
Citation: Jamil, M.A.; Nour, M.K.;

Alotaibi, S.S.; Hussain, M.J.; Hussaini,

S.M.; Naseer, A. Software Product

Line Maintenance Using

Multi-Objective Optimization

Techniques. Appl. Sci. 2023, 13, 9010.

https://doi.org/10.3390/

app13159010

Academic Editor: Vito Conforti

Received: 11 June 2023

Revised: 30 July 2023

Accepted: 31 July 2023

Published: 6 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Software Product Line Maintenance Using Multi-Objective
Optimization Techniques
Muhammad Abid Jamil 1,* , Mohamed K. Nour 1, Saud S. Alotaibi 2 , Mohammad Jabed Hussain 2 ,
Syed Mutiullah Hussaini 1 and Atif Naseer 3

1 Department of Computer Science, College of Computers and Information Systems, Umm Al Qura University,
Makkah 21955, Saudi Arabia; mknour@uqu.edu.sa (M.K.N.); sshussaini@uqu.edu.sa (S.M.H.)

2 Department of Information Systems, College of Computers and Information Systems, Umm Al Qura
University, Makkah 21955, Saudi Arabia; ssotaibi@uqu.edu.sa (S.S.A.); mjhussain@uqu.edu.sa (M.J.H.)

3 Science and Technology Unit, Umm Al Qura University, Makkah 21955, Saudi Arabia; anahmed@uqu.edu.sa
* Correspondence: majamil@uqu.edu.sa

Abstract: Currently, software development is more associated with families of configurable software
than the single implementation of a product. Due to the numerous possible combinations in a
software product line, testing these families of software product lines (SPLs) is a difficult undertaking.
Moreover, the presence of optional features makes the testing of SPLs impractical. Several features
are presented in SPLs, but due to the environment’s time and financial constraints, these features
are rendered unfeasible. Thus, testing subsets of configured products is one approach to solving
this issue. To reduce the testing effort and obtain better results, alternative methods for testing SPLs
are required, such as the combinatorial interaction testing (CIT) technique. Unfortunately, the CIT
method produces unscalable solutions for large SPLs with excessive constraints. The CIT method
costs more because of feature combinations. The optimization of the various conflicting testing
objectives, such as reducing the cost and configuration number, should also be considered. In this
article, we proposed a search-based software engineering solution using multi-objective evolutionary
algorithms (MOEAs). In particular, the research was applied to different types of MOEA method: the
Indicator-Based Evolutionary Algorithm (IBEA), Multi-objective Evolutionary Algorithm based on
Decomposition (MOEA/D), Non-dominant Sorting Genetic Algorithm II (NSGAII), NSGAIII, and
Strength Pareto Evolutionary Algorithm 2 (SPEA2). The results of the algorithms were examined in
the context of distinct objectives and two quality indicators. The results revealed how the feature
model attributes, implementation context, and number of objectives affected the performances of
the algorithms.

Keywords: search-based software engineering; software product lines; feature models; multi-objective
optimization algorithms

1. Introduction

Software companies have used effective testing techniques such as automated testing
to improve the quality of their software products. However, their derived products are
selected from a broad product platform, and the testing procedure for a software product
line (SPL) can be complicated and expensive. Moreover, the testing process for an SPL
is challenging due to the large number of product variants that need to be tested. By
producing test cases automatically, this testing procedure can be made more effective and
scalable. Software engineering problems can be solved computationally using a meta-
heuristic strategy, and this is what search-based software engineering (SBSE) represents [1].
Search-based software testing (SBST) assists in generating optimal test cases in terms of
time and cost using metaheuristic techniques [2,3]. Due to the redundancy of test cases, the
testing process becomes time-consuming. The various testing optimization methodologies

Appl. Sci. 2023, 13, 9010. https://doi.org/10.3390/app13159010 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13159010
https://doi.org/10.3390/app13159010
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-9199-0844
https://orcid.org/0000-0003-1082-513X
https://orcid.org/0000-0001-6597-3127
https://orcid.org/0000-0001-5444-9637
https://doi.org/10.3390/app13159010
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13159010?type=check_update&version=2

Appl. Sci. 2023, 13, 9010 2 of 21

help to identify issues related to resource utilization and component coordination. Due to
the exponentially growing features in the product line, a classification for product sampling
approaches that is based on algorithm type and coverage criteria has been proposed [4].

The process of developing a product line is difficult now because there are thousands
of variations [5,6]. Using interactive tools and procedures that are appropriate for huge
data sets and interrelationships, the intriguing efforts can be resolved [7]. The testing of a
software product line is a challenging activity, but it will be optimal if all the products in the
product line are configured properly [8]. However, it is complex to generate configurations.
SPL testing is a hard process because of the complex composition and design of products [9].
Operating systems are excellent examples of highly configurable systems, such as the Linux
kernel. Linux may be set up to run on specific hardware, such as an x86 or x64 processor,
but there is also the option of configuring the system’s functionality. For instance, it is
possible to activate support for a built-in webcam video capture tool that is built-in. The
configuration options are limited so that the user cannot select settings that will break
the system’s consistency. In reality, certain features enable millions of configurations. For
instance, a video player product line’s feature model (FM) with 71 features enables it to
configure more than 1.65 × 1013 different products. To reduce a product line’s test suites,
it will be unable to test every product in an SPL at a reasonable cost. The focus of this
article was to optimize a large number of test cases in software product lines. For this, five
different multi-objective evolutionary algorithms were selected to optimize the SPL test
suite. In this context, we addressed the following research questions in this article:

RQ 1: How will the proposed method, which uses multi-objective optimization (in the
case of four objectives optimization), provide the solutions?

RQ 2: Which algorithm, employing the four objectives optimization, is the best fit for
producing the optimized results?

The article is significant due to the following achievements (1) a realistic, genuine
application of the methodology involves working with both small and large systems,
(2) therefore, both types of systems are validated by the proposed approach along the
optimization of different objectives, (3) we can say that the proposed technique can be used
for different MOEAs with either complicated or simple systems in our experiments, and
(4) it is intended to minimize the number of products and the size of test cases.

The rest of the article is organized as follows: Section 2 provides related work on
software product line testing and multi-objective algorithms, and Section 3 describes how
multi-objective optimization helps to optimize SPL testing. Section 4 presents the method
description and testing objectives, and Section 5 describes the experimental setup and
results. Lastly, Sections 6 and 7 present the conclusion and future directions of our work.

2. Software Product Line Engineering

Software product line engineering techniques are utilized to make it possible to de-
velop a variety of products quickly, affordably, and with an excellent quality [10]. This
methodology uses several features to produce particular systems or products [11]. Through-
out the SPL process, the reusable components are combined to generate the desired product.

The product line technique has improved the quality of software [12]. The develop-
ment life cycle objects, such as requirement specification documents, conceptual diagrams,
architectures, reusable components, and testing and maintenance techniques, are merged
to meet the process goals [12]. The reusability of components is essential to the product
line’s methodology. The methodology is divided into two main phases. The first phase is
“Domain Engineering”, wherein the analysis, design, and implementation of that domain
are used to generate core assets. The second phase is “Application Engineering”, where
customers’ unique specifications are used to develop final products [12]. The workflow for
software product line engineering is shown in Figure 1. The development of core assets
occurs during the domain engineering phase of SPL engineering, whereas their setup takes
place during the application engineering phase. Variation points exist that aid in product
configuration [5]. When compared to conventional development methods, domain and

Appl. Sci. 2023, 13, 9010 3 of 21

application engineering efforts are more successful. To efficiently ensure productivity, the
application engineering procedures must operate well [5].

Appl. Sci. 2023, 13, x FOR PEER REVIEW 3 of 22

where customers’ unique specifications are used to develop final products [12]. The work-

flow for software product line engineering is shown in Figure 1. The development of core

assets occurs during the domain engineering phase of SPL engineering, whereas their

setup takes place during the application engineering phase. Variation points exist that aid

in product configuration [5]. When compared to conventional development methods, do-

main and application engineering efforts are more successful. To efficiently ensure

productivity, the application engineering procedures must operate well [5].

Figure 1. Software product line engineering [13].

3. Related Work

The use of search-based approaches in SPL engineering is not common [1]. SPL test-

ing is improved by using the delta modeling approach, where the deltas calculate the

product similarity. Using this technique, the dissimilar product would be tested next. This

approach has been evaluated in the automotive domain regarding SPL testing [14]. Simi-

larity-based prioritization has been introduced to choose diverse products concerning fea-

tures that need to be tested during SPL testing [15]. A genetic-algorithm-based framework

using fault integration techniques is employed for test specification reuse. The proposed

technique was applied to four different SPL models to evaluate the capability of the frame-

work [16]. Krüger et al. [17] discussed mutation operators, which are appropriate for find-

ing variability faults and enhancing the competence of existing or conventional operators.

For the regression testing of an SPL, a retest selection technique has been proposed. This

approach relies on delta modeling, which calculates the commonality and variability of

the product line variants and different versions of these variants. A solution has been pro-

posed by using a change impact analysis to distinguish between variants and versions of

variants where there is a need to retest the changed dependencies in the selection of test

cases for re-execution [18].

Figure 1. Software product line engineering [13].

3. Related Work

The use of search-based approaches in SPL engineering is not common [1]. SPL testing
is improved by using the delta modeling approach, where the deltas calculate the product
similarity. Using this technique, the dissimilar product would be tested next. This approach
has been evaluated in the automotive domain regarding SPL testing [14]. Similarity-
based prioritization has been introduced to choose diverse products concerning features
that need to be tested during SPL testing [15]. A genetic-algorithm-based framework
using fault integration techniques is employed for test specification reuse. The proposed
technique was applied to four different SPL models to evaluate the capability of the
framework [16]. Krüger et al. [17] discussed mutation operators, which are appropriate
for finding variability faults and enhancing the competence of existing or conventional
operators. For the regression testing of an SPL, a retest selection technique has been
proposed. This approach relies on delta modeling, which calculates the commonality and
variability of the product line variants and different versions of these variants. A solution
has been proposed by using a change impact analysis to distinguish between variants
and versions of variants where there is a need to retest the changed dependencies in the
selection of test cases for re-execution [18].

A hybrid multi-objective optimization algorithm called SMTIBEA was proposed. This
technique merges the indicator-based evolutionary algorithm (IBEA) with the satisfiability
modulo theories (SMT) solving methodology. The approach was applied to large SPLs
to compare the state of the artwork. The proposed approach obtained better results in
terms of the expressiveness of constraints [19]. The SPL test list generation scheme, which
relies on the Harmony Search (HS) algorithm, called SPL-HS, was recommended. This
approach requires the minimum number of test cases for all the features that depend on

Appl. Sci. 2023, 13, 9010 4 of 21

the required interaction degree. The obtained results show that the SPL-HS technique can
challenge existing SPL testing approaches to generate optimal results [20]. The validation
partial configurations approach has been proposed to deliberate different cases such as the
selection, attributes, and constraints of features, and this technique was applied with the
industry variant tool known as pure::variants. This approach helps to validate the partial
configurations for different real-world software product lines [21]. Wang et al. presented
their work with a focus on test case minimization [22]. They took advantage of a genetic
algorithm with an accumulated function with these determinants, (1) test case numbers,
(2) coverage in terms of pairs, and (3) find faults. The test cases prioritization technique
was introduced with the addition of a cost function definition. This technique relied on
a random search methodology in contrast to a genetic algorithm using a (1 + 1) Evolu-
tionary Algorithm. This methodology evaluation process focused on genetic algorithm
configurations assigned different weights. In another research study, they worked on other
considerations such as resources and execution costs [23]. Ensan et al. recommended an
approach using genetic algorithm inclusion with a composed function to calculate the
cost and number of errors [24]. Henard et al. worked on the same approach, using a
genetic algorithm with a function to deal with contrary objectives [25]. The configuration
of features and selection approaches has also been described [26]. The selection techniques
were prescribed by them to work on various objectives. For instance, similar techniques,
such as evolution and user preferences, were recommended by [27–29].

