous research and development [34,35]. The PSO
algorithm randomly initializes particles in the feasible solution space of the problem, and
each particle is given a certain velocity of motion at its initial position, and the trajectory of
the particles is influenced by its factors and the overall behavior of the population during
the whole iteration cycle.
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The fitness function is the target object of the particle population activity because it
determines the activity space and search path of the particles. The particle population
has the ability of memory, and all particles calculate the corresponding fitness value in
each iteration, then compare it with the historical value and select the optimal value of the
historical record, and then guide the whole population toward the direction of the global
optimal solution. The basic process of the particle swarm algorithm is:

(a) The positions X and velocities V of the particles are randomly initialized in the D-
dimensional space of feasible solutions, where the i-th particle position and velocity
can be expressed as {

Xi = (xi1, xi2, · · · , xiD)
Vi = (vi1, vi2, · · · , viD)

, i = 1, 2, · · · , N (16)

(b) Based on the determined fitness function (particle population search object) and the
corresponding position of each particle, the corresponding fitness value is calculated,
and then the global optimum is evaluated, where the historical optimum of the particle
and the global optimum of the population is assumed to be Pbest and Gbest, respectively,
that is, we have {

Pbest = (p1i, p2i, · · · , piD)
Gbest = (g1i, g2i, · · · , giD)

, i = 1, 2, · · · , N (17)

(c) The particle population is continuously updated iteratively to search for the extreme
value solution of the fitness function, and the velocity and position of each particle in
the next iteration are updated by the individual historical optimal value Pbest and the
current velocity V i, and the k + 1th update of the particle is given by

Vk+1
id = ωVk

id + c1r1

(
Pk

id − Xk
id

)
+ c2r2

(
Pk

gd − Xk
id

)
Xk+1

id = Xk
id + Vk+1

id 0
(18)

where w is the inertia weight, which gives the particle the inertia of motion trend;
k is the number of current iterations; c1 and c2 are learning factors; and r1 and r2
are random numbers distributed in the interval of [0, 1]. To prevent the particles
from searching blindly and falling into the risk of local optimum, the velocity and
position of the particles are usually limited to a certain interval. The learning factor
and inertia weight are particularly important parameters of the PSO algorithm, where
the learning factor c1 of the particle itself, also known as the cognitive parameter, is
an important indicator of the particle’s search ability; the learning factor c2 of the
population is a social cognitive parameter that affects the search behavior of the
whole particle population; and the size of the inertia weight is an expression of the
movement ability of each particle.

(d) Finally, the algorithm is terminated by setting the corresponding end conditions. There
are generally two kinds of termination conditions: the first is to set the maximum
number of iterations of the particle population, and the second criterion is to terminate
when the optimal solution of the particle swarm has remained unchanged for five or
more consecutive iterations.

The most critical issue in the practical application of particle swarm algorithms is to
balance the relationship between particle search capability and algorithm performance and
parameters.

3.2. Parameter Estimation Based on PSO Algorithm

When running a PSO algorithm, the setting of parameters such as learning factors and
inertia weights has a very important impact on the optimal solution of the algorithm for a
particular problem [36,37]. The combination of different parameters of the PSO algorithm
causes the particle population to form different trajectories and affects the searchability
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of the particles. For the specific search problem, it is necessary to choose the appropriate
combination of algorithm parameters, and in this paper, it is necessary to solve the problem
of solving the non-closed expressions for the generalized Pareto distribution with positive
0.5th/1st-order moment estimation, positive 0.25th-order logarithmic moment estimation,
and maximum likelihood estimation. Therefore, for the above discussion, this paper will use
the appropriate combination of parameters to complete the solution of the corresponding
target problem.

To address the problem of solving non-closed expressions in the parameter estimation
methods of generalized Pareto distribution, the whole thought process of the PSO algorithm
introduced to solve this problem is introduced in detail, including the construction of the
fitness function and the setting of algorithm parameters. According to the derivation
in Section 2, it is known that the positive 0.5th/1st-order moment estimation, positive
0.25th-order logarithmic moment estimation, and maximum likelihood estimation have
non-closed expressions, so the fitness functions of the three types of estimation methods
are constructed as follows:

f1(a) =
Γ(a− 0.5)Γ(a)
Γ2(a− 0.25)

− Γ2(1.25)m1

Γ(1.5)m2
0.5

f2(a) =
κ0.25

m0.5
− κ0 − ψ(1.25) + ψ(1)− ψ(a) + ψ(a− r)

f3(b) =
1
n

n
∑

i=1
ln
(
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i
)(

1− 1
n
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i=1

bx2
i

1 + bx2
i

)
− 1

n

n
∑

i=1

bx2
i

1 + bx2
i

(19)

In this case, the three fitness function constructions correspond to one-dimensional
nonlinear function extremum search problems, and the final parameter estimates can be
obtained as long as the particle population is made to find the location in the feasible
solution space where the minimal value point is located.

