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Abstract: Semi-supervised metric learning intends to learn a distance function from the limited
labeled data as well as a large amount of unlabeled data to better gauge the similarities of any two
instances than using a general distance function. However, most existing semi-supervised metric
learning methods rely on the manifold assumptions to mine the rich discriminant information of the
unlabeled data, which breaks the intrinsic connection between the manifold regularizer-building
process and the subsequent metric learning. Moreover, these methods usually encounter high
computational or memory overhead. To solve these issues, we develop a novel method entitled
Information-Theoretic Large-Scale Semi-Supervised Metric Learning via Proxies (ISMLP). ISMLP
aims to simultaneously learn multiple proxy vectors as well as a Mahalanobis matrix and forms the
semi-supervised metric learning as the probability distribution optimization parameterized by the
Mahalanobis distance between the instance and each proxy vector. ISMLP maximizes the entropy of
the labeled data and minimizes that of the unlabeled data to follow the entropy regularization, in this
way, the labeled part and unlabeled part can be integrated in a meaningful way. Furthermore, the
time complexity of the proposed method has a linear dependency concerning the number of instances,
thereby, can be extended to the large-scale dataset without incurring too much time. Experiments on
multiple datasets demonstrate the superiority of the proposed method over the compared methods
used in the experiments.

Keywords: semi-supervised metric learning; entropy regularization; image retrieval; Riemannian
optimization

1. Introduction

Distance Metric Learning (DML), usually referring to learning a Mahalanobis ma-
trix from the given side information, has been an active studying field for the last two
decades [1–4]. Compared to those off-the-shelf distance functions, e.g., Euclidean distance,
DML takes the correlations and weights of the features into distance consideration, thus
being more appropriate for various downstream tasks. Its efficiency has been validated
by a large spectrum of applications [5–7], for example, few-shot learning [8,9], face recog-
nition [9,10], and fault detection [11,12]. Despite the success of existing DML methods,
they rely on massive side information constructed by labeled information [13]. However,
manually labeling the data is a labor-consuming task [14], and sometimes it needs domain
knowledge [15,16] to provide meaningful labeling information, e.g., labeling the checkup
samples of patients.

To solve this issue, researchers have devoted themselves to Semi-Supervised Distance
Metric Learning (SSDML). SSDML intends to learn a Mahalanobis matrix from limited
labeled data as well as a large amount of unlabeled data, such that under this metric,
similar instances are brought closer together whereas dissimilar ones are pushed farther
away. Inspired by the unsupervised dimensionality reduction methods, which aim to
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preserve some properties in the original data space, a lot of SSDML approaches based on
manifold-based regularization terms have been proposed in the last decades [1,17–22]. For
example, Wang [1] proposed to project the data into a new space, where labeled data has the
maximum margin constraint, and the unlabeled data has the maximum variance. Similarly,
Baghshah and Shouraki [18] constructed a novel SDML method by retaining locally linear
relationships between close data points in the transformed space and proposed a regu-
larization term based on Locally Linear Embedding (LLE) [23]. The above regularization
terms cannot boost the discriminative ability of the model. There are also some SSDML
methods based on the Laplacian graph [19,21,22,24–27], i.e., Laplacian Regularized Metric
Learning (LRML) [17] utilized the graph Laplacian to preserve the neighbor relationship
of the original space. However, the above graph Laplacian construction process does
not take the labeled information into consideration. To mitigate this issue, Dutta and
Sekhar [21] proposed to utilize Markov random walk technology to transform the strong
limited labeled information into a Laplacian matrix. Ying et al. [20] also took the density
information of each instance into the Laplacian graph construction process. However, these
methods rely on a default metric to determine the affinities among the samples, which
contradicts the goal of metric learning. If the default metric is an appropriate metric, why
should we still strive to search for another metric? There are also a few works that do not
depend on manifold-based regularization. For example, Semi-Supervised Metric Learning
Paradigm with Hyper Sparsity (SERAPH) [28] and Semi-Supervised Regularized Large
Margin Distance Metric Learning (S-RLMM) [29]. SERAPH is an information-theoretic
metric learning method, and it maximizes the entropy on the labeled data while minimizing
the entropy on the unlabeled data. However, the time complexity of these methods is at
least quadratically dependent on the number of training instances (Table 4 provides a brief
time complexity analysis of some representative methods), which means these methods
can hardly scale to large-scale datasets. Moreover, these methods rely on a fixed metric to
mine the information similarities between samples, which contradicts the goal of learning
a metric from data.

To solve this issue, in this paper, we propose an efficient SSDML method called ISMLP;
rather than building the probability model via the instance–instance distance parameterized
by the learned Mahalanobis matrix, we propose to learn a set of proxy vectors and transform
the instance–instance relationship as the instance–proxy relationship. We minimize the
labeled instances and their corresponding proxy vectors to efficiently mine the information
of the unlabeled data; inspired by the SERAPH, we incorporate entropy regularization.
Importantly, the Mahalanobis matrix is constricted as a hierarchical form to further boost
training efficiency. An Alternating Direction Method (ADM) technology is adopted to seek
a feasible solution for ISMLP, and the sub-problem concerning the Mahalanobis matrix
can be efficiently solved by an iterative method on the product space of two Riemannian
manifold. The merits of using proxy vectors lie in two folds: on the one hand, the time
complexity of ISMLP is linearly dependent on the number of instances, thus can be easily
extended to large-scale datasets; on the other hand, the instance–instance distances may
be corrupted because of the noise instances in the dataset. The proxy vectors can be
considered as aggregating the class/local information of the dataset, therefore, it is more
stable than SERAPH.

• We propose a novel information-theoretic-based SSDML method called ISMLP, which
simultaneously learns multiple proxy vectors as well as the Mahalanobis matrix.
Specifically, we adopt the entropy regularization to mine the discriminant information
of the unlabeled data.

• The merits of the proposed ISMLP lie in two folds: on the one hand, compared to
those manifold-based SSDML methods, ISMLP does not rely on manifold assumptions.
Thus, it can be applied to border scenes; the time complexity of ISMLP is linear with
respect to the number of training instances, and thus can be easily extended to large-
scale datasets.
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• Extensive experimental results on classification and retrieval experiments can validate
the superiority performance and in the meantime can be trained more efficiently than
those compared methods.

The rest of this paper is organized as follows: In Section 2, we briefly introduce the SER-
APH framework. Then, we introduce the construction process of the proposed method in
Section 3, followed by the extensive numerical experiment in Section 5. Finally, in Section 6,
we make a conclusion and provide a possible future direction of the proposed ISMLP.

2. Related Work
SERAPH Framework

Recently, Niu et al. proposed a semi-supervised metric learning framework called
SERAPH, based on entropy regularization [28]. Given the probability distribution param-
eterized by the Mahalanobis distance between two instances, SERAPH maximizes the
entropy of the sample pairs from the similar set and minimizes the entropy of those from
the dissimilar set. The objective function of SERAPH can be constructed as follows:

max
A∈Sd

+

∑
(xi ,xi)∈P

log p̂A
ij
(
yij
)
−

µ ∑
(xi ,xi)∈U

∑
y∈{−1,1}

p̂A
ij (y)log p̂A

ij (y)− λTr(A),
(1)

where λ > 0 and µ > 0 are two hyperparameters. P = S ∪D with S(D) denoting the simi-
lar (dissimilar) set, which is defined in Section 3.1. U =

{(
xi, xj

)
|
(
xi, xj

)
6∈ P

}
. The trace

regularization ensures A to be low-rank. yij (y) denotes the ground truth (predicted) label
of
(

xi, xj
)
, more specifically when

(
xi, xj

)
∈ S , yij = 1 when

(
xi, xj

)
∈ D, yij = −1. p

(
ŷij
)

represents the predicted probability of a pair of examples
(
xi, xj

)
given the Mahalanobis

matrix A, which is defined as:

p
(
ŷij
)
=

1
1 + exp

(
yij
(
d2

A
(

xi, xj
)
− η

)) , (2)

where η > 0 denotes the margin hyper-parameter.