The authors mentioned [30,31] their work on the evolution, runtime, and execution of
SPLs. The configuration of SPLs has been explicitly discussed by other researchers who
have mainly focused on cost, user preferences, and feature model constraint rules [32–36].
Sayyed [37,38] recommended an approach for product line configuration, evaluating dis-
tinct multi-objective evolutionary algorithms in terms of different aspects such as product
selection, the breached rules in feature models, the utilized features, and the exposed faults
during the testing process. The use of multi-objective algorithms generated testing results
based on different, defined criteria. For example, Lopez [39] suggested Pareto solutions to
describe pairwise coverage. Regardless of this, other researchers have presented genetic
algorithms using some aggregated functions. In addition to other factors, the pairwise cov-
erage criteria have basic importance in testing. Henard [40] advocated test data generation
for mutation testing. In our work, the same operators were used to originate products in
terms of test cases for the testing process.

As a result of the aforementioned assessment of the gaps or weaknesses in the literature,
(1) the number of test cases and test suites for the SPL testing procedure has to be decreased,
and (2) it can be difficult to optimize multiple objectives simultaneously when dealing
with a multi-objective optimization problem. The size of the test cases is one of the key
issues in product line testing. Thus, to perform product line testing completely, all the
generic components and even all the potential product versions must be tested. In fact,
complete testing becomes challenging as the number of product variants increases [3,41].
As a result, the system undergoes more testing as more products are generated. At this
stage, the main focus is on minimizing redundant tests in order to reduce the testing effort.
The relationship between the produced and derived goods from the same requirements
should be taken into account when minimizing test redundancy [3,41].

In an SPL, the generation of configurations is a multi-objective issue. As a result, the
activity of SPL testing can be viewed as the development of configurations, which is a
multi-objective problem. As a result, it is possible to view the testing of a product line as
a multi-objective problem. Although SPL testing using the CIT approach can be a single-
objective problem, there is also a need to optimize other objectives, such as minimizing the
number of configurations, maximizing the number of features, and minimizing the cost of
testing these products [27]. The optimization of many objectives can be difficult though, as
achieving one objective may prevent the optimization of other objectives. The results of the
implementation of multi-objective evolutionary algorithms (MOEAs) in SPL testing will be
used to determine any interventions made by software testers.

Appl. Sci. 2023, 13, 9010 5 of 21

This study establishes the rationale for employing MOEA algorithms in SPL testing.
The proposed algorithm will help to find more accurate and beneficial results in terms
of performance, accuracy, and cost. The suggested work will measure the MOEAs. This
research will assist the SPL testing industry in utilizing MOEAs to aid SPL testing processes.
In addition, the adopted MOEAs will be competent in setting the precedent for the future
generation and selection of test cases to reduce the number of test cases to cope with
the time-limited environment. Hence, the ultimate goal of this research is to maximize
the coverage of valid features in a product line that needs to be tested. In this work, the
SPL testing technique comprises the optimization of multiple objectives; therefore, there
may be a need to compromise on some objectives to optimize one objective. Hence, the
optimization of conflicting objectives is also considered to be a limitation. The evaluation
of configurations can take hours or days; hence, it is computationally expensive. Therefore,
discovering other approaches besides the configuration evaluation technique to find faults
and robust results rather than the CIT approach is required.

4. Optimization for SPL Testing Using Multi-Objective Evolutionary Algorithms
4.1. Method Description

The different definitions concerning the research problem are outlined as required.

4.1.1. Definition 1 (Feature Model)

A Feature Model is a set of m Boolean features with certain constraints, where a feature
model (FM) is expressed as F = { f1, f2, . . . , fm}, while set L = {c1, . . . , cn} represents the
constraints for the features. A constraint C can be fulfilled by seeing whether the imper-
atives or constraints are satisfied. Mendonca [42] mentioned that a feature model can be
expressed as a Boolean representation, using constraint solvers to analyze a feature model.
Such Boolean expressions are defined as the combination of logical clauses. Therefore, a
clause is set forth for a feature model, and it literally specifies whether a feature is true
(f j-selected) or false (f ′ j-not selected). Hence, to describe an FM, the following Boolean
expression can be used.

FM =
∧k

i=1

 ∨
j∈[1;n]

lj

, where lj = f j or f j (1)

The use of search-based approaches in SPL engineering is not common [1]. SPL
testing is improved by using the delta modeling approach, where the deltas calculate the
product similarity.

4.1.2. Definition 2 (Configuration)

The features recommended by a product of an SPL are configurations. Therefore, in a
configuration, either there will be a selection of particular features or not, while satisfying
the rules of the defined constraints. For a product of an SPL, a configuration is considered
a set C= {± f1, . . . , ± fn}, where + fi the feature shows its presence in the FM for the
respective product, while – fi represents the absence of that feature. However, here, it is
important that a configuration is valid if the constraints of the FM are satisfied.

4.1.3. Definition 3 (Configuration Suite)

A configuration suite consists of a set of valid configurations and is represented as
CS = {C1, . . . , Cm}, as each object Ci presents a valid configuration.

4.1.4. Definition 4 (Coverage Criteria)

Coverage Criteria is defined as a set of t-sets covered by the configuration, where the
t-set can be defined as a configuration with a certain number of valid and invalid features,

Appl. Sci. 2023, 13, 9010 6 of 21

as defined in the last sections. The below ratio is given to describe the pairwise coverage of
a configuration suite CS = {C1, . . . , Cm }.

#
⋃m

i=1 Tt,Ci

#Tt,FM
(2)

where Tt,Ci is the set of t-sets encompassed by the configuration Ci (i.e., the t-sets entailed
within the configuration Ci), where Tt,FM, is indicative of the set of all the possible t-sets of
the FM, and where the cardinality of set A is depicted by #A. For t-wise testing, the above
coverage ratio is considered to be 1 using classical approaches, because these approaches
cover all the t-tests of a feature model [41–44].

For example, the cell phone feature model depicted in Figure 2 can have the following
different number of configurations.

C1 =
{
+ f1,+ f 2,+ f 3,+ f 4,+ f 5,+ f 6,− f 7,+ f 8,− f 9,− f 10,+ f 11,− f 12,− f 13

}
C2 =

{
+ f1,+ f 2,+ f 3,+ f 4,+ f 5,− f 6,+ f 7,− f 8,+ f 9,− f 10,+ f 11,− f 12,− f 13

}
C3 =

{
+ f1,− f 2,+ f 3,+ f 4,+ f 5,− f 6,− f 7,− f 8,− f 9,+ f 10,+ f 11,− f 12,− f 13

}
C4 =

{
+ f1,+ f 2,+ f 3,+ f 4,− f 5,+ f 6,− f 7,− f 8,+ f 9,− f 10,− f 11,− f 12,− f 13

}

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 22

4.1.3. Definition 3 (Configuration Suite)

A configuration suite consists of a set of valid configurations and is represented as

𝐶𝑆 𝐶 , … ,𝐶 , as each object 𝐶 presents a valid configuration.

4.1.4. Definition 4 (Coverage Criteria)

Coverage Criteria is defined as a set of t-sets covered by the configuration, where the

t-set can be defined as a configuration with a certain number of valid and invalid features,

as defined in the last sections. The below ratio is given to describe the pairwise coverage

of a configuration suite 𝐶𝑆 𝐶 , … ,𝐶 }.

𝑇 ,

#𝑇 ,
 (2)

where 𝑇 , is the set of t-sets encompassed by the configuration 𝐶 (i.e., the t-sets entailed
within the configuration 𝐶), where 𝑇 , , is indicative of the set of all the possible t-sets of

the FM, and where the cardinality of set A is depicted by #𝐴. For t-wise testing, the above

coverage ratio is considered to be 1 using classical approaches, because these approaches

cover all the t-tests of a feature model [41–44].

For example, the cell phone feature model depicted in Figure 2 can have the follow-

ing different number of configurations.

Figure 2. Cell phone feature model (adapted [45]).

𝐶 𝑓 , 𝑓 , 𝑓 , 𝑓 , 𝑓 , 𝑓 , 𝑓 , 𝑓 , 𝑓 , 𝑓 , 𝑓 , 𝑓 , 𝑓

𝐶 𝑓 , 𝑓 , 𝑓 , 𝑓 , 𝑓 , 𝑓 , 𝑓 , 𝑓 , 𝑓 , 𝑓 , 𝑓 , 𝑓 , 𝑓

𝐶 𝑓 , 𝑓 , 𝑓 , 𝑓 , 𝑓 , 𝑓 , 𝑓 , 𝑓 , 𝑓 , 𝑓 , 𝑓 , 𝑓 , 𝑓

𝐶 𝑓 , 𝑓 , 𝑓 , 𝑓 , 𝑓 , 𝑓 , 𝑓 , 𝑓 , 𝑓 , 𝑓 , 𝑓 , 𝑓 , 𝑓 .

4.1.5. Definition 5 (Individual)

An individual is expressed by the set of a configuration suite, i.e., 𝐼 𝐶 , … … ,𝐶 ,
as I generates solutions for the problem, while a gene is produced by a valid configuration

and the Genetic Algorithm (GA) manages the set of individuals. Hence, the search space

of all the possible sets of configurations that are capable of holding configurations in an

SPL is acquired.

Figure 2. Cell phone feature model (adapted [45]).

4.1.5. Definition 5 (Individual)

An individual is expressed by the set of a configuration suite, i.e., I = {C1, , Cn},
as I generates solutions for the problem, while a gene is produced by a valid configuration
and the Genetic Algorithm (GA) manages the set of individuals. Hence, the search space of
all the possible sets of configurations that are capable of holding configurations in an SPL
is acquired.

4.1.6. Definition 5 (Population)

A Population is a set of individuals where a gene is shown by a valid configuration.
The genetic algorithm (GA) deals with a set of individuals considered to be a population.
Hence, a large search space of sets of valid configurations that exist in an SPL is obtained.

The Materials and Methods should be described with sufficient details to allow others
to replicate and build on the published results. An example of the cell phone feature model

Appl. Sci. 2023, 13, 9010 7 of 21

is described in Figure 2, which shows a total of 13 features represented by f1, f2, . . . , f13.
The above Figure 2 shows the cell phone as a root feature of the feature model and this
root feature will be included in every product configuration. In this FM, the Accu_Cell,
Display, and Games features are considered to be mandatory features. These three features
would be present in each configuration. There exists an exclusive-or relationship between
Accu_Cell and its child features. This means that there would be an explicit inclusion of
one out of three features, i.e., Strong, Medium, or Weak.

However, in the case of multi-player and single-player features forming an inclusive-or
relationship, which means a valid configuration, there is a selection of at least one feature
among two features. An Artificial Opponent is considered to be a mandatory child feature
for the Single Player. For the main cell phone parent, the Wireless feature is taken as an
optional child feature, therefore, its selection may be optional. The Wireless feature has
Infrared and Bluetooth child features and makes an inclusive-or association. This means
that, if any configuration contains a Wireless feature, then it must have at least one child
feature to be included or selected. Three crosstree constraints persist in the cell phone
product line. As long as there is an important selection for a Multi_Player feature that
cannot be considered with the Weak feature, hence for this Wireless feature, the selection
is mandatory. In the end, for the Bluetooth feature, the Strong feature selection is also
compulsory. The set of n products represents the individual population, as exemplified
in Figure 3. In that example, every single X contains three products, based on the integer
numbers: (1, 4, and 9). A binary vector represents each product, and every element
represents a feature of a feature model. The value (0) represents a feature that is not
selected, and (1) represents the corresponding feature. In this example, product 1 does not
contain the features of Infrared and Artificial Opponent.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 22

4.1.6. Definition 5 (Population)

A Population is a set of individuals where a gene is shown by a valid configuration.