3.3. Improved Parameter Estimation for Particle Swarm Hybridization

In the PSO algorithm, the inertia weight factor is a key parameter that affects the
search capability, velocity, and search range of each particle in the solution space. In this
section, we introduce a non-linearly decreasing inertia weight that varies with the number
of iterations. The non-linearly decreasing inertia weight allows particles to have higher
inertia in the initial stage, enhancing their global search capability. As particles approach
the optimal position, the inertia weight decreases, restricting their movement to a smaller
local range and improving search precision. The updated formula for the inertia weight is
given as follows:

ω(k) = ωstart − (ωstart −ωend)

(
k

Nmax

)2
(20)

where ωstart represents the initial inertia weight, and ωend represents the inertia weight
at the maximum number of iterations. k represents the current iteration number, and
Nmax represents the maximum number of iterations. The PSO algorithm suffers from
the problem of premature convergence, where particles becomes trapped in local optima,
thereby affecting the convergence accuracy of the algorithm. To address this issue, we
introduce the selection and recombination operations from genetic algorithms into the PSO
algorithm, referred to as the HPSO algorithm. This approach significantly improves the
problem of premature convergence in the population. After updating the positions and
velocities of all particles, a certain number of particles are selected for recombination based
on the hybrid pool size ratio Ps. With a given recombination probability Pc, two particles
are randomly selected and undergo recombination, and the resulting offspring particles
replace the parent particles. This process helps particles escape from local optima. The
recombination formula for parent particles is as follows:
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child(x) = Pc ∗ parent1(x) + (1− Pc) ∗ parent2(x)

child(v) =
parent1(v) + parent2(v)
|parent1(v) + parent2(v)|

|parent1(v)|
(21)

where parent (x) and parent (v) represent the position and velocity of the hybrid particles,
while child (x) and child (v) represent the position and velocity of the offspring particles
resulting from the hybridization process. When two particles trapped in different local
optima undergo hybridization, they can escape from their respective local optima and
improve the global search capability of the population. Additionally, if the hybrid particle
group adopts a fixed hybridization probability Pc, it may result in repetitive and ineffective
hybridization operations within the local range during the later iterations, leading to
decreased algorithm efficiency and the loss of the advantages of hybridization. To address
this issue, a nonlinearly decreasing hybridization probability is employed, where the
hybridization probability of the parent particles decreases nonlinearly with the increase in
iteration count. The updated formula for the hybridization probability Pc, is as follows:

Pc = (Pc1 − Pc2)

(
1− k

Nmax

)2
+ Pc2 (22)

where Pc1 represents the initial crossover probability and Pc2 represents the crossover
probability at the maximum number of iterations. The introduction of a nonlinearly
decreasing crossover probability enhances the global search capability of particles in the
early iterations while addressing the issue of local search efficiency in the later iterations.
The basic steps of the proposed HPSO algorithm in this study are as follows:

Step 1. Initialize the particle swarm, including the swarm size N, the inertia weight
ω for particle updates, the learning factors c1 and c2, as well as parameters for crossover
operations such as the crossover pool size ratio Ps and the crossover probability Pc. Set the
position X and velocity V of each particle using uniform distribution random numbers
within a certain range.

Step 2. Compute the fitness value for each particle based on the objective function
and store it in the variable Pid. Select the best fitness value among the particles and store it
in the variable Pgd. The variables Pid and Pgd, respectively, represent the fitness value of the
particles and the fitness value of the best position in the population for the current iteration.

Step 3. Update the inertia weight factor ω using the nonlinearly decreasing Formula (20).
Step 4. Update the velocity and position of each particle using the current iteration’s

inertia weight, learning factors, and other algorithm parameters, following Formula (18).
Step 5. Compute the fitness value for each particle in the current iteration and compare

it with the particle’s personal best position. Update the variable Pid based on the fitness
value. Then, compare all updated Pid values with the global best position, updating the
swarm’s variable Pgd.