3. Information-Theoretic Large-Scale Semi-Supervised Metric Learning via Proxies

In this section, we first provide the detailed construction procedure of the proposed
ISMLP method. Then, we derive the optimization strategy of ISMLP.

3.1. Notations and Problem Definition

Given a dataset, X = [Xl , Xu] ∈ Rd×n composed of the labeled data Xl ∈ Rd×nl and the
unlabeled dataset Xu ∈ Rd×nu , where nl and nu denote the number of labeled instances and
unlabeled instances, respectively, in the semi-supervised setting, nl is usually far smaller
than nu. d is the dimensionality of the feature. For the labeled dataset Xl, suppose that
each instance is associated with the class label, i.e., Xl =

{
(x1, y1), (x2, y2), · · · ,

(
xnl , ynl

)}
,

with y ∈ {0, 1}C, C is the number of the classes. Pairwise constraint sets S and D can be
extracted from Xl :

S =
{(

xi, xj
)
| xi and xj are semantic similar

}
D =

{(
xi, xj

)
| xi and xj are semantic dissimilar

}
.

Semi-supervised metric learning aims to learn a Mahalanobis matrix M from X, such
that data can be transformed into a new space, where the semantic similarity between
data points can be diametrically estimated from their distances in the transformed space.
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A typical formulation of metric learning is to require the pairwise distance from S to be
smaller than l and that of the dissimilar set to be larger than u.

d2
M
(
xi, xj

)
< l, ∀

(
xi, xj

)
∈ S

d2
M(xi, xk) > u, ∀(xi, xk) ∈ D

(3)

The general form of a semi-supervised metric learning framework can be constructed as:

min
M

`l(M,S ,D) + λ`u(M, Xu) + µR(M), (4)

where `l and `u denote the pairwise loss and the unlabeled loss, respectively. R is the
regularization term concerning the structural information of the metric. λ and µ are two
hyper-parameters that control the weight of the `u andR.

3.2. Learning From Proxy Vectors

SEPAPH approach relies on the pairwise distance to construct the probability model,
which has the following two drawbacks: (1) the time complexity of SERAPH has a quadratic
dependence on the number of unlabeled data, which means it cannot scale to large-scale
datasets; (2) SERAPH is a global metric learning method and SERAPH is sensitivity to
the outlier in the dataset. To solve these problems, suppose that there are multiple proxy
vectors anchoring around the whole instance space, and these vectors can be expressed as
a set: Z = {z1, z2, · · · , zm}, where m is the number of vectors. The function of the proxy
vector can be considered as the mean center of each class, or anchor that aggregates the
local similarity information of some local instances [30]. By aligning the relevant instances
to their corresponding proxy vectors, the problem of the outlier instances inside the dataset
as well as the high time complexity can be efficiently settled. Similar to proxy-NCA [31],
for any instance x, its corresponding proxy vector can be estimated by:

p(x) = arg min
p∈Z

d2
M(x, z), (5)

where d2
M(x, z) is the Mahalanobis distance between x and z. Equation (5) means that the

proxy vector of an instance is the proxy vector that is closest to the instance under the
metric M.

Instead of directly constructing the probabilistic model from the pairwise Mahalanobis
distance, we utilize the pairwise distances among the instance and all the proxy vectors
to form the NCA-style [32] probabilistic model. More specifically, for any instance, xi, its
probability of randomly choosing a proxy vector can be estimated via:

qij =
exp

(
−d2

M
(
xi, zj

))
∑m

j=1 exp
(
−d2

M
(
xi, zj

)) . (6)

qij can reflect the closeness between xi and zj; the closer xi to zj, the bigger the value. All
the qij (j = 1, 2, · · · , m) form a valid discrete probability distribution:

qi = (qi1, qi2, · · · , qim)
T . (7)

Suppose that the weakly-supervised information is provided in the form of pairwise
constraint forms. For any two instances

(
xi, xj

)
from S , we aim to minimize the distance

between xi and the proxy vector of xj, and, in the meanwhile, keep a large distance from
the other proxy vectors. Such an idea can be expressed as:

max
M∈Sd

+

1
|S| ∑

(xi ,xj)∈S
log

(
exp

(
−d2

M
(

xi, p
(

xj
)))

∑m
j=1 exp

(
−d2

M
(
xi, zj

))). (8)
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where |S| denotes the cardinality of S . Sd
+ is the set of all the d× d PSD (Positive Semi-

Definite) matrices. Maximizing Equation (8) will push xi toward p
(

xj
)
. In contrast to

the SERAPH algorithm, ISMLP converts the pairwise distance to that of the instance and
the corresponding proxy vector. The proxy vector can be viewed as aggregating the local
similarity information of local instances. Therefore, the proposed method can exhibit more
robust behavior than SERAPH.

3.3. Entropy Regularization

The above Equation (8) only considers the labeled data information. In semi-supervised
settings, the amount of labeled data is usually limited, applying Equation (8) to these con-
ditions may easily come across the over-fitting problem. To solve this issue, researchers
propose to simultaneously mine the discriminant information of unlabeled data. Multiple
tricks have been taken in the literature, such as manifold-based regularization [20,21,33]
and entropy regularization [28]. However, these regularizations are usually of high time or
space complexity. By using the proxy vector, we can show that the time complexity of the
entropy regularization can be significantly reduced.

In the field of information theory, the information entropy measures the degree of
“uncertainty” of the given random variable. For a given random variable p̄ = (p1, · · · , pm),
its definition of the information entropy can be expressed as Hm(p̄) = −∑m

i=1 pmlogpm.
When p1 = · · · = pi−1 = pi+1 = · · · = pm = 0, pi = 1, ∀i = 1, · · · , m, Hm(p̄) reaches its
minimal value. In this case, the system has minimal “uncertainty” [34].

The intuition of entropy regularization used in semi-supervised learning follows the
low-density separation assumption [35,36], which encourages the unlabeled data to be
predicted with high probability. In ISMLP, it is desirable for unlabeled data to locate
around a certain proxy vector. In other words, the distribution in Equation (7) should be
a perky one. To achieve this goal, according to the above analysis of the minimization of
information entropy, the following entropy regularization can be constructed:

min
M∈Sd

+

− 1
nu

n

∑
i=nl+1

m

∑
k=1

qiklogqik, (9)

where qij is the probability of i-th instance choosing the j-th proxy-vector as a neighborhood,
and it is defined by Equation (6). Minimizing Equation (9) will shrink the distances between
the unlabeled instances and their corresponding proxy vectors while keeping a large
distance to the other proxy vectors.

3.4. Joint Dimensional Reduction and Metric Learning

One can combine the labeled part and the entropy regularization to finish the objective
function of ISMLP. However, when the dimensionality of the feature is large, adopting
PGD technology to solve ISMLP will encounter high time complexity. To solve this issue,
inspired by the hierarchical way to build the Mahalanobis matrix [37], we propose to
decompose M as the following form:

M = PRPT , (10)

where P ∈ St(p, d), and R ∈ S p
++. In the experiment, p is usually much smaller than d;

therefore, the running time can be significantly reduced. The decomposition form can be
understood as first projecting the original feature into a lower embedding space, then using
R to learn the weight and correlations in the embedding space. Following the common
practice in dimensionality reduction, we require P to be a column-orthogonal matrix,
namely PTP = Ip.