The genetic algorithm (GA) deals with a set of individuals considered to be a population.

Hence, a large search space of sets of valid configurations that exist in an SPL is obtained.

The Materials and Methods should be described with sufficient details to allow oth-

ers to replicate and build on the published results. An example of the cell phone feature

model is described in Figure 2, which shows a total of 13 features represented by

𝑓 , 𝑓 , … , 𝑓 . The above Figure 2 shows the cell phone as a root feature of the feature model

and this root feature will be included in every product configuration. In this FM, the

Accu_Cell, Display, and Games features are considered to be mandatory features. These

three features would be present in each configuration. There exists an exclusive-or rela-

tionship between Accu_Cell and its child features. This means that there would be an ex-

plicit inclusion of one out of three features, i.e., Strong, Medium, or Weak.

However, in the case of multi-player and single-player features forming an inclusive-

or relationship, which means a valid configuration, there is a selection of at least one fea-

ture among two features. An Artificial Opponent is considered to be a mandatory child

feature for the Single Player. For the main cell phone parent, the Wireless feature is taken

as an optional child feature, therefore, its selection may be optional. The Wireless feature

has Infrared and Bluetooth child features and makes an inclusive-or association. This

means that, if any configuration contains a Wireless feature, then it must have at least one

child feature to be included or selected. Three crosstree constraints persist in the cell

phone product line. As long as there is an important selection for a Multi_Player feature

that cannot be considered with the Weak feature, hence for this Wireless feature, the se-

lection is mandatory. In the end, for the Bluetooth feature, the Strong feature selection is

also compulsory. The set of n products represents the individual population, as exempli-

fied in Figure 3. In that example, every single X contains three products, based on the

integer numbers: (1, 4, and 9). A binary vector represents each product, and every element

represents a feature of a feature model. The value (0) represents a feature that is not se-

lected, and (1) represents the corresponding feature. In this example, product 1 does not

contain the features of Infrared and Artificial Opponent.

Figure 3. Individual Representation.

To achieve the optimization criteria, it is difficult to identify an SPL configuration

that fulfills a number of potentially conflicting objectives. The issue becomes intensified

when a configuration suite fulfilling testing goals comprising a set of configurations needs

to be generated, which is assumed to be the actual issue that needs to be handled. Con-

straint-solving techniques and multi-objective evolutionary algorithms are parts of our

approach, and to produce configuration suites, these approaches need to be applied in a

Figure 3. Individual Representation.

To achieve the optimization criteria, it is difficult to identify an SPL configuration that
fulfills a number of potentially conflicting objectives. The issue becomes intensified when a
configuration suite fulfilling testing goals comprising a set of configurations needs to be
generated, which is assumed to be the actual issue that needs to be handled. Constraint-
solving techniques and multi-objective evolutionary algorithms are parts of our approach,
and to produce configuration suites, these approaches need to be applied in a balanced
way so that the fulfillments of four testing objectives can be analyzed at the same time.
For SPLs, the configuration generation problem is modeled as a search problem. In the
proposed approach, sets of configurations are modeled as individuals and configurations
as genes. It is also indicative of the likely operations on the individuals and the objective
function. Hence, search-based approaches are enabled to fix the configuration generation
problem. To eliminate invalid configurations from the search space, the constraint-solving
technique is used.

Appl. Sci. 2023, 13, 9010 8 of 21

To provide the maximum size of an individual, there is a need to specify the size
of the population. A set of 1, . . ., m configurations randomly selected from all the valid
configurations towards the feature model (FM) is represented by each individual. The
evolution of the population into a new one is considered to be the second step of the
approach. The crossover and mutation are the next steps. The individuals are created
using mutation and crossover operators to complete the new population until it attains size
n. Crossover aims to create two offspring from their selected parents. The user initially
specifies a certain probability of mutation taking place in the offspring. Afterward, the
fitness of these two offspring is analyzed, and the new population is integrated with these
two new individuals. Finally, the new population replaces the existing population and
continues into the next generation. Upon the termination of the algorithm, the best fitness
value for the individual is obtained. The proposed approach is shown in Figure 4.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 22

balanced way so that the fulfillments of four testing objectives can be analyzed at the same

time. For SPLs, the configuration generation problem is modeled as a search problem. In

the proposed approach, sets of configurations are modeled as individuals and configura-

tions as genes. It is also indicative of the likely operations on the individuals and the ob-

jective function. Hence, search-based approaches are enabled to fix the configuration gen-

eration problem. To eliminate invalid configurations from the search space, the constraint-

solving technique is used.

To provide the maximum size of an individual, there is a need to specify the size of

the population. A set of 1, …, m configurations randomly selected from all the valid con-

figurations towards the feature model (FM) is represented by each individual. The evolu-

tion of the population into a new one is considered to be the second step of the approach.

The crossover and mutation are the next steps. The individuals are created using mutation

and crossover operators to complete the new population until it attains size n. Crossover

aims to create two offspring from their selected parents. The user initially specifies a cer-

tain probability of mutation taking place in the offspring. Afterward, the fitness of these

two offspring is analyzed, and the new population is integrated with these two new indi-

viduals. Finally, the new population replaces the existing population and continues into

the next generation. Upon the termination of the algorithm, the best fitness value for the

individual is obtained. The proposed approach is shown in Figure 4.

Figure 4. Method Description.

4.2. Objectives Definition

To achieve the optimization criteria, different objectives are defined, which might

create conflicts with each other during the optimization process. In the proposed research,

the following objectives are considered.

4.2.1. Maximize the Pairwise Coverage

This objective ensures the maximum level of pairwise coverage from the selected

products, where the Coverage Criteria is defined as a set of t-sets covered by the configu-

ration, where the t-set can be defined as a configuration with a certain number of valid

and invalid features, as defined in the last sections. It is represented as:

O1 (a) = coverage (a) (3)

where the coverage function is used to calculate the number of pairs of features covered

by set 𝑎 𝑃 , … … ,𝑃 .

Figure 4. Method Description.

4.2. Objectives Definition

To achieve the optimization criteria, different objectives are defined, which might
create conflicts with each other during the optimization process. In the proposed research,
the following objectives are considered.

4.2.1. Maximize the Pairwise Coverage

This objective ensures the maximum level of pairwise coverage from the selected prod-
ucts, where the Coverage Criteria is defined as a set of t-sets covered by the configuration,
where the t-set can be defined as a configuration with a certain number of valid and invalid
features, as defined in the last sections. It is represented as:

O1 (a) = coverage (a) (3)

where the coverage function is used to calculate the number of pairs of features covered by
set a = {P1, , Pn}.

4.2.2. Minimize the Number of Products

Each product represents a test case. Therefore, the number of products should be
minimized. The goal of this objective is to minimize the number of products:

O2 (a) = cardinality (a) (4)

where the cardinality function determines the number of n products a = {P1, , Pn}
and it is assumed that a feature exists implicitly at most once in each product. The cardinal-
ity of a feature also demonstrates how many times the feature is included in a configuration.

Appl. Sci. 2023, 13, 9010 9 of 21

4.2.3. Testing Cost

The testing cost of products is minimized using the following objective function.

O3 (a) = cost (a) (5)

This function makes sure that the testing cost will be minimized with the help of the
above-defined objective. The different resources and costs required by each feature need
to be tested. In this regard, each feature is assigned a value indicative of an estimate of
its testing cost. Therefore, the sum of the cost of its features is presumably equivalent
to the cost of testing for one configuration. In other words, if the cost of the feature fi is
symbolized by cost (fi), then a configuration C = {± f1, . . . ,± fn} possesses a cost equal to:

cost(C) = ∑n
i=1 p(i)cost(i), where p(i) =

{
1 i f + fi
0 i f − fi

(6)

The cost of the m configurations is calculated by summing up the cost of a test
configuration suite. Hence, the below equation gives the cost of CS = {C1, . . . , Cm}:

cost(CS) = ∑m
i=1 cost(Ci) (7)

4.2.4. Maximizing Number of Features

The population is Configuration Suite {C1, C1 . . . , Ck}, which is used to count the
number of positive features in a vector of Configuration Ci = {+ f1, . . . , fn,− f1 ,− fn}.
The goal of this function is to count features. This objective can be defined as:

CSk =
n

∑
i

m

∑
j

λ(PF(i, j)) (8)

where λ(PF(i, j) = 1, if
n
∑
i
(PF(i, j) > 1, else = 0.

The CS represents the configuration suite, the PF shows the product features, and 1
represents one whole product with binding features.

5. Experiments

In this section, we discuss the framework adopted, the data collection procedure, and
the parameter settings.

5.1. Framework Adopted

This section describes how the experiments were designed and conducted: SPL fea-
ture models, algorithm implementation, and quality indicators for the comparison of the
algorithms. The approach employed was similar to that adopted in our recent research
work [46]. For evaluation and implementation, five multi-objective algorithms were se-
lected: IBEA [47], MOEA/D [48], NSGAII [49], NSGAIII [50], and SPEA2 [51]. There exists
a free and open-source Java library framework called “The MOEA Framework”. It is used
for both single- and multi-objective optimization algorithms. The MOEA Framework aids
genetic algorithms, grammatical evolution, particle swarm optimization, genetic program-
ming, and differential evolution [52]. This framework consists of operators and solutions
for optimization problems, and it also implements quality indicators such as hypervolume.

The selected algorithms were configured and re-executed to generate and report the
results. As mentioned above in Equation (1), the Boolean formula of a feature model was
encoded into a SAT solver to resolve whether a configuration was valid or invalid for a
feature model. The formula was applied as a conjunction form for all the constraints and
evaluated to true (valid) values for the constraints satisfied by the solver.

Appl. Sci. 2023, 13, 9010 10 of 21

5.2. Data Collection

The six feature models were selected with dissimilar sizes and obtained from Software
Product Line Tools (SPLOT) [9]. Table 1 displays the various attributes of these selected
feature models. The six feature models were considered for four objectives of optimization,
with smaller-, medium-, and larger-size features to analyze the results. The feature model
characteristics are shown in Table 1. The first column shows the different feature models,
the second represents the number of features, and the third and fourth columns show the
number of configurations and the number of valid pairs, respectively.

Table 1. Feature model attributes.

Feature Model Features Configurations Number of Pairs

Counter Strike 24 18,176 833

SPL SimulES, PnP 41 6912 2592

Smart Homev2.2 60 3.87 × 109 6189

Video Player 71 4.5 × 1013 7528

Model
Transformation 88 1.65 × 1013 13,139

Coche Ecologico 94 2.32 × 107 11,075

5.3. Parameters Selection

The parameter settings were adopted before initiating the experiments. The fixed
parameters were finalized at the beginning to obtain a constant result and provide the
possibility of comparing the efficiency of the algorithms involved in the experiments. The
selected parameters were the size of the population, the maximum number of evaluations,
and the sizes of the FM, crossover, and mutation rates, as shown in Table 2.

Table 2. Parameter Settings.

Parameter Values

Population Size 200

Number of Generations 500

Crossover Rate 60%

Mutation Rate 30%

6. Results and Discussion

We performed experiments that relied on the experimental methodology discussed
in the previous sections. First, the results of the Pareto fronts are presented with tuned
parameters for the selected SPLOT feature model configurations.