Step 6. Update the crossover probability Pc using the nonlinearly decreasing Formula (22).
Step 7. Select a specified number of particles specified by Ps and place them in the

crossover pool. Randomly select two particles from the pool to participate in a crossover.
Update the position and velocity of the resulting offspring using Formula (21). Crossover
operations generate the same number of particles as the parent generation.

Step 8. Check whether the termination condition of the algorithm is met. If satisfied,
stop the swarm search and save the global best position of the particles. Otherwise, return
to Steps 3 to 7 to continue the search.

The HPSO algorithm provides two ways to terminate the particle swarm search.
The first approach is to set a maximum number of iterations for the particles, while the
second approach involves specifying the number of generations to maintain the global
best particle. Since determining the maximum number of iterations depends on the nature
of the objective function and particle activities exhibit inherent randomness during each
iteration, this section adopts the method of setting the number of generations to retain the
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global best particle to ensure an effective search for the optimal position of the objective
function.

Different parameters of the generalized Pareto distribution can describe the amplitude
distribution characteristics of ocean clutter under different background environments. The
shape and scale parameters are the main factors influencing the statistical characteristics
curve of the generalized Pareto distribution. To achieve an accurate fit of the generalized
Pareto distribution to clutter data, the statistical histogram of clutter data is compared with
the cumulative error on the theoretical distribution curve, which serves as the objective
function for optimizing the parameter estimation of the generalized Pareto distribution.
Furthermore, to balance the fitting discrepancies between the probability density func-
tion (PDF) curve and the cumulative distribution function (CDF) curve of clutter data, an
adapted fitness function is constructed by appropriately weighting and combining two dis-
crepancy functions. The HPSO algorithm is then employed to perform the corresponding
optimal parameter search task. The fitness function for the parameter estimation of the
generalized Pareto distribution is defined as follows:

f f itness(θ) =
1

1 + λ1
N
∑

n=1
( f (n; θ)− h(n))2 + λ2

N
∑

n=1
(F(n; θ)− H(n))2

(23)

where f (n; θ) and F(n; θ), respectively, denote the PDF and CDF of the generalized Pareto
distribution. h(n) and H(n) represent the values of the clutter statistical histogram at the
PDF and CDF curve sampling intervals. The weighting coefficients are set as λ1 = 0.8 and
λ2 = 0.2 in the experiments conducted in this paper.

The parameters of the HPSO algorithm are configured as follows: the population
size is set to 20, the learning factor is denoted as c1 = c2 = 2, the hybrid pool size ratio
is denoted as Ps = 0.5, and the minimum number of generations to maintain the global
best position is set to 15. The initial values of the non-linearly decreasing inertia weight
and hybrid probability are both 0.9 and their ending values are set to 0.4. Additionally,
the maximum number of iterations is denoted as Nmax and is set to 50. Figure 2 illustrates
the flowchart of the HPSO algorithm optimizing the objective function for estimating the
parameters of the generalized Pareto distribution.
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For comparative analysis, the parameters of the PSO algorithm are set as follows: the
population size is 20, the learning factor is denoted as c1 = c2 = 2, the inertia weight is
denoted as ω = 0.4, and the maximum number of iterations is set to 50.

4. Results and Discussion
4.1. Simulation Experiment Analysis

The Monte Carlo method is used to generate random sequences obeying the gener-
alized Pareto distribution. The parameters of the distribution model were set to a = 2.5,
b = 0.3, and the length of the simulated data was 5 × 104.

Figure 3 shows the statistical characteristics of the simulated data, from which it
can be seen that the statistical characteristics of the simulated data match the theoretical
distribution. To study the properties of the three fitness functions using the simulation data,
various sample moments of the simulation data are calculated first, and then the results are
substituted into Equation (19), that is, the curves of the fitness functions can be obtained as
shown in Figure 4.
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The fitness functions 1 and 2 correspond to the non-closed expressions for positive
0.5th/1st-order moment estimation and positive 0.25th-order logarithmic moment estima-
tion, respectively. The fitness function 3 is significantly different from the first two functions
because the horizontal coordinate of this function corresponds to the scale parameter do-
main and corresponds to the non-closed expression of the maximum likelihood estimate
of the scale parameter. As can be seen from Figure 4, the range of values of the fitness
functions 1 and 2 are both restricted to a certain space, [0.5, +∞] and [0.25, +∞], respec-
tively, which must match the range of values of the shape parameters of the two-parameter
estimation methods. The notches of the extreme value points of these three functions
are relatively deep, so the particle population can quickly find the optimal location point



Appl. Sci. 2023, 13, 9115 13 of 24

during the search, but the number of inert particles increases sharply as the search process
proceeds. The setting of the parameters of the PSO algorithm will determine the trajectory
of the particles, and the influence of the number of particle populations and the number of
iterations on the search behavior of the particle populations will be studied below.