Integrating the Equations (8)–(10) to finish the objective function of ISMLP, we obtain:
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min
P,R,Z

− 1
|S| ∑

(xi ,xj)∈S
log

(
exp

(
−d2

M
(
xi, p

(
xj
)))

∑m
j=1 exp

(
−d2

M
(

xi, zj
)))

− λ

nu

n

∑
i=nl+1

m

∑
k=1

qiklogqik + µr(R, R0)

s.t. M = PRPT , P ∈ St(p, d), R ∈ S p
++

(11)

where r : S p
++ × S

p
++ → R+ denotes the regularization term concerning R. Here, we aim

to keep R to be close to a prior matrix R0 and propose to utilize the Burg divergences [38]:

r(R, R0) = Tr
(

RR−1
0

)
− logdet

(
RR−1

0

)
− p. (12)

In our experiments, we set R0 as Ip for simplicity.
λ > 0 and µ > 0 are two hyper-parameters that control the importance of the entropy

regularization term and the structural prior of M, respectively. p is the dimensionality
of the latent space. The proposed ISMLP jointly learns the decomposition forms of the
Mahalanobis matrix (P, R) and multiple proxy vectors Z . Maximizing Equation (11) will
push the labeled data moving toward their corresponding proxy vectors, which will assign
the unlabeled data a high probability.

Since the first part can be considered as minimizing the entropy of the labeled data and
maximizing that of the unlabeled data. These two parts can be naturally combined together
in a meaningful way. Instead of directly building the probabilistic model via the pairwise
Mahalanobis distance as SERAPH did, ISMLP takes advantage of the proxy vectors to
convert the semi-supervised metric learning into m class distribution optimization. The
merits of the ISMLP lie in two folds; on the one hand, the proposed IMSLP is more robust
than SERAPH, and can cope well with the outlier in the dataset; on the other hand, the
time complexity of the algorithm can be significantly reduced.

4. Optimization for ISMLP

There are three types of parameters to be estimated in the objective function of ISMLP.
In this section, an alternating-direction technology is proposed to seek a feasible solution.
More specifically, we keep the other variables fixed to update the current variable until the
stop condition meet.

Fix Z , to solve P and R: the sub-problem concerning P and R can be expressed as the
following Riemannian manifold-based optimization problem.

min
P,R
F (P, R|X, M0)

s.t. P ∈ St(p, d), R ∈ S p
++.

(13)

The above minimization problem can be solved via the product space of the Stiefel and
SPD manifold. According to [39], the Stiefel and SPD manifolds are locally homogeneous
spaces, and their product space should also follow the smoothness and differentiability.
Therefore,Mp = St(p, d)× S p

++ can contain a Riemannian structural.

Theorem 1. The set
(

St(p, d)× S p
++

)
\O(p) with the following equivalence relation

[(P, R)] ∼
{(

PQ, QTRQ
)

, ∀Q ∈ O(p)
}

(14)

and Riemannian metric

g(P,R)((ξP, ξR), (ζP, ζR)) = 2Tr
(

ξT
P ζP

)
+

Tr
(

R−1ξRR−1ζR

) (15)

forms a Riemannian quotient manifold.



Appl. Sci. 2023, 13, 8993 7 of 19

Proof. We first prove that the equivalence relation hold: F (P, R|X, M0) =
F
(
PQ, QTRQ

∣∣X, M0), since the following equation holds:

PQQTRQ(PQ)T = PRPT , ∀Q ∈ O(p). (16)

Therefore, the equivalence relation holds. To prove Mp\O(p) is a valid quotient
manifold, one can follow the proof in [40]. Lastly, as for the Riemannian metric, interested
readers can refer to [37].

To perform the Riemannian gradient descent onMp, we usually follow the “projection
and retraction” procedures. More specifically, firstly, one can transform the Euclidean
gradient as the Riemannian gradient, and then perform the gradient descent step; then,
map the intermediate solution back to the manifold [39]. For the Stiefel manifold, the
Riemannian gradient can be computed as:

ξP =
∂F
∂P
− 1

2
P

(
PT ∂F

∂P
+

(
∂F
∂P

)T
P

)
. (17)

As for the PSD manifold, its Riemannian gradient has the following form:

ξR =
1
2

R

(
∂F
∂R

+

(
∂F
∂M

)T
)

R, (18)

where ∂F
∂P and ∂F

∂R denote the Euclidean partial gradient of F w.r.t P and R, respectively.
As for the quotient manifold Mp, the tangent space at Γ = (P, R) is divided into

two complementary parts, namely a horizontal part HΓMp and a vertical one VΓMp.
Importantly, the tangent space ofMp (denoted as TΓMp) can be uniquely identified as it
horizontal part.

The horizontal vector in the horizontal tangent space of the proposed quotient mani-
fold can be identified as:

(ξP − Pψ, ξR −Rψ + ψR), (19)

where ψ is the solution of the following equation [37]:

ψR2 + R2ψ = R
(

ξT
P P− PTξP + R−1ξR − ξRR−1

)
R. (20)

For the retraction operation, it can be organized in the following form:

R(P,R)(ξP, ξR) =

(
uf(P + ¸P),

R
1
2

(
exp

(
R−

1
2 ¸RR−

1
2

)))
R

1
2 ,

(21)

where uf(B) = B
(
BTB

)− 1
2 , and exp(·) denotes the matrix exponential operation.

Lastly, the only missing component is ∂F
∂P and ∂F

∂R , and they can be calculated by:

∂F
∂P

=
1
|S| ∑

(xi ,xj)∈S

 m

∑
k=1

qik

∂d2
M

(
xi, zj

)
∂P

−
∂d2

M

(
xi, p

(
xj

))
∂P


− λ

nu

n

∑
i=nl+1

m

∑
k=1

(1 + logqik)qik

(
−

∂d2
M(xi, zk)

∂P

+
m

∑
j=1

exp
(
−d2

M

(
xi, zj

)) ∂d2
M(xi, zk)

∂P

)
,

(22)
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with
∂d2

M(xi, zk)

∂P
= 2(xi − zk)(xi − zk)

TPR.

For
∂F
∂R

, it can be expressed as:

∂F
∂R

=
1
|S| ∑

(xi ,xj)∈S

 m

∑
k=1

qik

∂d2
M

(
xi, zj

)
∂R

−
∂d2

M

(
xi, p

(
xj

))
∂R


− λ

nu

n

∑
i=nl+1

m

∑
k=1

(1 + logqik)qik

(
−

∂d2
M(xi, zk)

∂R

+
m

∑
j=1

exp
(
−d2

M

(
xi, zj

)) ∂d2
M(xi, zk)

∂R

)
+ µ

(
R−1

0 −R−1
)

,

(23)

with
∂d2

M(xi, zk)

∂R
= PT(xi − zk)(xi − zk)

TP.
Fix P and R to solve Z : The sub-problem with respect to Z can be stated as:

minG(Z) = − 1
|S| ∑

(xi ,xj)∈S
log

(
exp

(
−d2

M
(

xi, p
(

xj
)))

∑m
j=1 exp

(
−d2

M
(
xi, zj

)))

+
λ

nu

n

∑
i=nl+1

m

∑
k=1

qiklogqik.

(24)

Firstly, we can update the proxy assignment of each instance by recalculating Equation (5).
Then, we can solve the proxy vector one by one. More specifically, for the k-th proxy vector
zk, by taking the derivative of G with respect to zk, we can get:

∂G
∂zk

=
1
|S|

 ∑
(xi ,xj)∈S
p(xj) 6=zk

1
qip(xj)

∂qip(xj)

∂zk
+ ∑
(xi ,xj)∈S
p(xj)=zk

1
qik

∂qik
∂zk


− λ

nu

n

∑
i=nl+1

(
∑
l 6=k

(
(1 + logqil)

∂qil
∂zk

)
+ (1 + logqik)

∂qik
∂zk

) (25)

where for the given similar pair
(
xi, xj

)
, qip(xi)

denotes the probability of xi choosing

p
(

xj
)

as the proxy vector computed by Equation (6). ∂qik
∂zk

= 2(1− qik)M(xi − zk), and
∂qil
∂zk

= −2qil
∑m

j=1 exp(−d2
M(xi ,zj))

M(xi − zk).