6.1. Pareto Front Solutions

The results of the proposed research are shown and analyzed in this section. The non-
dominated solutions are presented in Table 3, based on the Pareto dominance concepts [53].
Table 3 presents the main results generated by each algorithm and feature model for the
multi-objective optimization techniques. Column 2 shows the total number of solutions
in the global pareto front PFtrue, formed by the non-dominated solutions generated by
the executions of all five algorithms. However, the other columns present the number of
non-dominated solutions generated by an individual algorithm known as PFcontribution,
which are present in PFtrue, and the values in parentheses show the percentage of the
non-dominated solutions of each algorithm as compared to the global solutions PFtrue.

Appl. Sci. 2023, 13, 9010 11 of 21

Table 3. Pareto fronts with four objectives solutions.

Feature
Models

Algorithms

PFtrue
IBEA MOEAD NSGAII NSGAIII SPEA2

PFcontribution

Counter-Strike 465 13 (2.81%) 122 (26.23%) 24 (5.16%) 109 (23.44%) 197 (42.36%)

SPL SimulES,
PnP 456 10 (2.19%) 138 (30.26%) 13 (2.85%) 97 (21.27%) 198 (43.42%)

Smart Home
v2.2 499 8 (1.60%) 144 (28.85%) 23 (4.60%) 124 (24.84%) 200 (40.08%)

Video Player 456 8(1.75%) 124 (27.19%) 16 (3.5%) 108 (23.68%) 200 (43.85%)

Model
Transformation 510 17 (3.4%) 141 (27.64%) 19 (3.72%) 133 (26.07%) 200 (39.21%)

Coche
Ecologico 490 27 (5.51%) 123 (25.10%) 11 (2.24%) 129 (26.32%) 200 (40.81%)

The preliminary analysis in Table 3 shows that the IBEA and NSGAII algorithms
generated a certain number of solutions in PFtrue in consideration of the used objectives.
All the algorithms used in this research found solutions for all the feature models in all runs.
The IBEA algorithm generated the minimum number of solutions for the SmartHome v2.2
and Video Player feature models. However, in the case of the other feature models, where
more solutions originated from IBEA, the larger feature model Coche Ecologico generated
a greater number of non-dominated solutions, resulting in 27 solutions as compared to the
other feature models. In the case of NSGAII, a diversity of solutions was observed for the
small-size feature model Counter-Strike; it originated from 24 solutions, while in the case
of the larger-size feature model Coche Eoclogico, it generated the minimum number of
solutions, i.e., 11. Similarly, to observe the results of NSGAIII, MOEA/D, and SPEA2, these
three algorithms generated a good number of non-dominated solutions for all the feature
models. Table 3 simply analyzes that all the algorithms worked effectively to optimize the
four objectives problem.

Figure 5 shows the distinct percentage values for the non-dominated solutions gener-
ated by the five different MOEAs. It is obvious from Figure 4 that the SPEA2 algorithm
generated the maximum percentages of solutions in all six selected feature models. How-
ever, MOEA/D was also able to generate a good amount of percentage solutions for
the FMs mentioned in Table 3. For MOEA/D, the solution percentages originated for
Counter-Strike, SPL SimulES PnP, Smart Homev2.2, Video Player, Model Transformation,
and Coche Ecologico were 26.23, 30.26, 28.85, 27.19, 27.64, and 25.10, respectively. Figure 5
also describes that NSGAIII contributed well to producing good percentage values of
non-dominated solutions, while the IBEA and NSGAII percentage solutions were not
satisfactory as compared to the results of the other MOEAs in terms of percentage.

Appl. Sci. 2023, 13, 9010 12 of 21Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 22

Figure 5. Non-dominated solution values for different feature models.

6.2. Results Generated by Quality Indicators

The evaluation process for the results of the MOEAs was carried out by using quality

multi-objective indicators and a statistical analysis, as discussed in [54,55]. In this research

work, two quality indicators were selected to evaluate the results: Hypervolume [56] and

Spacing [57]. There is a possibility that the efficiency of the MOEAs may have had an effect

on the four objectives, therefore, to measure the better performance of the MOEAs, these

two quality indicators were utilized to determine the spread, convergence, and smaller

space for the non-dominated solutions generated by the algorithms regarding the Pareto

front [55,58].

Table 4 represents the hypervolume and spacing indicators with their average and

standard deviation values, respectively, for the 30 PFcontribution sets generated by each algo-

rithm. To establish a quantitative analysis of the results, the above-mentioned quality in-

dicators were utilized. These quality metrics helped to generate good-quality values [56].

The first column of Table 4 represents the hypervolume and spacing indicators, while the

other columns represent the feature models and different algorithms to calculate the av-

erage and standard deviation values using the mentioned indicators. The best values are

represented in bold in Table 4.

Table 4. Indicators of hypervolume (HV) and spacing values for four objectives.

Indicator Feature Models
IBEA MOEAD NSGAII NSGAIII SPEA2

Average St. D Average St. D Average St. D Average St. D Average St. D

HV

Counter Strike 0.2826 0.1162 0.7094 0.0129 0.6029 0.0234 0.6498 0.0113 0.7022 0.0165

SPL SimulES,

PnP
0.2698 0.0954 0.6524 0.0150 0.4659 0.0314 0.5413 0.0176 0.6390 0.0155

Smart Home

v2.2
0.3460 0.1105 0.6885 0.0160 0.5742 0.0353 0.6052 0.0300 0.6843 0.0198

Video Player .0.3659 0.0969 0.6961 0.0155 0.5795 0.0108 0.6085 0.0262 0.6864 0.0193

Model Trans-

formation
0.3600 0.0771 0.6009 0.0146 0.4677 0.0256 0.5276 0.0210 0.6136 0.0210

Figure 5. Non-dominated solution values for different feature models.

6.2. Results Generated by Quality Indicators

The evaluation process for the results of the MOEAs was carried out by using quality
multi-objective indicators and a statistical analysis, as discussed in [54,55]. In this research
work, two quality indicators were selected to evaluate the results: Hypervolume [56] and
Spacing [57]. There is a possibility that the efficiency of the MOEAs may have had an effect
on the four objectives, therefore, to measure the better performance of the MOEAs, these
two quality indicators were utilized to determine the spread, convergence, and smaller
space for the non-dominated solutions generated by the algorithms regarding the Pareto
front [55,58].

Table 4 represents the hypervolume and spacing indicators with their average and
standard deviation values, respectively, for the 30 PFcontribution sets generated by each
algorithm. To establish a quantitative analysis of the results, the above-mentioned quality
indicators were utilized. These quality metrics helped to generate good-quality values [56].
The first column of Table 4 represents the hypervolume and spacing indicators, while
the other columns represent the feature models and different algorithms to calculate the
average and standard deviation values using the mentioned indicators. The best values are
represented in bold in Table 4.

For hypervolume, higher values are considered the best, while minimum values are
taken into account as the best for spacing. To analyze the hypervolume values for Counter-
Strike FM, it is discovered from Table 4 that the MOEA/D and SPEA2 algorithms originated
the best average and standard deviation values (0.7094 and 0.0129) and (0.7022 and 0.0165),
respectively. Comparatively, the NSGAIII results are also considered as better (0.6498 and
0.0113). However, in the cases of IBEA (0.2826 and 0.1162) and NSGAII (0.6029 and 0.0234),
the generated hypervolume and spacing values are considered to be less than the number
of solutions.

For the SPL SimulES, PnP FM, it can be deduced from Table 4 that the NSGAIII values
are not desirable in terms of average and standard deviation (0.5413 and 0.0176), and the
same behavior is displayed by IBEA and NSGAII, showing values of (0.2698 and 0.0954),
and (0.4659 and 0.0314), respectively. MOEAD generated the best values (0.6524 and 0.0150)
in contrast to the other MOEAs. The values of SPEA2 are sufficient for creating the optimal
values of the average and standard deviation (0.6390 and 0.0155).

Appl. Sci. 2023, 13, 9010 13 of 21

Table 4. Indicators of hypervolume (HV) and spacing values for four objectives.

Indicator Feature Models
IBEA MOEAD NSGAII NSGAIII SPEA2

Average St. D Average St. D Average St. D Average St. D Average St. D

HV

Counter Strike 0.2826 0.1162 0.7094 0.0129 0.6029 0.0234 0.6498 0.0113 0.7022 0.0165

SPL SimulES,
PnP 0.2698 0.0954 0.6524 0.0150 0.4659 0.0314 0.5413 0.0176 0.6390 0.0155

Smart Home v2.2 0.3460 0.1105 0.6885 0.0160 0.5742 0.0353 0.6052 0.0300 0.6843 0.0198

Video Player .0.3659 0.0969 0.6961 0.0155 0.5795 0.0108 0.6085 0.0262 0.6864 0.0193

Model
Transformation 0.3600 0.0771 0.6009 0.0146 0.4677 0.0256 0.5276 0.0210 0.6136 0.0210

Coche Ecologico 0.3257 0.0802 0.4868 0.0048 0.3227 0.0107 0.4541 0.0329 0.5025 0.0013

Spacing

Counter Strike 0.1138 0.0543 0.0329 0.0033 0.0496 0.0115 0.0316 0.0026 0.0157 0.0017

SPL SimulES,
PnP 0.0713 0.0364 0.0208 0.0019 0.0521 0.0121 0.0295 0.0026 0.0113 0.0011

Smart Home v2.2 0.0753 0.0330 0.0302 0.0024 0.0474 0.0102 0.0342 0.0037 0.0126 0.0086

Video Player 0.0855 0.0430 0.0296 0.0028 0.0502 0.0108 0.0328 0.0046 0.0127 0.0015

Model
Transformation 0.0527 0.0112 0.0262 0.0021 0.0412 0.0081 0.0292 0.0024 0.0102 0.0008

Coche Ecologico 0.0417 0.0173 0.0217 0.0016 0.0720 0.0218 0.0179 0.0030 0.0095 0.0013

In the case of the Smart Homev2.2 FM, nearly the same average values with a mi-
nor difference in standard deviation (0.6885 and 0.0160) and (0.6843 and 0.0198) can be
generated by both the MOEA/D and SPEA2. NSGAIII remained deliberate in terms of
producing good result values (0.6052 and 0.0300) for the Smart Homev2.2 FM. Nonetheless,
the performances of IBEA and NSGAII are observed to be unsatisfactory, as they generated
(0.3460 and 0.1105) and (0.5742 and 0.0353) values, respectively.

While considering the results of the Video Player FM, the SPEA2 and MOEA/D both
produced almost the same average values with an insignificant difference in standard
deviation, (0.6961 and 0.0155) and (0.6864 and 0.0193). NSGAIII stayed deliberate con-
cerning producing desirable result values (0.6085 and 0.0262) for the Smart Homev2.2
FM. On the other hand, IBEA and NSGAII delivered unsatisfactory performances and
generated (0.3659 and 0.0969) and (0.5795 and 0.0108) values for the average and standard
deviation, respectively.

After analyzing the results of the Model Transformation FM, the MOEA/D and SPEA2
both generated approximately the same average values but with a minor difference in
standard deviation values, (0.6009 and 0.0146) and (0.6136 and 0.021). NSGAIII was found
to originate better result values (0.5276 and 0.021) for the Smart Homev2.2 FM. On the
contrary, an unacceptable performance was demonstrated by IBEA and NSGAII, and the
generated values were (0.36 and 0.0771) and (0.4677 and 0.0256), respectively.