According to the recommended values of optimal parameter settings given in the
literature [37], the learning factors and inertia weights are set to w = 0.4, c1 = c2 = 2. To
prevent the particles from crossing the boundary when searching, the particle population
search space on the fitness functions 1 and 2 are restricted to [0.5, +∞] and [0.25, +∞],
respectively, while the particle population search range of the fitness function 3 is restricted
to [0.15, +∞]. The number of iterations is fixed to 20, and then the trajectories of each particle
population at different numbers are observed separately, and the number of particles is set
to 5 and 10, respectively. Figures 5–7 give the positions of each particle in the first, 5, 10, 15,
and 20 iterations for the three groups of particle populations, respectively.
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All three particle populations search for the extremes of the fitness function in a
one-dimensional space. The fitness functions 1 and 2 have similar curve shapes, so the
same algorithm parameter settings can be used. As can be seen in Figures 5 and 6, the
deep notches in the curve of the fitness function allow the particles to move quickly to
the vicinity of the extreme value point and thus determine the location of the optimal
parameters. The increase in the number of particles and the number of iterations will lead
to a longer algorithm operation time, but too few particles or insufficient iterations will
easily make the particle population unable to complete the established search task, so the
reasonable setting of the algorithm parameters is the key to successfully obtaining the
optimal parameter estimation results of the distribution model. Too many particles reduce
the efficiency of the algorithm while not bringing additional benefits to the population due
to the increase in inert particles.

From Figure 7, it can be seen that with the increase in the number of iterations, the
optimal particle of fitness function 3 appears to sink at the extreme value point. After
analysis, it is found that there are infinitely many location points near the extreme value
point, and the lowest valley shown in the figure is not the minimum of the curve, so the
optimal particle will keep sinking. When the particle is near the notch, the difference in its
corresponding horizontal coordinate position is already very small, so there is no need to
make the particle sink into the deepest part of the notch after a large number of iterations.
In the final experimental test, the number of particles and iterations of the three populations
are set to 5 and 10, respectively, which meets the requirements of the particle population
search task. The final algorithm parameter settings of this experiment can complete the
search task for the optimal position of each fitness function in the shortest time.

The particle population search space determined by the fitness function 3 is theoreti-
cally within the whole positive real number domain, but the experimental test found that
the particle movement to the position where the scale parameter is less than 0.15 results in
a false-dead state, which causes the particle population to be trapped in this position all
the time during the iterative process. After analysis, it is found that the possible reason for
the above phenomenon is that the likelihood function, after taking logarithmic derivatives,
limits the range of the scale parameter. To address this problem, we consider expanding the
one-dimensional search space of the maximum likelihood function to two dimensions, i.e.,
directly searching the extremes of the maximum likelihood function in the space of scale
parameters and shape parameters, thus skipping the step of taking logarithmic derivatives.

Figure 8 gives the iterative process of searching for the maximum likelihood function
in different dimensions for the particle population. In which the one-dimensional space
of the likelihood function, the search range of the particles is expanded from the original
[0.15, +∞] to (0, +∞]. As a comparison, in the two-dimensional search space of the likeli-
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hood function, the search range of the particle population is also set to (0, +∞]. As can be
seen from the figure, after expanding the search range of particles in the one-dimensional
space, the particle population is initially trapped in an undefined position, making the
particles inactive and falsely dead. The above phenomenon does not occur when the
particle population is searched in the two-dimensional space of the likelihood function,
and a higher accuracy of parameter estimation is obtained by searching directly in the
two-dimensional space. Although the particle search in two dimensions can solve the
problem of one-dimensional search, the expansion of the spatial search domain requires a
larger number of particles and iterations to complete the search task, which undoubtedly
increases the computational time complexity. Table 2 lists the time consumed by each
parameter method of the generalized Pareto distribution.
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Table 2. Estimate time of each parameter estimation method.