By setting ∂G
∂zk

to zero, Equation (25) is simply a linear equation:

wMzi = ψ (26)

where

w =
1
|S|

(
∑

(xi ,xj)∈S
p(xj) 6=zk

1

∑m
j=1 exp

(
−d2

M

(
xi, zj

))−

∑
(xi ,xj)∈S
p(xj)=zk

1− qik
qik

)
− λ

nu

(
n

∑
i=nl+1

(
1 + logqik

)
1− qik

qik

+ ∑
l 6=k

(1 + logqil)
qil

∑m
j=1 exp

(
−d2

M

(
xi, zj

))),

(27)
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and ψ:

ψ =
M
|S|

(
∑

(xi ,xj)∈S
p(xj) 6=zk

−xi

∑m
j=1 exp

(
−d2

M

(
xi, zj

))+

∑
(xi ,xj)∈S
p(xj)=zk

1− qik
qik

xi

)
+

λ

nu

(
n

∑
i=nl+1

(
1 + logqik

)
1− qik

qik

−∑
l 6=k

(1 + logqil)
qil

∑m
j=1 exp

(
−d2

M

(
xi, zj

)))Mxi,

(28)

we can get the closed-form solution of zk:

zk = (M + ηId)
−1 ψ

w
(29)

where η > 0 is a small positive number to make A a positively defined matrix. In the
experiment, we empirically set it as 1e−6, which works fine .

To sum up, we propose an alternating direction strategy to solve the minimization of
Equation (11). The sub-problems concerning P and R are updated on the product manifold
of the Stiefel and SPD manifold via the Riemannian gradient descent algorithm [41]. The
sub-problem concerning Z has a closed-form solution. The main procedure of ISMLP is
documented in Algorithm 1. It should be noted that we utilize a Gaussian Mixture Model
(GMM) to initialize the set of proxy vectors which are the means of the corresponding
components. We also document the variations of objective function values with respect
to iterations on three datasets in Figure 1. Clearly, the loss decreases as the iterations and
inclines become stable after several iterations, which proves that the proposed algorithm
can converge within limited iterations.

Algorithm 1: The optimization strategy of ISMLP.

Input: The labeled and unlabeled datasets Xl ∈ Rd×nl and Xu ∈ Rd×nu , the similar
constraint set S , λ, the number of proxy vectors m, µ, and the
dimensionality of the embedding space p;

1 Initialize P ∈ Rd×p as a column orthonormal matrix, and setting R as the identity
matrix Ip;

2 Initialize the set of proxy vectors via the Gaussian mixture model by setting the
number of components as m;

3 while not converged do
4 Fix Z to solve P and R via the Riemannian gradient descent algorithm by

using the Equations (19) and (21);
5 for k = 1, ..., m do
6 Fix P and R to solve the k-th proxy vector zk by Equation (29);
7 end
8 end

Output: The projection matrix P and low-dimensionality Mahalanobis matrix R;
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Figure 1. The variations of the normalized objective function values of the proposed method with
the number of iterations on MNIST, Corel 5K, and Cars-196. Obviously, the loss value decreases with
the number of iterations and inclines to become stable after several iterations. (a) MNIST; (b) Corel
5K; (c) Cars-196.

Time Complexity of ISMLP

In this section, we provide a brief analysis of the time complexity of the proposed
ISMLP. Recall that the number of labeled and unlabeled data is nl and nu, respectively. The
dimensionality of the original and the reduced data is denoted as d and p. The number
of proxy vectors is denoted as m. The main procedures of ISMLP consist of the following
main steps: (1) Evaluating the loss function; (2) Computing the Euclidean gradient of the
loss function with respect to P and R; (3) Projecting the Euclidean gradient of P and R to
the tangent space and then retracing them back to the manifold; (4) Updating the set of the
proxy vectors.

• Since the time complexity of solving the inverse of a p× p matrix costs O
(

p3), evalu-
ating the objective function in Equation (11) takes O

(
npd + mnp2 + p3).

• Computing the Euclidean gradient of the loss function with respect to P by using
Equation (22) takesO

(
mndp2), and computing ∂F

∂R via Equation (23) costsO
(
mnp2 + p3).

• According to [37], projecting the Euclidean gradient of the loss function with respect
to P and R by using Equations (17) and (18) costs O

(
4dp2 + 3p3). Retracting the

Riemannian gradient back to the manifold via Equation (21) costs O
(
4dp2 + 14p3).

• Solving all the proxy vectors by using Equation (29) cost O
(
d3 + m2nl p2), where nl is

the number of labeled data.

Considering the usual case of large-scale semi-supervised metric learning is d � n,
the time complexity of the proposed ISMLP is about O

(
mndp2), and the main cost lies in

evaluating the Euclidean gradient of P. To sum up, the time complexity of the proposed
ISMLP has a linear dependence on the number of n; therefore, it can be effectively and
efficiently extended to large-scale datasets.

5. Experiment

In this section, extensive visual classification and retrieval experiments are conducted
to verify the efficacy and efficiency of the proposed ISMLP. Firstly, we provide a detailed
description of the datasets and evaluation index, and compared methods used in the
experiments. Then, the experimental results are provided.

5.1. Datasets, Evaluation Protocol and Compared Methods

Datasets: a total of five datasets are utilized, including MNIST [42], Fashion-MNIST [43],
Corel 5K [44], CUB-200 [45], and Cars-196 [46]. The MNIST contains 70,000 grayscale hand-
written digital images from ten classes, whereas Fashion-MNIST consists of 70,000 images
from ten fashion objects. MNIST and Fashion-MNIST are wildly used in the field of semi-
supervised learning. The latter two datasets CUB-200 and Cars-196 are two fine-grained
visual recognition datasets. The detailed information on the datasets is listed in Table 1.
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Table 1. The detailed information of datasets used in the experiment.

Dataset Type Class Instance Feature Train, Validation, Test

MNIST Image 10 70,000 784 50,000, 10,000, 10,000
Fashion-MNIST Image 10 70,000 784 50,000, 10,000, 10,000

Corel 5K Image 50 5000 2048 4000, 500, 500
CUB-200 Image 200 11,788 2048 4994, 1000, 5794
Cars-196 Image 196 16,185 2048 7144, 1000, 8041

The pixel value of MNIST and Fashion-MNIST datasets are served as the image feature,
which provides us with a 784-dimensional feature. As for the other datasets, the VGG-19
network [47] pre-trained on ImageNet is utilized to extract the features. Since the dimen-
sionality of the features is extremely high, PCA is adopted to reduce the dimensionality of
each feature to a 150-dimensional subspace.

Evaluation protocol: Given that each dataset comes with a default partition of train-
ing/testing set, we adopt the same strategy for consistency. Additionally, for each dataset,
we set aside 1000 instances from the training data to form the validation set (Since Corel 5K
has a default partition of the validation set, we exclude it). The specific number of instances
used for validation can be found in Table 1. For the MNIST and Fashion-MNIST datasets,
we adopt 3-nearest neighbors to quantify the performance of each compared method,
whereas, for the CUB-200 and Cars-196 datasets, we report the Recall@K (abbreviation as
R@K) performance, where R@K reflects the proportion of the correct samples in the return
K samples. More specifically, R@1, R@2, R@4, and R@8 index is utilized to measure the
performance of each method.

We report the R@K of each method under different labeling rates, namely 5%, 10%,
and 30%, the rest samples in the training set serve as the unlabeled data.