When the results of Coche Ecologico are investigated, it is found that approximately
the same average values were generated by both the MOEA/D and SPEA2, with a slight
change in standard deviation, (0.4868 and 0.0048) and (0.5025 and 0.0013). Moreover,
NSGAIII yielded good result values (0.4541 and 0.0329) for the Smart Homev2.2 FM.
Though IBEA and NSGAII illustrated poor performances, they generated (0.3257 and
0.0802) and (0.3227 and 0.0107) values, respectively.

In Table 4, it is examined that, for all the feature models, the SPEA2 algorithm gener-
ated the best average and standard deviation values using the spacing metric. However,
the MOEA/D and NSGAIII algorithms also generated good values for the average and
standard deviation.

To conclude, in Table 4, it is determined that SPEA2 and MOEA/D can produce better
values. It is worth mentioning that NSGAIII is also good at producing a desirable result
for most of the feature models. Nevertheless, unsatisfactory performances are revealed by
IBEA and NSGAII as compared to the other three algorithms.

Appl. Sci. 2023, 13, 9010 14 of 21

6.3. Fitness Values for Four Objectives Optimization

Table 5 presents the fitness values of the solutions for the four objectives mentioned
in the above section. The fitness values of the four objectives are selected from the results
of the experiments. The first column of Table 5 shows the feature models, and the other
columns represent the MOEA algorithms with their four objective values.

Table 5. Fitness values of solutions with objectives (O1, O2, O3, and O4).

Feature
Models

Algorithms

IBEA MOEAD NSGAII NSGAIII SPEA2

Counter
Strike

O1 (1, 0.010, 0.086, 0.291)
O2 (1, 0.010, 0.086, 0.291)
O3 (1, 0.010, 0.086, 0.291)
O4 (0.274, 0.030, 0.365, 1)

O1 (1, 0.010, 0.623, 0.666)
O2 (1, 0.010, 0.623, 0.666)
O3 (1, 0.010, 0.107, 0.291)
O4 (0.271, 0.071, 0.136, 1)

O1 (1, 0.010, 0.666, 0.75)
O2 (1, 0.010, 0.666, 0.75)

O3 (1, 0.010, 0.107, 0.291)
O4 (0.228, 0.051, 0.276, 1)

O1 (1, 0.010, 0.537, 0.666)
O2 (1, 0.010, 0.537, 0.666)
O3 (1, 0.010, 0.0107, 0.291)
O4 (0.238, 0.051, 0.219, 1)

O1 (1, 0.010, 0.709, 0.791)
O2 (1, 0.010, 0.709, 0.791)
O3 (1, 0.010, 0.0107, 0.291)
O4 (0.260, 0.051, 0.198, 1)

SPL
SimulES,
PnP

O1 (1, 0.010, 0.358, 0.593)
O2 (1, 0.010, 0.358, 0.593)
O3 (1, 0.010, 0.305, 0.05)

O4 (0.625, 0.030, 0.419, 1)

O1 (1, 0.010, 0.312, 0.468)
O2 (1, 0.010, 0.312, 0.468)
O3 (1, 0.010, 0.229, 0.50)

O4 (0.638, 0.122, 0.279, 1)

O1 (1, 0.010, 0.343, 0.562)
O2 (1, 0.010, 0.343, 0.562)
O3 (1, 0.010, 0.236, 0.50)

O4 (0.654, 0.030, 0.358, 1)

O1 (1, 0.010, 0.458, 0.625)
O2 (1, 0.010, 0.458, 0.625)
O3 (1, 0.010, 0.244, 0.468)
O4 (0.669, 0.408, 0.328, 1)

O1 (1, 0.010, 0.664, 0.656)
O2 (1, 0.010, 0.664, 0.656)
O3 (1, 0.010, 0.236, 0.50)

O4 (0.647, 0.071, 0.312, 1)

Smart Home
v2.2

O1 (1, 0.010, 0.419, 0.045)
O2 (1, 0.010, 0.419, 0.045)
O3 (1, 0.010, 0.257, 0.366)
O4 (0.264, 0.306, 0.395, 1)

O1 (1, 0.010, 0.389, 0.483)
O2 (1, 0.010, 0.389, 0.483)
O3 (1, 0.010, 0.069, 0.20)

O4 (0.161, 0.061, 0.354, 1)

O1 (1, 0.010, 0.551, 0.583)
O2 (1, 0.010, 0.551, 0.583)
O3 (1, 0.010, 0.077, 0.216)
O4 (0.178, 0.071, 0.302, 1)

O1 (1, 0.010, 0.507, 0.583)
O2 (1, 0.010, 0.507, 0.583)
O3 (1, 0.010, 0.036, 0.133)
O4 (0.190, 0.071, 0.334, 1)

O1 (1, 0.010, 0.441, 0.466)
O2 (1, 0.010, 0.441, 0.466)
O3 (1, 0.010, 0.106, 0.216)
O4 (0.239, 0.071, 0.248, 1)

Video
Player

O1 (1, 0.010, 0.437, 0.605)
O2 (1, 0.010, 0.437, 0.605)
O3 (1, 0.010, 0.234, 0.450)
O4 (0.128, 0.061, 0.412, 1)

O1 (1, 0.010, 0.427, 0.619)
O2 (1, 0.010, 0.427, 0.619)
O3 (1, 0.010, 0.128, 0.352)
O4 (0.174, 0.051, 0.323, 1)

O1 (1, 0.010, 0.558, 0.690)
O2 (1, 0.010, 0.558, 0.690)
O3 (0.801, 0, 0.156, 0.521)
O4 (0.206, 0.040, 0.330, 1)

O1 (1, 0.010, 0.540, 0.633)
O2 (1, 0.010, 0.540, 0.633)

O3 (0.772, 0.010, 0.161,
0.535)

O4 (0.279, 0.036, 0.335, 1)

O1 (1, 0.010, 0.601, 0.676)
O2 (1, 0.010, 0.601, 0.676)
O3 (1, 0.010, 0.163, 0.380)
O4 (0.214, 0.040, 0.301, 1)

Model
Transformation

O1 (1, 0.010, 0.534, 0.579)
O2 (1, 0.010, 0.534, 0.579)
O3 (1, 0.010, 0.193, 0.363)
O4 (0.211, 0.051, 0.393, 1)

O1 (1, 0.010, 0.327, 0.454)
O2 (1, 0.010, 0.327, 0.454)
O3 (1, 0.010, 0.161, 0.318)
O4 (0.021, 0.256, 0.404, 1)

O1 (1, 0.010, 0.415, 0.50)
O2 (1, 0.010, 0.415, 0.50)

O3 (1, 0.010, 0.170, 0.340)
O4 (0.165, 0.071, 0.371, 1)

O1 (1, 0.010, 0.372, 0.477)
O2 (1, 0.010, 0.372, 0.477)
O3 (1, 0.010, 0.170, 0.284)
O4 (0.224, 0.051, 0.342, 1)

O1 (1, 0.010, 0.461, 0.534)
O2 (1, 0.010, 0.461, 0.534)
O3 (1, 0.010, 0.179, 0.284)
O4 (0.158, 0.081, 0.319, 1)

Coche
Ecologico

O1 (1, 0.010, 0.251, 0.563)
O2 (1, 0.010, 0.251, 0.563)
O3 (1, 0.010, 0.202, 0.563)
O4 (0.143, 0.112, 0.268, 1)

O1 (1, 0.010, 0.398, 0.659)
O2 (1, 0.010, 0.398, 0.659)
O3 (1, 0.010, 0.156, 0.510)
O4 (0.180, 0.816, 0.251, 1)

O1 (1, 0.010, 0.310, 0.574)
O2 (1, 0.010, 0.310, 0.574)
O3 (1, 0.010, 0.156, 0.521)
O4 (0.094, 0.173, 0.275, 1)

O1 (1, 0.010, 0.310, 0.574)
O2 (1, 0.010, 0.310, 0.574)
O3 (1, 0.010, 0.156, 0.521)
O4 (0.094, 0.173, 0.275, 1)

O1 (1, 0.010, 0.316, 0.617)
O2 (1, 0.010, 0.316, 0.617)
O3 (1, 0.010, 0.156, 0.50)

O4 (0.149, 0.102, 0.255, 1)

The five algorithms, IBEA, MOEA/D, NSGAII, NSGAIII, and SPEA2, generated fitness
values for each objective. Objective one is represented by O1, which aimed to maximize
the pairwise coverage. The second objective, i.e., the minimization of the product number,
is shown by O2. O3 describes objective three, which was utilized to reduce the testing
cost. The fourth objective was to maximize the richness of the features and is represented
by O4. The bold values represent the best-optimized values in comparison to the other
objective values. To accomplish the maximum fitness values of the O1 objective (pairwise
coverage), the other three objectives, O2 (minimize the number of products), O3 (testing
cost), and O4 (richness of features), have to be compromised, as shown in Table 5. To follow
the same approach to obtain the best minimum fitness values for objective O2, the other
three objectives, O1, O3, and O4, need to be settled. The relevant method would be adopted
to obtain the best fitness values for objectives O3 and O4. The best fitness values for the
three objectives are shown in bold in Table 5. Besides the evolution of the objectives, the
normalized objective values over the generations of the algorithms are presented. Since all
four objectives are transformed into the optimization of the problems. It is noted that our
approach is not limited to this balance. Thus, the tester or user may set a different balance
according to their needs to optimize the testing process of the software product line.

Table 6 provides the analysis through the MOEAs, with the optimal results using both
indicators against each feature model. Table 6’s inferences are determined from the results
of Table 4.

Appl. Sci. 2023, 13, 9010 15 of 21

Table 6. Better MOEA algorithm concerning indicators (HV and spacing).

Feature Models
Quality Indicators

Hyper Volume Spacing

Counter Strike MOEA/D, SPEA2, NSGAIII MOEA/D, SPEA2, NSGAIII

SPL SimulES, PnP MOEA/D, SPEA2 MOEA/D, SPEA2, NSGAIII

Smart Home v2.2 MOEA/D, SPEA2, NSGAIII MOEA/D, SPEA2, NSGAIII

Video Player MOEA/D, SPEA2, NSGAIII MOEA/D, SPEA2

Model Transformation MOEA/D, SPEA2, NSGAIII MOEA/D, SPEA2, NSGAIII

Coche Ecologico MOEA/D, SPEA2, NSGAIII SPEA2, NSGAIII,

For the Counter-Strike feature model, it is explored that the MOEA/D, SPEA2, and
NSGAIII algorithms originated the best values using the hypervolume and spacing indica-
tors. However, in the case of SPL SimulES, PnP, it is observed that MOEA/D and SPEA2
were the best algorithms for generating the optimal results using hypervolume.

However, using the spacing indicator for the SPL SimulES, PnP FM, the MOEA/D,
SPEA2, and NSGAIII algorithms were capable of producing better values. Similarly, in the
case of Smart Homev2.2 FM, MOEA/D, SPEA2, and NSGAIII were the best algorithms
for generating the optimized results employing hypervolume and spacing. For the Video
Player FM, the better values using hypervolume originated from MOEA/D, SPEA2, and
NSGAIII. However, for the Video Player feature model, better results were obtained only
by MOEA/D and SPEA2 using spacing, while in the case of the Model Transformation FM,
with the same results as those of Smart Homev2.2, the MOEA/D, SPEA2, and NSGAIII
algorithms were the best value generators using hypervolume and spacing.

In Table 6, it is examined that, for the Coche Ecologico FM, MOEA/D, SPEA2, and
NSGAIII had the best values using hypervolume, but after utilizing the spacing, only the
MOEA/D and SPEA2 algorithms produced good results. To conclude, in Table 6, it is
shown that the best optimal results were generated by MOEA/D, SPEA2, and NSGAIII in
most of the feature models.