Parameter
Estimation Methods

MoM
(2nd/4th-Order)

ZlogZ
(1st-Order)

PSO-MFoM
(0.5th/1st-Order)

PSO-ZlogZ
(0.25th-Order)

PSO-MLE
(1D)

PSO-MLE
(2D)

Time/s 2.43 × 10−2 8.94 × 10−3 3.02 × 10−2 3.66 × 10−2 8.51 × 10−2 9.37 × 10−1

From the data in Table 2, it can be seen that the parameter estimation of positive
1st-order logarithmic moments is the most efficient, and the parameter estimation time of
positive 0.5th/1st-order moment estimation, positive 0.25th-order moment estimation, and
maximum likelihood estimation based on the swarm subgroup optimization to solve the
non-closed expression is comparable to that of positive 2nd/4th-order moment estimation;
so the introduction of the particle swarm search does not significantly increase the compu-
tational time complexity of the parameter estimation method itself. The two-dimensional
space search of the maximum likelihood estimation method doubles its computation time
compared to the one-dimensional space, which is also consistent with the previous analysis.
The operational efficiency of the algorithm is particularly important in applications with
real-time processing, and the various advantages and disadvantages can be weighed in
choosing a specific parameter estimation method based on the above discussion, which
leads to the selection of a suitable parameter estimation method.

The estimation ranges of shape parameters for each parameter estimation method are
detailed in Section 2. Here, to investigate the effect of shape parameters on the parameter
estimation performance, we fixed the sample length of the simulation data at 104, and the
scale parameter b was set to 0.3. The estimation performance of the two-parameter model
was then calculated by varying the shape parameter a from 0.1 to 10 in equal intervals. The
results were evaluated using the relative root mean square error (RRMSE). Figure 9 shows
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the results of this experiment, where the specific calculation of the Cramér–Rao bound
(CRB) can be found in the literature [38], and the values of each parameter node in the
figure are obtained from the calculation of 30 independent replications of the experiment.
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Observing Figure 9a,b, it can be found that the parameter estimation results obtained
using PSO for the one-dimensional likelihood function are unstable, exhibiting significant
fluctuations with errors oscillating beyond 0.1. Conversely, the results obtained from the
two-dimensional likelihood function space search show more stable parameter estimation
performance, with the RRMSE smaller than 0.1, and it approaches the CRB lower bound,
which is consistent with the previous analysis. The parameter estimation performance of the
maximum likelihood estimation method is not limited by the range of the shape parameters,
while other parameter estimation methods are to some extent limited by the range of
the shape parameters, i.e., accurate estimation of the shape parameters can be achieved
only within the specified range. When the shape parameter is small (corresponding to
the heavy trailing phenomenon of sea clutter), the estimation of higher order moments
(positive 2nd/4th- and positive 1st-order logarithmic moments in Figure 9) is affected by
the cumulative error of the sample, which leads to the poor performance of its parameter
estimation. In addition, the estimation performance of all parameter estimation methods
decreases with the increase in shape parameters.

4.2. Analysis of the Fit of the Measured Data

To verify the fitting effect of the generalized Pareto distribution model on the statistical
properties of heavy trailing sea clutter data and to analyze the adaptability of different
parameter estimation methods for parameter estimation of real data, this section performs a
goodness-of-fit analysis on the statistical properties of a set of high-intensity data from the
IPIX radar dataset [39,40] and an X-band radar open-source dataset [41,42], respectively.

Many scholars have carried out a large amount of research work on the perception of
sea clutter properties based on the IPIX radar dataset, so this dataset is very reliable for the
goodness-of-fit analysis. The effect of the distribution model on the sea clutter amplitude
PDF fit is shown in Figure 10, and the two-parameter estimates of sea clutter data obtained
via different parameter estimation methods are given in Table 3. Each dataset of the IPIX
radar dataset contains 14 distance units, and a total of 131,702 data samples are collected
for each distance unit. To reduce the running time, this experiment selects the non-target
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distance unit within (pure clutter data) 50,000 data samples, as the object of parameter
estimation.
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Table 3. Estimation results of different parameter estimation methods.