Compared methods: We compare the proposed ISMLP with several state-of-the-
art semi-supervised metric learning methods including, LSeMML [22], SERAPH [28], S-
RLMM [29], LRML [33], SLRML [19], APIT [21], CMM [1], and APLLR [21]. One supervised
metric learning method LMNN [48], one deep semi-supervised metric learning entitled as
SSML-DR [49], the Euclidean distance denoted as EUCLID is also adopted for a baseline
method. The hyper-parameters of all the methods are tuned on the validation set and we
choose those parameters that achieve the best results on the validation set. For example,
for LMNN, we tune λ from the set {0.1, 0.2, · · · , 0.9}. As for the proposed method, we
empirically set p as 50, and choose µ from the range {0.00001, 0.0001, · · · , 1000}, and tune
the λ from the range {0.0001, 0.001, · · · , 100, 1000}, the number for the proxy vector is
chosen from {#Class, 2#Class, 3#Class}. For SSML-DR, to make a fair comparison, a three-
layer full-connected neural network whose nodes are {128, 256, 128} is incorporated as the
backbone network by SSML-DR. The batch size is set as 100, and the number of epochs is
set as 50.

5.2. Classification Experimental Result on MNIST and Fashion-MNIST Datasets

In this section, we test the classification performance of the compared methods based
on 3-nearest neighbors on MNIST and Fashion-MNIST datasets. To mitigate the influence of
the random partition of the dataset, we repeat each task 30 times, and the mean accuracy and
standard deviation are recorded to quantify the performance of each method. Tables 2 and 3
record the mean error rate and standard deviation of all the methods on MNIST and
Fashion-MNIST datasets, respectively.

It is readily seen that the metric learning methods can boost the performance of
k-nearest neighbors classification, and all the methods can benefit from the amount of
labeled data. The performance of the supervised metric learning method LMNN shows
inferior performance compared to those semi-supervised methods, which can prove the
necessity of utilizing the information of unlabeled data during the metric learning process.
Both SERAPH and ISMLP utilize entropy regularization to preserve the discriminative
information of the unlabeled data. Unlike SERAPH, ISMLP adopts a set of proxy vectors to
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substitute the sample–sample probability assigning procedure, which is more robust than
SERAPH. As a result, its performance surpasses SERAPH on all the tasks. Compared to
those Laplacian-graph-based methods (i.e., LSeMML, SLRML, and APIT), ISMLP is free
from the untrustable Laplacian-graph construction process; thus, it usually can achieve
better performance. ISMLP obtains the best performance on 5/6 tasks. It is curious to see
that CMM achieves the worst performance among all the semi-supervised methods; we
surmise its manifold-based regularization term may cause this. CMM intends to find a
projection direction where the unlabeled data has the maximum variance, which may not
increase the discriminative ability of the model. Owing to the powerful nonlinear feature
extraction ability of the deep neural network, the performance of SSML-DR consistently
surpasses those shallow Laplacian graph-based methods; however, it still falls behind
the proposed ISMLP. We believe that this can be attributed to the two-stage construction
processes of the Laplacian graph.

To systematically provide a comprehensive analysis of the time complexity of each
method, we provide the time complexity of some representative methods in Table 4. Clearly,
the time complexity of the proposed ISMLP is linear with respect to the number of instances,
whereas the other compared methods exhibit at least quadratic dependence on n. Consider-
ing the usual case in the large-scale semi-supervised setting is d� n, the proposed ISMLP
can be efficiently trained in a reasonable time. To verify this hypothesis, we also conduct
experiments on MNIST and Fashion-MNIST to compare the training time of each method.
Figure 2 displays the results, and clearly, the training time of ISMLP is significantly less
than the compared methods. More specifically, on the MNIST dataset, it takes about 400 s
for SLP to train the model, a 6.5× improvement over the second-fastest approach CMM,
which can prove the efficiency of the proposed ISMLP.
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Figure 2. The training time of different methods on two image datasets: (a) displays the training time
of different methods on MNIST dataset; (b) shows the result on Fashion-MNIST dataset.
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Table 2. Classification performance (mean error rate, and standard deviation) of all the compared methods based on 3-NN with varying labeling rates on MNIST
dataset; the best performance of each task is marked with boldface.

EUCLID LSeMML SERAPH S-RLMM LRML SLRML APIT CMM APLLR LMNN SSML-DR ISMLP

5% labeled data 0.296 ± 0.005 0.228 ± 0.010 0.231 ± 0.014 0.241 ± 0.027 0.221 ± 0.011 0.208 ± 0.008 0.228 ± 0.010 0.245 ± 0.021 0.209 ± 0.022 0.261 ± 0.022 0.200 ± 0.013 0.211 ± 0.018
10% labeled data 0.240 ± 0.007 0.191 ± 0.013 0.184 ± 0.011 0.211 ± 0.016 0.201 ± 0.010 0.221 ± 0.015 0.198 ± 0.011 0.227 ± 0.017 0.189 ± 0.009 0.231 ± 0.021 0.175 ± 0.012 0.170 ± 0.015
30% labeled data 0.186 ± 0.006 0.131 ± 0.012 0.140 ± 0.007 0.127 ± 0.014 0.153 ± 0.012 0.130 ± 0.009 0.146 ± 0.008 0.150 ± 0.016 0.128 ± 0.007 0.143 ± 0.010 0.120 ± 0.016 0.116 ± 0.011

Table 3. Classification performance (mean error rate, and standard deviation) of all the compared methods based on 3-NN with varying labeling rate on
Fashion-MNIST dataset; the best performance of each task is marked with boldface.

EUCLID LSeMML SERAPH S-RLMM LRML SLRML APIT CMM APLLR LMNN SSML-DR ISMLP

5% labeled data 0.355 ± 0.008 0.281 ± 0.017 0.289 ± 0.014 0.291 ± 0.017 0.295 ± 0.012 0.278 ± 0.008 0.298 ± 0.012 0.302 ± 0.012 0.285 ± 0.013 0.292 ± 0.019 0.248 ± 0.010 0.252 ± 0.014
10% labeled data 0.281 ± 0.009 0.242 ± 0.012 0.248 ± 0.011 0.237 ± 0.012 0.241 ± 0.017 0.239 ± 0.007 0.247 ± 0.013 0.258 ± 0.016 0.227 ± 0.012 0.261 ± 0.010 0.218 ± 0.009 0.210 ± 0.012
30% labeled data 0.235 ± 0.006 0.180 ± 0.014 0.172 ± 0.009 0.178 ± 0.012 0.172 ± 0.011 0.181 ± 0.008 0.187 ± 0.011 0.191 ± 0.013 0.188 ± 0.012 0.192 ± 0.010 0.168 ± 0.011 0.162 ± 0.012

Table 4. The time complexity of several typical semi-supervised learning methods, where |P| = |S|+ |D|, r is the number of iterations in each method, and c (in the
APID) denotes the number of the inner iterations. Clearly, the time complexity of the proposed ISMLP has a linear dependence on the n.

LSeMML SERAPH S-RLMM LRML SLRML APIT CMM ISMLP

Time complexity O
(
n2logn + |P|d2) O

((
n2d + d3)r) O

((
n2d2 + d3)r) O

(
n2logn + d3) O

(
n2d + d3) O

(
n3 + cd2) O

((
n2 + |P|d2)) O

((
mndp2 + d3))
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5.3. Retrieval Performance on Corel 5K Dataset

We also run a retrieval experiment on Corel 5K dataset with a labeling rate of 30%.
Figure 3 documents the performance of the proposed ISMLP and LSeMML. In the first
sub-figure, it is evident that ISMLP can effectively capture the semantic meaning of the
query image, leading to accurate retrieval of five relevant images. In contrast, LSeMML
mistakes the “red” element as the key property of the query image and unsurprisingly
gives the irrelevant images in the 4-th and 5-th nearest neighbors. The major difference
between ISMLP and LSeMML lies in the utilization of the unlabeled regularization term,
i.e., LSeMML utilizes the EUCLID metric to mine the manifold information of the unlabeled
data. When the EUCLID metric is not appropriate to measure the correlations and weights
of the features, the resulting graph will be an inferior one. Therefore, the sub-optimal
results can be observed in the retrieval list. In contrast, the proposed ISMLP utilizes
entropy regularization to mine the information of the unlabeled data, it makes no data
distribution assumption; therefore, can be applied to broader scenes.