6.4. Discussion of Results and Answers to Research Questions

It is considered that the solutions generated by every algorithm depended on the
related fitness values. The solutions associated with the best results are analyzed to
complete the SPL testing assessment, which is also the overall objective of the research. The
ability to generate optimal values for four objectives is depicted by the findings revealed
in the previous tables. The outcomes of the experiments have the potential to identify
better solutions for all the objectives under consideration. Although some disparities may
not be statistically meaningful, it can be seen that the approach is a settlement among the
conflicting objectives. Hence, due to certain parameters, this is likely to compromise the
four objectives. It is worth indicating that the aforementioned results are accomplished by
the proposed approach over a reasonable number of generations (500 generations).

Different parameters can have an effect on minimizing the number of products, which
could be the answer to the first question. To find optimal solutions, the quality testers
can gain insight through this direction as to why the testing optimization techniques were
adopted. However, there are some considerable cases where the system reliability is higher
than the justification for the test cases. This is the benefit of our proposed methodology,
which can produce various solutions in terms of coverage as well. The choice would be
in the hands of the tester in terms of adopting a better MOEA for a good performance.
Single-objective algorithms produce one solution, which may not be an ideal selection
in our case, where multiple objectives need to be optimized. The testers can define the
priorities for selecting the values of different operators, such as the crossover rate and
mutation rate, to affect the experiment results of different product lines.

Appl. Sci. 2023, 13, 9010 16 of 21

The best solutions are identified to assess each feature model. The quality indicators
from the optimization field, such as hypervolume and spacing, are also utilized.

In consideration of Research Question 2, the results have a clear impact on the per-
formance of the algorithms with the four objectives optimization, as discussed in detail
in the different tables. In this section of four objectives, the versatility of the generated
results is demonstrated. However, it is determined that, for all the SPL feature models,
IBEA generated the worst results in terms of optimization. MOEAD, SPEA, and NSGAIII
performed well in all cases of feature models with small, medium, and larger sizes.

Table 4 presents an analysis of the percentage of non-dominated solutions generated by
the different MOEAs. Again, SPEA2 surpassed and originated the maximum percentage of
non-dominated solutions for all the FMs. Similarly, MOEA/D and NSGAIII also produced
a better percentage of solutions. However, the numbers of solution percentages in the cases
of IBEA and NSGAII were not comparatively found to be good and generated a lower
percentage of non-dominated solutions.

According to Table 5, reasoning with the average and standard deviation results of
the hypervolume and spacing quality indicators obliged in the proposed approach, SPEA2
also achieved the best results using the hypervolume and spacing quality indicators. This
means the SPEA2 algorithm provided more optimal solutions to the tester, with various and
ultimate values of fitness using statistical methods such as average and standard deviation.
This indicates that the MOEA/D and SPEA2 values were more optimal.

Table 6 represents the best fitness values regarding the different MOEAs. It can
be observed that, to obtain the best value for a particular objective, one may need to
compromise on the other objectives’ values. Therefore, the proposed approach can generate
the optimal fitness values to optimize the four objectives of maximizing the pairwise
coverage, reducing the number of products, minimizing the testing cost, and maximizing
the feature richness.

It is apparent from the results mentioned in the different tables that three algorithms
(SPEA2, MOEA/D, and NSGAIII) accomplished better results. Nevertheless, IBEA’s and
NSGAII’s performances in terms of originating optimal values were not satisfactory. All
the algorithms, except IBEA and NSGAII, tried to achieve maximum coverage while
minimizing the number of test cases. In future work, IBEA and NSGAII will be investigated
more, as tweaking the parameter values may help to generate good results.

To sum up, three MOEA algorithms (MOEA/D, SPEA2, and NSGAIII) can generate
optimal solutions for the four-objective optimization approach when compared with single-
objective approaches.

Figures 6 and 7 represent the global and local Pareto fronts of the Counter Strike feature
model only using five multi-objective evolutionary algorithms (IBEA, MOEA/D, NSGAII,
NSGAIII, and SPEA2) in the case of the four-objective optimization approach. Here, only
three objective points are represented due to the unavailability of a four-axis representation.
The figures show the non-dominated Pareto fronts solutions (with red circled blue points)
obtained after the experiments. The Pareto front (PF) represents the subset of potential
solutions to the MOO issue that are not dominated by the other solutions. These solutions
represent the optimal test suites in terms of the SPL testing optimization process. The
testers would be able to analyze which test suites should be selected to improve the testing
process in their software organizations. This will result in a variety of options, from which
the tester may select the best one depending on the performance and requirements.

Appl. Sci. 2023, 13, 9010 17 of 21

Appl. Sci. 2023, 13, x FOR PEER REVIEW 17 of 22

means the SPEA2 algorithm provided more optimal solutions to the tester, with various

and ultimate values of fitness using statistical methods such as average and standard de-

viation. This indicates that the MOEA/D and SPEA2 values were more optimal.

Table 6 represents the best fitness values regarding the different MOEAs. It can be

observed that, to obtain the best value for a particular objective, one may need to compro-

mise on the other objectives’ values. Therefore, the proposed approach can generate the

optimal fitness values to optimize the four objectives of maximizing the pairwise cover-

age, reducing the number of products, minimizing the testing cost, and maximizing the

feature richness.

It is apparent from the results mentioned in the different tables that three algorithms

(SPEA2, MOEA/D, and NSGAIII) accomplished better results. Nevertheless, IBEA’s and

NSGAII’s performances in terms of originating optimal values were not satisfactory. All

the algorithms, except IBEA and NSGAII, tried to achieve maximum coverage while min-

imizing the number of test cases. In future work, IBEA and NSGAII will be investigated

more, as tweaking the parameter values may help to generate good results.

To sum up, three MOEA algorithms (MOEA/D, SPEA2, and NSGAIII) can generate

optimal solutions for the four-objective optimization approach when compared with sin-

gle-objective approaches.

Figures 6 and 7 represent the global and local Pareto fronts of the Counter Strike fea-

ture model only using five multi-objective evolutionary algorithms (IBEA, MOEA/D,

NSGAII, NSGAIII, and SPEA2) in the case of the four-objective optimization approach.

Here, only three objective points are represented due to the unavailability of a four-axis

representation. The figures show the non-dominated Pareto fronts solutions (with red cir-

cled blue points) obtained after the experiments. The Pareto front (PF) represents the sub-

set of potential solutions to the MOO issue that are not dominated by the other solutions.

These solutions represent the optimal test suites in terms of the SPL testing optimization

process. The testers would be able to analyze which test suites should be selected to im-

prove the testing process in their software organizations. This will result in a variety of

options, from which the tester may select the best one depending on the performance and

requirements.

Figure 6. Counter-Strike FM Pareto Fronts (Four Objectives) using Five MOEAs.
Figure 6. Counter-Strike FM Pareto Fronts (Four Objectives) using Five MOEAs.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 22

Figure 7. Counter-Strike FM Pareto Fronts Global (Four Objectives).

7. Conclusions

This section will discuss the findings of the experiments and evaluations that were

performed. Moreover, the results for the four objectives of the experiments led to the an-

swering of the questions of the proposed research. The advantage over the single-objective

approach was one achievement observed in the researcher’s work during the evaluation

[24]. The results generated were varied, containing good solutions using multi-objective

algorithms. As per the testing goals, there is a possibility that the tester may prioritize a

single objective at the end because they need to choose the extreme points or solutions.

In the case of the four objectives, the comparison of the experiments shows that it did

not change the cost of the required number of products. Although there were constraints

on the testing activities, for example problems related to contracts and development,

MOEA/D and SPEA2 can perform better in contrast to the other MOEAs. In this manner,

a diversity of solutions will be obtained, and the tester will be able to choose the best one

based on the performance and requirements. In a situation where fast execution is re-

quired, SPEA2 is the relatively right choice, as FMs have a maximum number of products.

SPEA2 should be used in the interest of the tester, as the tester is more inclined towards

the best tradeoffs of the solution, as it has a higher number of non-dominated solutions.

7.1. Practical Implications

Different multi-objective algorithms were utilized for the implementation of this ap-

proach. The algorithms used within the framework were IBEA, MOEA/D, NSGA-II,

NSGAIII, and SPEA2. The presented approach was equally compatible with other testing

approaches and other evolutionary algorithms. T-wise testing and other operators such

as mutation and crossover could be used, which is also possible in future work. The four

objectives were proposed to test the approach by conducting experiments. As an outcome,

it was figured out that the best tradeoff between the evaluated objectives was represented

by the good solutions produced.

Figure 7. Counter-Strike FM Pareto Fronts Global (Four Objectives).

7. Conclusions

This section will discuss the findings of the experiments and evaluations that were
performed. Moreover, the results for the four objectives of the experiments led to the
answering of the questions of the proposed research. The advantage over the single-
objective approach was one achievement observed in the researcher’s work during the
evaluation [24]. The results generated were varied, containing good solutions using multi-
objective algorithms. As per the testing goals, there is a possibility that the tester may
prioritize a single objective at the end because they need to choose the extreme points
or solutions.

In the case of the four objectives, the comparison of the experiments shows that it did
not change the cost of the required number of products. Although there were constraints on
the testing activities, for example problems related to contracts and development, MOEA/D
and SPEA2 can perform better in contrast to the other MOEAs. In this manner, a diversity
of solutions will be obtained, and the tester will be able to choose the best one based on the

Appl. Sci. 2023, 13, 9010 18 of 21

performance and requirements. In a situation where fast execution is required, SPEA2 is
the relatively right choice, as FMs have a maximum number of products. SPEA2 should be
used in the interest of the tester, as the tester is more inclined towards the best tradeoffs of
the solution, as it has a higher number of non-dominated solutions.

7.1. Practical Implications

Different multi-objective algorithms were utilized for the implementation of this
approach. The algorithms used within the framework were IBEA, MOEA/D, NSGA-II,
NSGAIII, and SPEA2. The presented approach was equally compatible with other testing
approaches and other evolutionary algorithms. T-wise testing and other operators such
as mutation and crossover could be used, which is also possible in future work. The four
objectives were proposed to test the approach by conducting experiments. As an outcome,
it was figured out that the best tradeoff between the evaluated objectives was represented
by the good solutions produced.

7.2. Threats to Validity

It is believed that the size of the software product line is the main challenge to our
research. Yet, the software product lines that were utilized to express the proposed approach
have the ability to generate productive solutions with the capability to win over the testing
optimization of the feature model. The approach was assessed to concede the scalability;
the purpose was to supply a large number of products that would be tactically handled by
MOEA algorithms.

There exists a limitation that can be adopted in experiments conducted in the future to
obtain results using different parameter settings such as population size, crossover, and
mutation rate. It is always considered a difficult task to choose parameters for algorithms.
To minimize the associated threats, the recommendation offered by [59] should be consid-
ered. The iteration of the experiment was 30, as there were fixed variations in the search
algorithm. The iterations were performed to minimize the possibility that these results
were not achieved accidentally. The evolution procedure of fitness affected the time of
execution of the algorithms, where the machine hardware and running environment would
help to reduce the time while scaling the implementation to a larger feature model. The
implementation of the SAT solver helped to generate the configurations from an FM and
confirm their validity for coverage.

To conclude, it is worth indicating that the aforementioned results were accomplished
by the proposed approach over a reasonable number of generations (500 generations). Since
thousands of executions can be adopted by search-based approaches to be effective and
successful, this can be considered an achievement of the approach [41]. For future work,
the authors want to extend their research using the optimization techniques mentioned in
the research work of different researchers [60–69]. The concept should be examined in the
future through different experiments with a considerably larger number of feature models,
to compare them with those used in our proposed work. To improve the testing process in
their software firms, testers would be able to examine which test suites should be selected.