Estimation Method

IPIX Radar Measurement Data An X-Band Radar Open-Source Measurement Data

MoM
(2/4)

ZlogZ
(1)

MFoM
(05/1)

ZlogZ
(0.25)

MLE
(1D)

MLE
(2D)

MoM
(2/4)

ZlogZ
(1)

MFoM
(0.5/1)

ZlogZ
(0.25)

MLE
(1D)

MLE
(2D)

Shape parameter 3.125 2.636 2.419 2.351 2.415 2.410 2.165 2.096 3.933 6.022 3.599 3.603
Scale Parameter 0.225 0.298 0.330 0.343 0.329 0.330 0.876 0.817 0.392 0.240 0.454 0.453

From Figure 10, it can be found that the PSO algorithm, compared to parameter
estimation methods with explicit solutions, such as positive 2nd/4th-order and positive
1st-order logarithmic moments, not only effectively solves the problem of non-closed
expressions in the three types of parameter estimation methods shown in the figure but
also provides a distribution model that fits the heavy-tailed part of the observed data (with
amplitudes in the range of 4–6) with a fitting distance smaller than 10−5.

Another X-band radar open-source sea clutter dataset is taken for parameter estimation
experiments, and this dataset is obtained through the radar working in scanning mode to
avoid the influence of near-coast land clutter background; only the data when the radar
is scanning to the sea are intercepted for the goodness-of-fit analysis. Each set of data in
this dataset contains 1320 distance units, and there are a total of 7369 samples within each
distance unit. This experiment selected the clutter data from within distance units 801 to
810, and then intercepted the samples at each distance unit corresponding to the 501st to
3500th, for a total sample size of 30,000 (pure clutter data).

Figure 11 shows the fitting effect of the distribution model on the amplitude PDF of
this group of data, and the two-parameter estimation results of this group of sea clutter data
are shown in Table 3. It also reflects the fact that the particle swarm model introduced in
this paper can fit the data. In addition, it also reflects that the problem of solving non-closed
expressions for parameter estimation of the generalized Pareto distribution model has been
effectively solved after the introduction of the particle swarm algorithm in this paper.

Both sets of experiments above observe the fitting effect of the distribution model
directly from the plots. To quantitatively characterize the strengths and weaknesses of
the fitting effect and then make a more accurate analysis of the fitting effect, the results of
the Kolmogorov–Smirnov (K-S) test, the mean square deviation (MSD) test, and the root
mean square deviation (RMSD) tests for the IPIX radar data and X-band radar open-source
measured data are given in Tables 4 and 5, respectively. The three test rules mentioned
above are common methods for analyzing the fitting effect of distribution models, which are
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important for guiding the construction of statistical models and evaluating the performance
of parameter estimation.
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Table 5. The fitting test results of a domestic open source measured data.

Assessment Metrics MoM
(2/4)

ZlogZ
(1)

MFoM
(05/1)

ZlogZ
(0.25)

MLE
(1D)

MLE
(2D)

MSD 3.30 × 10−3 2.40 × 10−3 8.36 × 10−4 4.17 × 10−4 1.20 × 10−3 1.20 × 10−3

RMSD 5.70 × 10−2 4.90 × 10−2 2.89 × 10−2 2.04 × 10−2 3.43 × 10−2 3.44 × 10−2

K-S 5.84 × 10−2 6.09 × 10−2 3.37 × 10−2 2.84 × 10−2 3.00 × 10−2 3.01 × 10−2

From the data in Table 4, it can be seen that in terms of moment estimation, the higher-
order moment estimation methods (positive 2nd/4th-order moments and positive 1st-
order logarithmic moments) result in poorer fitting performance of the generalized Pareto
distribution model for the observed data compared to the lower-order moment estimation
methods (positive 0.5th/1st-order fractional moments and positive 0.25th-order logarithmic
moments). Among them, the positive 0.25th-order logarithmic moment achieves the best
estimation results (MSD test: 4.26 × 10−5; RMSD: 6.40 × 10−3; and K-S test: 1.74 × 10−2),
with estimation errors reduced by 84.98%, 61.21%, and 60.36% compared to the worst
performing positive 2nd/4th-order moments estimation. The inferior performance of
higher-order moment estimation is due to larger accumulated sample errors in higher-order
moments. Additionally, the maximum likelihood estimation method shows comparable
fitting performance to lower-order moment estimation. Compared to the optimal lower-
order moment estimation (i.e., positive 0.25th-order logarithmic moment), the performance
improvements are 4.10% (MSD), 1.59% (RMSD), and −8.42% (K-S). There is no significant
difference in the fitting results of the one-dimensional and two-dimensional non-closed
expression search results of the maximum likelihood estimation for the measured data.
The fitting results of the sea clutter data in Table 5 yielded conclusions consistent with
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the above. The fitting test results indicate that the PSO algorithm used in this paper not
only efficiently and accurately finds the parameter estimates of each low-order moment
estimation method but also improves the fitting effect of the generalized Pareto distribution
model on the measured data.