Similar results can also be found in the other sub-figures. Therefore, the retrieval
experiment on Corel 5K dataset can verify the superiority performance over the compared
LSeMML approach.

Figure 3. The typical retrieval result of the proposed ISMLP and LSeMML approach on the Corel
5K dataset with a training labeling rate of 30%. The leftmost figure denotes the query image and
the first row of each sub-figure displays the result of the proposed method, whereas the second row
shows the result of LSeMML. The green checkmark means the right retrieval result while the red
cross means the wrong results.
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5.4. Classification Performance on CUB-200 and Cars-196 Datasets

We further conduct image recognition experiments on two fine-grained datasets to
test the classification ability of the proposed ISMLP and its compared methods. The R@K
index is utilized to quantify the performance of each method. Tables 5 and 6 show the
classification results on the CUB-200 and Cars-196 datasets, respectively.

We can draw the following conclusions from the figure: (1) All metric learning methods
can benefit from the amount of labeled data; the more labeled data, the higher recognition
performance. Since LMNN can only utilize the labeled data, when the labeling rate is low,
LMNN can easily fall into the trap of over-fitting. Its performance is inferior to those semi-
supervised metric learning methods under all tasks. This can prove the superiority of utilizing
the unlabeled in metric learning. (2) Compared to those manifold-based semi-supervised
approaches, the proposed ISMLP makes no assumptions about the smoothness or density of the
data. Thus, ISMLP can be applied to broader scenes, and achieve better performance. (3) Both
SERAPH and ISMLP utilize entropy regularization to mine the discrimination information of
the unlabeled data; ISMLP adopts the proxy vectors to construct the probability model, which is
more robust than SERAPH, and it obtains better performance across all the tasks on CUB-200
and Cars-196 datasets. (4) SSML-DR can obtain competing results due to its strong hierarchical
feature extraction ability. (5) the proposed ISMLP can better mine the rich structural information
of the unlabeled data; it achieves the best performance on 20 of all 24 tasks, which proves the
efficiency of adopting the proxy vectors as surrogate points.

Table 5. The performance of the proposed ISMLP and compared methods on the CUB-200 dataset
with varying labeling rates. The best performance under each index is marked in bold.

5%Labeled Data 10%Labeled Data 30%Labeled Data

R@1 R@2 R@4 R@8 R@1 R@2 R@4 R@8 R@1 R@2 R@4 R@8

EUCLID 25.75 29.82 32.73 34.82 26.85 32.57 34.12 36.45 29.68 32.22 36.90 39.29
LSeMML 32.84 34.54 36.90 38.73 34.53 36.72 38.13 40.65 35.90 37.81 39.72 42.20
SERAPH 33.11 35.61 37.81 39.98 35.02 36.87 38.42 41.97 37.83 39.24 42.69 44.73
S-RLMM 32.83 34.81 36.31 38.71 34.63 36.59 38.20 40.21 38.80 40.68 42.98 43.73

LRML 31.10 33.68 36.83 38.50 33.76 35.80 37.81 39.69 37.33 39.84 42.38 44.16
SLRML 33.63 34.19 37.24 39.42 35.82 37.67 39.29 42.19 37.90 39.19 40.57 42.78

APIT 32.52 34.57 37.99 38.68 34.68 36.85 39.09 36.98 37.81 40.83 42.68 44.73
CMM 32.13 34.11 36.73 38.10 34.82 37.40 37.49 39.80 37.86 40.13 41.68 42.68

APLLR 31.16 33.29 35.73 37.96 33.24 36.76 39.85 42.48 36.66 39.83 42.08 45.71
LMNN 29.71 32.90 35.84 37.80 31.84 33.59 37.85 39.84 33.83 35.49 39.90 41.83

SSML-DR 34.00 35.95 38.34 40.50 36.84 39.00 43.19 45.54 38.26 42.18 45.40 48.21
ISMLP 34.42 36.82 38.90 41.70 36.99 39.24 44.45 46.02 39.84 42.80 45.61 48.90

Table 6. The performance of the proposed ISMLP and compared methods on the Cars-196 dataset
with varying labeling rates. The best performance under each index is marked in bold.

5%Labeled Data 10%Labeled Data 30%Labeled Data

R@1 R@2 R@4 R@8 R@1 R@2 R@4 R@8 R@1 R@2 R@4 R@8

EUCLID 24.63 28.16 31.34 34.73 25.68 30.65 33.87 35.71 28.56 31.89 34.17 38.81
LSeMML 33.26 34.54 37.15 39.27 34.58 37.18 39.46 42.17 36.19 39.43 41.87 44.98
SERAPH 32.19 34.61 36.25 39.89 35.18 37.26 39.48 43.16 37.30 39.56 42.43 45.25
S-RLMM 34.37 36.81 37.18 39.96 36.58 38.78 40.41 44.34 38.48 41.68 44.15 47.28

LRML 32.82 35.33 36.83 37.41 33.72 35.41 37.19 39.71 38.18 41.29 43.21 45.87
SLRML 34.37 36.19 38.98 40.57 35.42 38.42 40.76 43.87 37.57 39.58 42.81 46.10

APIT 33.46 35.72 37.99 39.51 34.71 36.78 39.18 41.57 38.24 41.58 43.79 46.28
CMM 34.19 35.45 36.73 39.10 35.88 38.04 40.00 43.06 37.60 39.87 41.81 45.28

APLLR 32.67 35.34 35.73 37.76 33.26 36.87 39.19 42.62 36.62 39.89 42.28 45.78
LMNN 31.30 33.53 35.84 36.92 32.19 34.48 36.49 38.84 34.39 36.62 40.19 44.17

SSML-DR 35.35 37.53 39.47 41.38 37.01 39.46 42.87 44.59 39.84 42.69 45.92 47.25
ISMLP 34.01 36.52 38.72 40.29 37.11 40.38 43.48 45.81 40.19 43.58 46.39 48.41
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5.5. Sensitivity Analysis

In this section, we conduct an experiment on the Cars-196 dataset to analyze the sensi-
tivity of the proposed ISMLP on different hyper-parameters. To simplify the experiment,
we keep the other parameters fixed when analyzing the current one.

Figure 4a depicts the R@1 accuracy of the proposed ISMLP with different λ when we
set µ = 0.001, p = 50, and m = c, where c denotes the number of classes. One can observe
that each curve has a turning point, and the fewer the amount of labeled data, the earlier
the turning point appears. We gauge that this can be attributed to the utility of the entropy
regularization; either an excessively large or a small λ will lead to a biased model.

Figure 4b shows the sensitivity of ISMLP on µ. We can see that ISMLP is insensitive to
the change of µ to some extent. However, setting a large µ will impose the learned R close
to the prior metric Ip, which prevents ISMLP to learn the correlations and weights of the
feature in the reduced space.

Figure 4c documents the results on p. Recall that p is the dimensionality of the
reduced space, and setting a small p will lose a large amount of information of the original
data. As a result, we can observe inferior results with small p; however, as p increases,
the performance becomes stable. To compromise between accuracy and computational
efficiency, we set p as 50 in all experiments.
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Figure 4. The R@1 accuracy under different parameters. We keep the other parameters fixed when
analyzing the current one. (a) λ; (b) µ; (c) Reduced dimensionality; (d) Number of proxy vectors.

We further conduct an experiment to test the sensitivity of ISMLP on the number of
proxy vectors and document the result in Figure 4d. It has nearly the same tendency as
Figure 4c; when we learn a small number of proxy vectors, instances from the other classes
will be mixed up together, which undoubtedly degrades the discriminative ability of the
model. Increasing the number of proxy vectors will boost the performance to some extent,
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and it can help to discover the latent pattern within a class. Such an idea is also utilized in
some cluster-based multi-metric learning methods [30,50]. However, allocating too many
proxy vectors will cost additional computational resources.