Author Contributions: First Author contributed equally to the research and wrote the article. Method-
ology, M.K.N.; Software, M.K.N.; Validation, S.S.A. and S.M.H.; Investigation, M.K.N.; Resources,
M.J.H.; Data curation, A.N. and M.A.J.; Writing—original draft, M.A.J.; Writing—review & editing,
M.A.J.; Supervision, M.A.J.; Funding acquisition, S.S.A. All authors have read and agreed to the
published version of the manuscript.

Funding: The authors extend their appreciation to the Deputyship for Research & Innovation,
Ministry of Education in Saudi Arabia for funding this research work through the project number:
IFP22UQU4320619DSR113.

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not Applicable.

Appl. Sci. 2023, 13, 9010 19 of 21

Data Availability Statement: Data will be available upon reasonable request.

Acknowledgments: The authors extend their appreciation to the Deputyship for Research & Inno-
vation, Ministry of Education in Saudi Arabia for funding this research work through the project
number: IFP22UQU4320619DSR113.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Harman, M.; Mansouri, S.A.; Zhang, Y. Search-based software engineering: Trends, techniques and applications. ACM Comput.

Surv. (CSUR) 2012, 45, 1–13. [CrossRef]
2. Khari, M.; Kumar, P. An extensive evaluation of search-based software testing: A review. Soft Comput. 2019, 23, 1933–1946.

[CrossRef]
3. Engström, E.; Runeson, P. Software product line testing–a systematic mapping study. Inf. Softw. Technol. 2011, 53, 2–13. [CrossRef]
4. Varshosaz, M.; Al-Hajjaji, M.; Thüm, T.; Runge, T.; Mousavi, M.R.; Schaefer, I. A classification of product sampling for software

product lines. In Proceedings of the 22nd International Systems and Software Product Line Conference, Gothenburg, Sweden,
10–14 September 2018; Volume 1, pp. 1–13. [CrossRef]

5. Cawley, C.; Botterweck, G.; Healy, P.; Abid, S.B.; Thiel, S. A 3d visualisation to enhance cognition in software product line
engineering. In International Symposium on Visual Computing; Springer: Berlin/Heidelberg, Germany, 2009; pp. 857–868.

6. Hotz, L.; Wolter, K.; Krebs, T. Configuration in Industrial Product Families: The ConIPF Methodology; IOS Press: Amsterdam, The
Netherlands, 2006.

7. Cawley, C.; Thiel, S.; Botterweck, G.; Nestor, D. Visualising Inter-Model Relationships in Software Product Lines. In Proceedings
of the Third International Workshop on Variability Modelling of Software-Intensive Systems, Seville, Spain, 28–30 January 2009;
pp. 37–44.

8. Runeson, P.; Engström, E. Regression testing in software product line engineering. In Advances in Computers; Elsevier: Amsterdam,
The Netherlands, 2012; Volume 86, pp. 223–263.

9. Mendonca, M.; Branco, M.; Cowan, D. SPLOT: Software product lines online tools. In Proceedings of the 24th ACM SIGPLAN
Conference Companion on Object Oriented Programming Systems Languages and Applications, Orlando, FL, USA, 25–29
October 2009; pp. 761–762. [CrossRef]

10. Pohl, K.; Böckle, G.; Van Der Linden, F. Software Product Line Engineering: Foundations, Principles, and Techniques; Springer: Cham
Switzerland, 2005.

11. McGregor, J.D.; Northrop, L.M.; Jarrad, S.; Pohl, K. Initiating software product lines. IEEE Softw. 2002, 19, 24. [CrossRef]
12. Trigaux, J.C.; Heymans, P. Software product lines: State of the art. In Product Line ENgineering of Food TraceabilitY Software;

FUNDP-Equipe LIEL: Namur, Belgium, 2003; pp. 9–39.
13. Buchmann, T.; Schwägerl, F. Advancing negative variability in model-driven software product line engineering. In Proceedings

of the Evaluation of Novel Approaches to Software Engineering: 11th International Conference, ENASE 2016, Rome, Italy, 27–28
April 2016; pp. 1–26.

14. Al-Hajjaji, M.; Lity, S.; Lachmann, R.; Thüm, T.; Schaefer, I.; Saake, G. Delta-oriented product prioritization for similarity-based
product-line testing. In Proceedings of the 2017 IEEE/ACM 2nd International Workshop on Variability and Complexity in
Software Design (VACE), Buenos Aires, Argentina, 27 May 2017; pp. 34–40.

15. Al-Hajjaji, M.; Thüm, T.; Lochau, M.; Meinicke, J.; Saake, G. Effective product-line testing using similarity-based product
prioritization. Softw. Syst. Model. 2019, 18, 499–521. [CrossRef]

16. Li, X.; Wong, W.E.; Gao, R.; Hu, L.; Hosono, S. Genetic algorithm-based test generation for software product line with the
integration of fault localization techniques. Empir. Softw. Eng. 2018, 23, 1–51. [CrossRef]

17. Krüger, J.; Al-Hajjaji, M.; Leich, T.; Saake, G. Mutation operators for feature-oriented software product lines. Softw. Test. Verif.
Reliab. 2019, 29, e1676. [CrossRef]

18. Lity, S.; Nieke, M.; Thüm, T.; Schaefer, I. Retest test selection for product-line regression testing of variants and versions of
variants. J. Syst. Softw. 2019, 147, 46–63. [CrossRef]

19. Guo, J.; Liang, J.H.; Shi, K.; Yang, D.; Zhang, J.; Czarnecki, K.; Ganesh, V.; Yu, H. SMTIBEA: A hybrid multi-objective optimization
algorithm for configuring large constrained software product lines. Softw. Syst. Model. 2019, 18, 1447–1466. [CrossRef]

20. Alsewari, A.A.; Kabir, M.N.; Zamli, K.Z.; Alaofi, K.S. Software product line test list generation based on harmony search algorithm
with constraints support. Int. J. Adv. Comput. Sci. Appl. 2019, 10, 605–610. [CrossRef]

21. Al-Hajjaji, M.; Ryssel, U.; Schulze, M. Validating Partial Configurations of Product Lines. In Proceedings of the 13th International
Workshop on Variability Modelling of Software-Intensive Systems, Leuven, Belgium, 6–8 February 2019; pp. 1–6. [CrossRef]

22. Wang, S.; Ali, S.; Gotlieb, A. Minimizing test suites in software product lines using weight-based genetic algorithms. In
Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, Amsterdam, The Netherlands, 6–10 July
2013; pp. 1493–1500.

23. Wang, S.; Buchmann, D.; Ali, S.; Gotlieb, A.; Pradhan, D.; Liaaen, M. Multi-objective test prioritization in software product line
testing: An industrial case study. In Proceedings of the 18th International Software Product Line Conference, Florence, Italy,
15–19 September 2014; Volume 1, pp. 32–41. [CrossRef]

https://doi.org/10.1145/2379776.2379787
https://doi.org/10.1007/s00500-017-2906-y
https://doi.org/10.1016/j.infsof.2010.05.011
https://doi.org/10.1145/3233027.3233035
https://doi.org/10.1145/1639950.1640002
https://doi.org/10.1109/MS.2002.1020282
https://doi.org/10.1007/s10270-016-0569-2
https://doi.org/10.1007/s10664-016-9494-9
https://doi.org/10.1002/stvr.1676
https://doi.org/10.1016/j.jss.2018.09.090
https://doi.org/10.1007/s10270-017-0610-0
https://doi.org/10.14569/IJACSA.2019.0100176
https://doi.org/10.1145/3302333.3302337
https://doi.org/10.1145/2648511.2648515

Appl. Sci. 2023, 13, 9010 20 of 21

24. Ensan, F.; Bagheri, E.; Gašević, D. Evolutionary search-based test generation for software product line feature models. In Advanced
Information Systems Engineering: Proceedings of the 24th International Conference, CAiSE 2012, Gdansk, Poland, 25–29 June 2012;
Proceedings 24; Springer: Berlin, Germany, 2012; pp. 613–628. [CrossRef]

25. Henard, C.; Papadakis, M.; Perrouin, G.; Klein, J.; Traon, Y.L. Multi-objective test generation for software product lines. In
Proceedings of the 17th International Software Product Line Conference, Tokyo, Japan, 26–30 August 2013; pp. 62–71. [CrossRef]

26. Matnei Filho, R.A.; Vergilio, S.R. A mutation and multi-objective test data generation approach for feature testing of software
product lines. In Proceedings of the 2015 29th Brazilian Symposium on Software Engineering, Belo Horizonte, Brazil, 21–26
September 2015; pp. 21–30. [CrossRef]

27. Henard, C. Enabling Testing of Large Scale Highly Configurable Systems with Search-Based Software Engineering: The Case of
Model-Based Software Product Lines. Doctoral Dissertation, University of Luxembourg, Luxembourg, 2015.

28. Olaechea, R.; Rayside, D.; Guo, J.; Czarnecki, K. Comparison of exact and approximate multi-objective optimization for software
product lines. In Proceedings of the 18th International Software Product Line Conference, Paris, France, 9–13 September 2019;
Volume 1, pp. 92–101. [CrossRef]

29. Sayyad, A.S.; Menzies, T.; Ammar, H. On the value of user preferences in search-based software engineering: A case study in
software product lines. In Proceedings of the 2013 35th International Conference on Software Engineering (ICSE), San Francisco,
CA, USA, 18–26 May 2013; pp. 492–501. [CrossRef]

30. Diaz, J.; Perez, J.; Fernandez-Sanchez, C.; Garbajosa, J. Model-to-code transformation from product-line architecture models to
aspectj. In Proceedings of the 2013 39th Euromicro Conference on Software Engineering and Advanced Applications, Santander,
Spain, 4–6 September 2013; pp. 98–105. [CrossRef]

31. Karimpour, R.; Ruhe, G. Bi-criteria genetic search for adding new features into an existing product line. In Proceedings of the
2013 1st International Workshop on Combining Modelling and Search-Based Software Engineering (CMSBSE), San Francisco, CA,
USA, 20 May 2013; pp. 34–38. [CrossRef]

32. Cruz, J.; Neto, P.S.; Britto, R.; Rabelo, R.; Ayala, W.; Soares, T.; Mota, M. Toward a hybrid approach to generate software product
line portfolios. In Proceedings of the 2013 IEEE Congress on Evolutionary Computation, Cancun, Mexico, 20–23 June 2013; pp.
2229–2236. [CrossRef]

33. Guo, J.; White, J.; Wang, G.; Li, J.; Wang, Y. A genetic algorithm for optimized feature selection with resource constraints in
software product lines. J. Syst. Softw. 2011, 84, 2208–2221. [CrossRef]

34. Pereira, J.A.; Figueiredo, E.; Noronha, T. Modelo computacional para apoiar a configuração de produtos em linha de produtos de
software. In Proceedings of the V Workshop de Engenharia de Software Baseada em Busca (WESB). Congresso Brasileiro de
Desenvolvimento de Software (CBSoft), Brasilia, Brazil, 2013; pp. 80–89.