In addition, some scholars used the segmented mean square deviation (SMSD) test [43,44]
to observe the local fitting effect of the distribution model on the measured data, and Figure 12
shows the SMSD test effect of the two sets of data. From Figure 12, it can be seen that the
generalized Pareto distribution is relatively stable in fitting the real measurements within each
interval segment without substantial fluctuations, so the target detector design based on the
generalized Pareto distribution model can be used to obtain a more robust performance.
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4.3. Performance Analysis of Parameter Estimation with HPSO Algorithm

The parameter settings for the simulation data of the generalized Pareto distribution
are as follows: a = 3.5 and b = 0.5, with a total of 5 × 104 samples of noise. We use this
simulated data to test the effectiveness of the HPSO algorithm and compare it with the
performance of the PSO algorithm. By calculating the fitness values of the simulated data,
we can compare the performance differences between these two algorithms in optimizing
the objective function. Figure 13 illustrates the iteration process of the HPSO algorithm and
the PSO algorithm. From Figure 13, it can be observed that the HPSO algorithm rapidly
converges to the global optimum, while the PSO algorithm exhibits slower convergence and
may suffer from local convergence. The output parameter estimation results for the optimal
positions of both algorithms in the figure are a = 3.2748, b = 0.5729 (HPSO algorithm) and
a = 3.2747, b = 0.5729 (PSO algorithm), indicating that the final parameter estimation results
are similar for both algorithms. However, the PSO algorithm requires more computation
time, with the HPSO algorithm only requiring 18 iterations (while the PSO algorithm
requires 35 iterations) to effectively search for the estimated parameters.

To further investigate the performance of the HPSO algorithm in optimizing the
objective function for parameter estimation of the generalized Pareto distribution, we fixed
either the shape parameter or the scale parameter and varied the other parameter. The PSO
algorithm and the HPSO algorithm were employed to search for the global optimal value of
the fitness function for parameter estimation of the generalized Pareto distribution. In this
way, the corresponding parameter estimation values were obtained. Firstly, we fixed the
scale parameter as b = 0.3 and varied the shape parameter of each set of simulated clutter
samples from 0.1 to 10 with equal intervals. The number of simulated samples for the
generalized Pareto distribution was set as 5 × 104. The experimental results were obtained
by averaging the results of 10 repeated experiments. Figure 14a shows the variation curve
of the absolute distance between the parameter estimation values obtained by the PSO
algorithm and the HPSO algorithm and the actual values.
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Figure 14. Parameter estimation error curves of two different algorithms. (a,b) denote the estimation
errors of the corresponding parameters when the shape and scale parameters are varied at equal
intervals, respectively.

From Figure 14a, it can be observed that the estimation error of the shape parameter a
increases with the increase in the simulated data parameter a, while the estimation error
of the scale parameter undergoes a trend of decreasing and then increasing. In addition,
the parameter estimation error of the PSO algorithm shows significant variations when
the shape parameter a is small, indicating the poor robustness of the parameter estimation
using the PSO algorithm.

To fix the shape parameter at a = 2.5, we varied the scale parameter of the clutter
samples from 0.1 to 10 with equal intervals, while keeping the length of the simulated
data constant. Similarly, the variation curves of the parameter estimation values for both
algorithms were plotted (Figure 14b). From Figure 14b, it can be observed that as the
scale parameter increases, there is no significant change in the parameter estimation error
of the shape parameter a, while the parameter estimation error of the scale parameter
b shows an increasing trend. The PSO algorithm still exhibits pronounced oscillations,
indicating that the particles in the algorithm are prone to premature convergence, resulting
in the population being trapped in local optimal positions. Based on the experimental
results mentioned above, it can be concluded that the HPSO algorithm not only achieves
higher parameter estimation accuracy compared to the PSO algorithm but also exhibits
better stability in parameter estimation. Therefore, in this study, the HPSO algorithm
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was employed to perform the optimal parameter search task for the fitness function of
parameter estimation in the generalized Pareto distribution.