6. Conclusions

In this paper, we propose an efficient information-theoretic-based semi-supervised
metric learning method called ISMLP. By learning a hierarchical form of the Mahalanobis
matrix as well as a set of proxy vectors, ISMLP casts the semi-supervised metric learning
problem as a probability model. Importantly, the entropy regularization term is adopted
to mine the rich unlabeled information. We further prove that ISMLP can be efficiently
solved via the alternating direction method. Extensive experiments on five large-scale
image datasets reveal that (1) the proposed probability model based on proxy vectors
can accurately mine the rich information of unlabeled data, and is thus profitable for
semi-supervised learning tasks; (2) ISMLP can be more efficiently trained than the semi-
supervised learning methods used in the experiment; and (3) ISMLP is not sensitive to its
parameters to some extent.

Despite its promising result, the proposed ISMLP assumes linear separability of the
data, which is often unrealistic due to the presence of complex data structures. The kernel
tricks or the deep neural networks can be utilized to extract the nonlinear features to
enhance the performance. In the future, we plan to extend the proposed ISMLP to multi-
model settings to deal with the multi-modal input [51–53].

Author Contributions: Conceptualization, P.C. and H.W.; methodology, H.W.; software, H.W.; vali-
dation, P.C. and H.W.; formal analysis, H.W.; investigation, H.W.; resources, P.C.; data curation, H.W.;
writing—original draft preparation, H.W.; writing—review and editing, P.C. and H.W.; visualization,
P.C.; supervision, P.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Dalian Science and Technology Innovation Fund 2021JJ12GX028.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All datasets are publicly available.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, F. Semisupervised Metric Learning by Maximizing Constraint Margin. IEEE Trans. Syst. Man Cybern. Part B Cybern. A

Publ. IEEE Syst. Man Cybern. Soc. 2011, 41, 931–939. [CrossRef]
2. Bellet, A.; Habrard, A.; Sebban, M. Metric Learning; Springer Nature: Berlin/Heidelberg, Germany, 2022.
3. Wang, H.; Feng, L.; Zhang, J.; Liu, Y. Semantic Discriminative Metric Learning for Image Similarity Measurement. IEEE Trans.

Multimed. 2016, 18, 1579–1589. [CrossRef]
4. Feng, L.; Wang, H.; Jin, B.; Li, H.; Xue, M.; Wang, L. Learning a Distance Metric by Balancing KL-Divergence for Imbalanced

Datasets. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 2384–2395. [CrossRef]
5. Wang, H.; Wang, Y.; Zhang, Z.; Fu, X.; Zhuo, L.; Xu, M.; Wang, M. Kernelized multiview subspace analysis by self-weighted

learning. IEEE Trans. Multimed. 2020, 23, 3828–3840. [CrossRef]
6. Wang, H.; Peng, J.; Chen, D.; Jiang, G.; Zhao, T.; Fu, X. Attribute-guided feature learning network for vehicle reidentification.

IEEE Multimed. 2020, 27, 112–121.
7. Wang, H.; Peng, J.; Zhao, Y.; Fu, X. Multi-path deep cnns for fine-grained car recognition. IEEE Trans. Veh. Technol. 2020,

69, 10484–10493. [CrossRef]
8. Liu, Q.; Cao, W.; He, Z. Cycle optimization metric learning for few-shot classification. Pattern Recognit. 2023, 139, 109468.

[CrossRef]
9. Holkar, A.; Walambe, R.; Kotecha, K. Few-shot learning for face recognition in the presence of image discrepancies for limited

multi-class datasets. Image Vis. Comput. 2022, 120, 104420.
10. Gao, X.; Niu, S.; Wei, D.; Liu, X.; Wang, T.; Zhu, F.; Dong, J.; Sun, Q. Joint metric learning-based class-specific representation for

image set classification. IEEE Trans. Neural Netw. Learn. Syst. 2022 . [CrossRef]
11. Huang, K.; Wu, S.; Sun, B.; Yang, C.; Gui, W. Metric learning-based fault diagnosis and anomaly detection for industrial data with

intraclass variance. IEEE Trans. Neural Netw. Learn. Syst. 2022. [CrossRef]

http://doi.org/10.1109/TSMCB.2010.2101593
http://dx.doi.org/10.1109/TMM.2016.2569412
http://dx.doi.org/10.1109/TSMC.2018.2790914
http://dx.doi.org/10.1109/TMM.2020.3032023
http://dx.doi.org/10.1109/TVT.2020.3009162
http://dx.doi.org/10.1016/j.patcog.2023.109468
http://dx.doi.org/10.1109/TNNLS.2022.3212703
http://dx.doi.org/10.1109/TNNLS.2022.3175888


Appl. Sci. 2023, 13, 8993 18 of 19

12. Gui, X.; Zhang, J.; Tang, J.; Xu, H.; Zou, J.; Fan, S. A Quadruplet Deep Metric Learning model for imbalanced time-series fault
diagnosis. Knowl.-Based Syst. 2022, 238, 107932. [CrossRef]

13. Schroff, F.; Kalenichenko, D.; Philbin, J. Facenet: A unified embedding for face recognition and clustering. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 815–823.

14. Peng, J.; Jiang, G.; Wang, H. Adaptive Memorization with Group Labels for Unsupervised Person Re-identification. IEEE Trans.
Circuits Syst. Video Technol. 2023, 1. [CrossRef]

15. Wang, H.; Peng, J.; Jiang, G.; Xu, F.; Fu, X. Discriminative feature and dictionary learning with part-aware model for vehicle
re-identification. Neurocomputing 2021, 438, 55–62. [CrossRef]

16. Wang, Y.; Peng, J.; Wang, H.; Wang, M. Progressive learning with multi-scale attention network for cross-domain vehicle
re-identification. Sci. China Inf. Sci. 2022, 65, 160103. [CrossRef]

17. Liu, W.; Ma, S.; Tao, D.; Liu, J.; Liu, P. Semi-supervised sparse metric learning using alternating linearization optimization. In
Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC,
USA, 25–28 July 2010; pp. 1139–1148.

18. Baghshah, M.S.; Shouraki, S.B. Semi-supervised metric learning using pairwise constraints. In Proceedings of the 21st
International Joint Conference on Artificial Intelligence, Pasadena, CA, USA, 11–17 July 2009; pp. 1217–1222.

19. Liang, J.; Zhu, P.; Dang, C.; Hu, Q. Semisupervised Laplace-Regularized Multimodality Metric Learning. IEEE Trans. Cybern.
2020, 52, 2955–2967. [CrossRef]

20. Ying, S.; Wen, Z.; Shi, J.; Peng, Y.; Peng, J.; Qiao, H. Manifold preserving: An intrinsic approach for semisupervised distance
metric learning. IEEE Trans. Neural Netw. Learn. Syst. 2017, 29, 2731–2742. [CrossRef]

21. Kr Dutta, U.; Chandra Sekhar, C. Affinity Propagation Based Closed-Form Semi-supervised Metric Learning Framework. In
Proceedings of the Artificial Neural Networks and Machine Learning–ICANN 2018: 27th International Conference on Artificial
Neural Networks, Rhodes, Greece, 4–7 October 2018; Proceedings, Part I 27; Springer: Berlin/Heidelberg, Germany, 2018;
pp. 556–565.

22. Sun, P.; Yang, L. Low-rank supervised and semi-supervised multi-metric learning for classification. Knowl.-Based Syst. 2022,
236, 107787. [CrossRef]

23. Roweis, S.T.; Saul, L.K. Nonlinear dimensionality reduction by locally linear embedding. Science 2000, 290, 2323–2326. [CrossRef]
24. Wang, H.; Jiang, G.; Peng, J.; Deng, R.; Fu, X. Towards Adaptive Consensus Graph: Multi-view Clustering via Graph Collaboration.