35. White, J.; Galindo, J.A.; Saxena, T.; Dougherty, B.; Benavides, D.; Schmidt, D.C. Evolving feature model configurations in software
product lines. J. Syst. Softw. 2014, 87, 119–136. [CrossRef]

36. Li, J.; Liu, X.; Wang, Y.; Guo, J. Formalizing feature selection problem in software product lines using 0–1 programming. In
Practical Applications of Intelligent Systems: Proceedings of the Sixth International Conference on Intelligent Systems and Knowledge
Engineering, Shanghai, China, 15–17 Decemeber 2011; Springer: Berlin/Heidelberg, Germany, 2012; pp. 459–465. [CrossRef]

37. Sayyad, A.S.; Goseva-Popstojanova, K.; Menzies, T.; Ammar, H. On parameter tuning in search based software engineering:
A replicated empirical study. In Proceedings of the 2013 3rd International Workshop on Replication in Empirical Software
Engineering Research, Baltimore, MD, USA, 9 October 2013; pp. 84–90. [CrossRef]

38. Sayyad, A.S.; Ingram, J.; Menzies, T.; Ammar, H. Optimum feature selection in software product lines: Let your model and values
guide your search. In Proceedings of the 2013 1st International Workshop on Combining Modelling and Search-Based Software
Engineering (CMSBSE), San Francisco, CA, USA, 20 May 2013; pp. 22–27. [CrossRef]

39. Lopez-Herrejon, R.E.; Chicano, F.; Ferrer, J.; Egyed, A.; Alba, E. Multi-objective optimal test suite computation for software
product line pairwise testing. In Proceedings of the 2013 IEEE International Conference on Software Maintenance, Eindhoven,
The Netherlands, 22–28 September 2013; pp. 404–407. [CrossRef]

40. Henard, C.; Papadakis, M.; Perrouin, G.; Klein, J.; Heymans, P.; Le Traon, Y. Bypassing the combinatorial explosion: Using
similarity to generate and prioritize t-wise test configurations for software product lines. IEEE Trans. Softw. Eng. 2014, 40, 650–670.
[CrossRef]

41. Johansen, M.F.; Haugen, Ø.; Fleurey, F. Properties of realistic feature models make combinatorial testing of product lines
feasible. In Model Driven Engineering Languages and Systems: Proceedings of the 14th International Conference, MODELS
2011, Wellington, New Zealand, 16–21 October 2011; Proceedings 14. Springer: Berlin/Heidelberg, Germany, 2011; pp. 638–652.
[CrossRef]

42. Mendonca, M.; Wąsowski, A.; Czarnecki, K. SAT-based analysis of feature models is easy. In Proceedings of the 13th International
Software Product Line Conference, San Francisco, CA, USA, 24–28 August 2009; pp. 231–240.

43. Oster, S.; Markert, F.; Ritter, P. Automated incremental pairwise testing of software product lines. In Software Product Lines: Going
Beyond: Proceedings of the 14th International Conference, SPLC 2010, Jeju Island, Republic of Korea, 13–17 September 2010; Proceedings
14; Springer: Berlin/Heidelberg, Germany, 2010; pp. 196–210. [CrossRef]

44. Perrouin, G.; Oster, S.; Sen, S.; Klein, J.; Baudry, B.; Le Traon, Y. Pairwise testing for software product lines: Comparison of two
approaches. Softw. Qual. J. 2012, 20, 605–643. [CrossRef]

https://doi.org/10.1007/978-3-642-31095-9_40
https://doi.org/10.1145/2491627.2491635
https://doi.org/10.1186/s40411-016-0030-9
https://doi.org/10.1145/2648511.2648521
https://doi.org/10.1109/ICSE.2013.6606595
https://doi.org/10.1109/SEAA.2013.11
https://doi.org/10.1016/j.jss.2018.07.054
https://doi.org/10.1109/CEC.2013.6557834
https://doi.org/10.1016/j.jss.2011.06.026
https://doi.org/10.1016/j.jss.2013.10.010
https://doi.org/10.1007/978-3-642-25658-5_55
https://doi.org/10.1109/RESER.2013.6
https://doi.org/10.1109/CMSBSE.2013.6604432
https://doi.org/10.1109/ICSM.2013.58
https://doi.org/10.1109/TSE.2014.2327020
https://doi.org/10.1007/978-3-642-24485-8_47
https://doi.org/10.1007/978-3-642-15579-6_14
https://doi.org/10.1007/s11219-011-9160-9

Appl. Sci. 2023, 13, 9010 21 of 21

45. Al-Msie’Deen, R.; Seriai, A.D.; Huchard, M.; Urtado, C.; Vauttier, S.; Salman, H.E. An approach to recover feature models from
object-oriented source code. Actes J. Lignes Prod. 2012, 2012, 15–26.

46. Jamil, M.A.; Nour, M.K.; Alhindi, A.; Awang Abhubakar, N.S.; Arif, M.; Aljabri, T.F. Towards Software Product Lines Optimization
Using Evolutionary Algorithms. Procedia Comput. Sci. 2019, 163, 527–537. [CrossRef]

47. Zitzler, E.; Künzli, S. Indicator-based selection in multiobjective search. In Parallel Problem Solving from Nature—PPSN VIII;
Springer: Berlin/Heidelberg, Germany, 2004; Volume 4, pp. 832–842. [CrossRef]

48. Zhang, Q.; Li, H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 2007,
11, 712–731. [CrossRef]

49. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T.A.M.T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans.
Evol. Comput. 2002, 6, 182–197. [CrossRef]

50. Deb, K.; Jain, H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting
approach, part I: Solving problems with box constraints. IEEE Trans. Evol. Comput. 2013, 18, 577–601. [CrossRef]

51. Zitzler, E.; Laumanns, M.; Thiele, L. SPEA2: Improving the Strength Pareto Evolutionary Algorithm; TIK Report; ETH Zurich,
Computer Engineering and Networks Laboratory: Zurich, Switzerland, 2001; Volume 103. [CrossRef]

52. Hadka, D. MOEA Framework User Guide: A Free and Open Source Java Framework for Multiobjective Optimization; Version 2; Free
Software Foundation: Boston, MA, USA, 2014; pp. 1–192.

53. Ehrgott, M. Vilfredo Pareto and multi-objective optimization. Doc. Math. 2012, 8, 447–453.
54. García, S.; Molina, D.; Lozano, M.; Herrera, F. A study on the use of non-parametric tests for analyzing the evolutionary

algorithms’ behaviour: A case study on the CEC’2005 special session on real parameter optimization. J. Heuristics 2009, 15,
617–644. [CrossRef]

55. Zitzler, E.; Thiele, L.; Laumanns, M.; Fonseca, C.M.; Da Fonseca, V.G. Performance assessment of multiobjective optimizers: An
analysis and review. IEEE Trans. Evol. Comput. 2003, 7, 117–132. [CrossRef]

56. Zitzler, E.; Brockhoff, D.; Thiele, L. The hypervolume indicator revisited: On the design of Pareto-compliant indicators via
weighted integration. In Evolutionary Multi-Criterion Optimization: Proceedings of the 4th International Conference, EMO 2007,
Matsushima, Japan, 5–8 March 2007; Proceedings 4; Springer: Berlin/Heidelberg, Germany, 2007; pp. 862–876. [CrossRef]

57. Schott, J.R. Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization; Air Force Institute of Technology:
Dayton, OH, USA, 1995; Available online: https://hdl.handle.net/1721.1/11582 (accessed on 10 July 2023).

58. Yoo, S.; Harman, M. Pareto efficient multi-objective test case selection. In Proceedings of the 2007 International Symposium on
Software Testing and Analysis, London, UK, 9–12 July 2007; pp. 140–150. [CrossRef]

59. Arcuri, A.; Briand, L. A practical guide for using statistical tests to assess randomized algorithms in software engineering. In
Proceedings of the 33rd International Conference on Software Engineering, Honolulu, HI, USA, 21–28 May 2011; pp. 1–10.
[CrossRef]

60. Kader, M.A.; Zamli, K.Z.; Alkazemi, B.Y. An Experimental Study of a Fuzzy Adaptive Emperor Penguin Optimizer for Global
Optimization Problem. IEEE Access 2022, 10, 116344–116374. [CrossRef]

61. Odili, J.B.; Noraziah, A.; Alkazemi, B.; Zarina, M. Stochastic process and tutorial of the African buffalo optimization. Sci. Rep.
2022, 12, 17319. [CrossRef]

62. Alsewari, A.A.; Zamli, K.Z.; Al-Kazemi, B. Generating t-way test suite in the presence of constraints. J. Eng. Technol. (JET) 2015, 6,
52–66.

63. Zamli, K.Z.; Alsewari, A.R.; Al-Kazemi, B. Comparative benchmarking of constraints t-way test generation strategy based on late
acceptance hill climbing algorithm. Int. J. Softw. Eng. Comput. Sci. (IJSECS) 2015, 1, 14–26. [CrossRef]

64. Zamli, K.Z.; Mohd Hassin, M.H.; Al-Kazemi, B. tReductSA–Test Redundancy Reduction Strategy Based on Simulated Annealing.
In Intelligent Software Methodologies, Tools and Techniques: Proceedings of the 13th International Conference, SoMeT 2014,
Langkawi, Malaysia, 22–24 September 2014; Revised Selected Papers 13. Springer International Publishing: Berlin/Heidelberg,
Germany, 2015; pp. 223–236. [CrossRef]

65. Wazirali, R.; Alasmary, W.; Mahmoud, M.M.; Alhindi, A. An optimized steganography hiding capacity and imperceptibly using
genetic algorithms. IEEE Access 2019, 7, 133496–133508. [CrossRef]

66. Ahmad, A. Optimizing Training Data Selection for Decision Trees using Genetic Algorithms. Int. J. Comput. Sci. Netw. Secur.
(IJCSNS) 2020, 20, 84.

67. Sahu, K.; Srivastava, R.K. Needs and importance of reliability prediction: An industrial perspective. Inf. Sci. Lett. 2020, 9, 33–37.
68. Sahu, K.; Srivastava, R.K. Predicting software bugs of newly and large datasets through a unified neuro-fuzzy approach:

Reliability perspective. Adv. Math. Sci. J. 2021, 10, 543–555. [CrossRef]
69. Sahu, K.; Srivastava, R.K. Soft computing approach for prediction of software reliability. Neural Netw. 2018, 17, 19.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.procs.2019.12.135
https://doi.org/10.1007/978-3-540-30217-9_84
https://doi.org/10.1109/TEVC.2007.892759
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/TEVC.2013.2281535
https://doi.org/10.3929/ETHZ-A-004284029
https://doi.org/10.1007/s10732-008-9080-4
https://doi.org/10.1109/TEVC.2003.810758
https://doi.org/10.1007/978-3-540-70928-2_64
https://hdl.handle.net/1721.1/11582
https://doi.org/10.1145/1273463.1273483
https://doi.org/10.1145/1985793.1985795
https://doi.org/10.1109/ACCESS.2022.3213805
https://doi.org/10.1038/s41598-022-22242-9
https://doi.org/10.15282/ijsecs.1.2015.2.0002
https://doi.org/10.1007/978-3-319-17530-0_16
https://doi.org/10.1109/ACCESS.2019.2941440
https://doi.org/10.37418/amsj.10.1.54

	Introduction
	Software Product Line Engineering
	Related Work
	Optimization for SPL Testing Using Multi-Objective Evolutionary Algorithms
	Method Description
	Definition 1 (Feature Model)
	Definition 2 (Configuration)
	Definition 3 (Configuration Suite)
	Definition 4 (Coverage Criteria)
	Definition 5 (Individual)
	Definition 5 (Population)

	Objectives Definition
	Maximize the Pairwise Coverage
	Minimize the Number of Products
	Testing Cost
	Maximizing Number of Features

	Experiments
	Framework Adopted
	Data Collection
	Parameters Selection

	Results and Discussion
	Pareto Front Solutions
	Results Generated by Quality Indicators
	Fitness Values for Four Objectives Optimization
	Discussion of Results and Answers to Research Questions

	Conclusions
	Practical Implications
	Threats to Validity

	References