To compare the performance differences of various parameter estimation methods for
the generalized Pareto distribution after introducing the HPSO algorithm, this experiment
employed the 2nd/4th-moment estimation (2/4th-MoM), 1st-order logarithmic moment
estimation (1st-order ZlogZ), and maximum likelihood estimation (MLE) methods. The
known parameters were estimated for simulated random sequences of the generalized
Pareto distribution, and the results of these three commonly used parameter estimation
methods were compared with the HPSO algorithm. The scale parameter b was fixed at
0.5, and the number of clutter samples was 5 × 104. The selection parameter for each set
of clutter data varied evenly from 0.1 to 10, with 10 independent repeated experiments
conducted. The curves of mean squared deviation (MSD) fitting results for each parameter
estimation method were obtained, as shown in Figure 15a. Similarly, by selecting the scale
parameter a as 3.5 and varying the selection parameter for each set of clutter data from
0.1 to 10, the variation of the MSD fitting results for each parameter estimation method
under different scale parameters was studied (Figure 15b).
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Observing Figure 15a, it can be observed that the differences in MSD fitting curves
among the parameter estimation methods gradually decrease as the shape parameter in-
creases. In the range where the shape parameter a is less than 2, the HPSO algorithm
demonstrates significantly better MSD fitting performance than the 2nd/4th-MoM estima-
tion and the 1st-order ZlogZ estimation method, approaching the fitting performance of
the MLE method. Figure 15b shows that as the scale parameter increases, the MSD fitting
curves for all four parameter estimation methods gradually decrease. In addition, the MSD
test of the MLE method exhibits significant fluctuations in the range of scale parameters
from 1 to 2. Moreover, in the region where the scale parameter b is greater than 2, the MSD
test values are consistently more than 10−2 higher than other estimation methods. This
indicates that the MLE method’s fitting performance is poorer than the HPSO algorithm,
the 2nd/4th-MoM estimation methods, and the 1st-order ZlogZ estimation method.

Based on the results presented in Figure 15, it can be concluded that compared to the
other three commonly used parameter estimation methods, the PDF curve of the general-
ized Pareto distribution approximated by the HPSO algorithm exhibits better robustness
and does not suffer from restricted parameter estimation range issues. This algorithm pro-
vides a new solution approach for accurately estimating the parameters of the generalized
Pareto distribution.

The computational time complexity of the parameter estimation methods is also
an indicator for evaluating their performance. Table 6 lists the running times of each
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parameter estimation method under the same conditions. From Table 6, it can be observed
that the 2nd/4th-MoM estimation and the 1st-order ZlogZ estimation method achieve
fast parameter estimation processes. The MLE method requires the longest estimation
time. Both the PSO algorithm and the HPSO algorithm have the same computational time
complexity. Therefore, considering overall performance, the proposed HPSO algorithm
demonstrates promising effectiveness in solving the parameter estimation problem for the
generalized Pareto distribution.

Table 6. Estimate time of different parameter estimation methods.

Parameter Estimation Methods PSO HPSO 2nd/4th-MoM 1st-Order ZlogZ MLE

Running time (s) 3.42 × 10−1 3.22 × 10−1 5.81 × 10−2 2.53 × 10−2 5.56 × 10−1

5. Conclusions

To address the issues in parameter estimation for the generalized Pareto distribution,
this study successfully solved the problem of non-closed-form expression using the PSO
algorithm and obtained accurate parameter estimates. By expanding the search space of the
likelihood function to two dimensions, the stagnation issue in the one-dimensional search
was resolved. Fit analysis experiments showed that the positive 0.5th/1st-order fractional
moment and positive 0.25th-order logarithmic moment estimation methods performed
well in fitting heavy-tailed sea clutter data. To improve the parameter estimation of the
PSO algorithm, this research proposed an HPSO algorithm for parameter estimation of
the generalized Pareto distribution. Through simulation verification and analysis, the
following results were obtained:

• The HPSO algorithm overcame the premature convergence problem of the PSO algo-
rithm and demonstrated better parameter estimation performance.

• The parameters of the HPSO algorithm were optimized, resulting in good performance.
• Through the analysis of parameter estimation variations, it was found that the param-

eter estimation results of the PSO algorithm were unstable.
• Compared to other methods, the generalized Pareto distribution estimated using the

HPSO algorithm exhibited the most stable and optimal fitting results for real data, and
it was not influenced by the range of shape parameter values.

• The HPSO algorithm achieved high-precision parameter estimation results while
maintaining fast computational speed.

These research findings provide new insights and practical value for parameter es-
timation of the generalized Pareto distribution. For future research, it is suggested that
the influence of different parameter settings in the HPSO algorithm on the optimization
process is further investigated and detailed performance analyses using real-world data
are conducted.
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