IEEE Trans. Multimed. 2022, 1–13. [CrossRef]
25. Jiang, G.; Peng, J.; Wang, H.; Mi, Z.; Fu, X. Tensorial Multi-View Clustering via Low-Rank Constrained High-Order Graph

Learning. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 5307–5318. [CrossRef]
26. Yin, Y.; Shah, R.R.; Zimmermann, R. Learning and fusing multimodal deep features for acoustic scene categorization. In Proceed-

ings of the 26th ACM International Conference on Multimedia, Seoul, Republic of Korea, 22–26 October 2018; pp. 1892–1900.
27. Wang, H.; Yao, M.; Jiang, G.; Mi, Z.; Fu, X. Graph-Collaborated Auto-Encoder Hashing for Multiview Binary Clustering. IEEE

Trans. Neural Netw. Learn. Syst. 2023, 1–13. [CrossRef]
28. Niu, G.; Dai, B.; Yamada, M.; Sugiyama, M. Information-theoretic semi-supervised metric learning via entropy regularization.

Neural Comput. 2014, 26, 1717–1762. [CrossRef]
29. Li, Y.; Tian, X.; Tao, D. Regularized large margin distance metric learning. In Proceedings of the 2016 IEEE 16th International

Conference on Data Mining, Barcelona, Spain, 12–15 December 2016; pp. 1015–1022.
30. Ye, H.J.; Zhan, D.C.; Li, N.; Jiang, Y. Learning multiple local metrics: Global consideration helps. IEEE Trans. Pattern Anal. Mach.

Intell. 2019, 42, 1698–1712. [CrossRef]
31. Movshovitz-Attias, Y.; Toshev, A.; Leung, T.K.; Ioffe, S.; Singh, S. No fuss distance metric learning using proxies. In Proceedings

of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 360–368.
32. Goldberger, J.; Hinton, G.Neighbourhood components analysis.E.; Roweis, S.; Salakhutdinov, R.R. Adv. Neural Inf. Process. Syst.

2004, 17.
33. Hoi, S.C.; Liu, W.; Chang, S.F. Semi-supervised distance metric learning for collaborative image retrieval and clustering. ACM

Trans. Multimed. Comput. Commun. Appl. (TOMM) 2010, 6, 1–26. [CrossRef]
34. Deng, H.; Meng, X.; Deng, F.; Feng, L. UNIT: A unified metric learning framework based on maximum entropy regularization.

Appl. Intell. 2023, 1–21. [CrossRef]
35. Chapelle, O.; Zien, A. Semi-supervised classification by low density separation. In Proceedings of the International Workshop on

Artificial Intelligence and Statistics, PMLR, Bridgetown, Barbados, 6–8 January 2005; pp. 57–64.
36. Grandvalet, Y.; Bengio, Y. Semi-supervised learning by entropy minimization. Adv. Neural Inf. Process. Syst. 2004, 17.
37. Harandi, M.; Salzmann, M.; Hartley, R. Joint dimensionality reduction and metric learning: A geometric take. In Proceedings of

the International Conference on Machine Learning, PMLR, Sydney, Australia, 6–11 August 2017; pp. 1404–1413.
38. Davis, J.V.; Kulis, B.; Jain, P.; Sra, S.; Dhillon, I.S. Information-theoretic metric learning. In Proceedings of the 24th International

Conference on Machine Learning, Corvalis, OR, USA, 20–24 June 2007; pp. 209–216.
39. Absil, P.A.; Mahony, R.; Sepulchre, R. Optimization Algorithms on Matrix Manifolds; Princeton University Press: Princeton, NJ,

USA, 2008.
40. Lee, J.M.; Lee, J.M. Smooth Manifolds; Springer: Berlin/Heidelberg, Germany, 2012.
41. Bonnabel, S. Stochastic gradient descent on Riemannian manifolds. IEEE Trans. Autom. Control 2013, 58, 2217–2229. [CrossRef]

http://dx.doi.org/10.1016/j.knosys.2021.107932
http://dx.doi.org/10.1109/TCSVT.2023.3258917
http://dx.doi.org/10.1016/j.neucom.2020.06.148
http://dx.doi.org/10.1007/s11432-021-3383-y
http://dx.doi.org/10.1109/TCYB.2020.3022277
http://dx.doi.org/10.1109/TNNLS.2017.2691005
http://dx.doi.org/10.1016/j.knosys.2021.107787
http://dx.doi.org/10.1126/science.290.5500.2323
http://dx.doi.org/10.1109/TMM.2022.3212270
http://dx.doi.org/10.1109/TCSVT.2022.3143848
http://dx.doi.org/10.1109/TNNLS.2023.3239033
http://dx.doi.org/10.1162/NECO_a_00614
http://dx.doi.org/10.1109/TPAMI.2019.2901675
http://dx.doi.org/10.1145/1823746.1823752
http://dx.doi.org/10.1007/s10489-023-04831-x
http://dx.doi.org/10.1109/TAC.2013.2254619


Appl. Sci. 2023, 13, 8993 19 of 19

42. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,
86, 2278–2324. [CrossRef]

43. Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-mnist: A novel image dataset for benchmarking machine learning algorithms. arXiv 2017,
arXiv:1708.07747.

44. Duygulu, P.; Barnard, K.; de Freitas, J.F.; Forsyth, D.A. Object recognition as machine translation: Learning a lexicon for a fixed
image vocabulary. In Proceedings of the 7th European Conference on Computer Vision, Copenhagen, Denmark, 28–31 May 2002;
pp. 97–112.

45. Welinder, P.; Branson, S.; Mita, T.; Wah, C.; Schroff, F.; Belongie, S.; Perona, P. Caltech-UCSD Birds 200; California Institute of
Technology: Pasadena, CA, USA, 2010.

46. Krause, J.; Stark, M.; Deng, J.; Fei-Fei, L. 3d object representations for fine-grained categorization. In Proceedings of the IEEE
International Conference on Computer Vision Workshops, Sydney, NSW, Australia, 2–8 December 2013; pp. 554–561.

47. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with
convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June
2015; pp. 1–9.

48. Weinberger, K.Q.; Saul, L.K. Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. 2009,
10, 207–244.

49. Dutta, U.K.; Harandi, M.; Shekhar, C.C. Semi-supervised metric learning: A deep resurrection. In Proceedings of the AAAI
Conference on Artificial Intelligence, Virtual Event, 2–9 February 2021; Volume 35, pp. 7279–7287.

50. Nguyen, B.; Ferri, F.J.; Morell, C.; De Baets, B. An efficient method for clustered multi-metric learning. Inf. Sci. 2019, 471, 149–163.
[CrossRef]

51. Wang, Y.; Zhang, W.; Wu, L.; Lin, X.; Fang, M.; Pan, S. Iterative Views Agreement: An Iterative Low-Rank based Structured
Optimization Method to Multi-View Spectral Clustering. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), New York, NY, USA, 9–15 July 2016; pp. 2153–2159.

52. Wang, Y. Survey on deep multi-modal data analytics: Collaboration, rivalry, and fusion. ACM Trans. Multimed. Comput. Commun.
Appl. (TOMM) 2021, 17, 1–25.

53. Deng, H.; Meng, X.; Wang, H.; Feng, L. Hierarchical multi-view metric learning with HSIC regularization. Neurocomputing 2022,
510, 135–148. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1016/j.ins.2018.08.055
http://dx.doi.org/10.1016/j.neucom.2022.09.073

	Introduction
	Related Work
	Information-Theoretic Large-Scale Semi-Supervised Metric Learning via Proxies
	Notations and Problem Definition
	Learning From Proxy Vectors
	Entropy Regularization
	Joint Dimensional Reduction and Metric Learning

	Optimization for ISMLP
	Experiment
	Datasets, Evaluation Protocol and Compared Methods
	Classification Experimental Result on MNIST and Fashion-MNIST Datasets
	Retrieval Performance on Corel 5K Dataset
	Classification Performance on CUB-200 and Cars-196 Datasets
	Sensitivity Analysis

	Conclusions
	References

