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Abstract: Predicting students’ performance is one of the most important issues in educational data
mining. In this study, a method for representing students’ partial sequence of learning activities is
proposed, and an early prediction model of students’ performance is designed based on a deep neural
network. This model uses a pre-trained autoencoder to extract latent features from the sequence in
order to make predictions. The experimental results show that: (1) compared with demographic
features and assessment scores, 20% and wholly online learning activity sequences can achieve a
classifier accuracy of 0.5 and 0.84, respectively, which can be used for an early prediction of students’
performance; (2) the proposed autoencoder can extract latent features from the original sequence
effectively, and the accuracy of the prediction can be improved more than 30% by using latent features;
(3) after using distance-based oversampling on the imbalanced training datasets, the end-to-end
prediction model achieves an accuracy of more than 80% and has a better performance for non-major
academic grades.

Keywords: predict students’ performance; deep neural networks; online learning activity sequence

1. Introduction

With the rapid development of information technology, online learning systems such
as Learning Management Systems (LMSs) and Massive Open Online Courses (MOOCs)
have been widely used to support learners’ self-regulated and hybrid learning. These
systems not only provide learners with learning resources such as videos, documents,
questionnaires, and quizzes, but also trace learners’ learning activities and generate records
of their learning behavior. They can help instructors identify characteristics of learning
behavior and predict students’ performance through an in-depth analysis of these records.
At present, many researchers use methods such as data mining and machine learning to
extract valuable information from these records, leading to the emergence of educational
data mining [1], an interdisciplinary research field.

Predicting students’ performance is one of the most important issues in educational
data mining, and researchers have made remarkable achievements regarding this issue.
By predicting students’ performance, instructors can understand the situation of learners
effectively and guide learners who may be at risk of academic failure as soon as possible.
Researchers collect records including learners’ demographic features, historical academic
performance and learning behavior, and then establish prediction models using decision
trees, Naive Bayes, logistic regression, K-Nearest Neighbor (KNN) and other algorithms to
predict students’ performance [2]. Due to these systems’ capacity to automatically track
learners’ online learning activities, increasingly, researchers have started to extract valuable
information from large-scale, high-quality learning behavior records. In recent years, deep
neural networks have achieved great success in many fields [3], such as image recognition,
natural language processing, and anomaly detection. Increasingly, researchers have begun
to use deep neural networks to solve problems in educational data mining [4].
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Luo et al. created 20 variables from the logs collected in an LMS to describe learners’
online learning behavior, including login times, total course access and discussion posts,
and they established a prediction model for students’ performance using the Random
Forest (RF) method [5]. Lee et al. collected the records of learners watching videos from an
MOOC and established a regression model regarding the scores obtained on courses using
a Feedforward Neural Network (FNN) [6]. Xie et al. gathered logs from three courses from
SPOC, established dozens of variables to describe online learning behavior, and used ECOC-
based algorithms to establish a prediction model of students’ performance [7]. Although
these predictions achieved high accuracy, there are two flaws. Firstly, the variables/features
of learning behavior used to predict students’ performance can only be created after the
learners finish all their learning activities; therefore, it is impossible to predict performance
in advance. Secondly, the established prediction models cannot extract more representative
latent features from the raw records, which affects the accuracy of the predictions.

In this study, we proposed a representation of an online learning activity sequence,
which can be used as the input for a deep neural network, so that the students’ performance
can be predicted at the beginning of and during online learning. In addition, we designed
an autoencoder based on a deep neural network, which can extract latent features from
the original representation to improve the accuracy of the predictions. Based on the
representation and the autoencoder, we designed an end-to-end prediction model of a
student’s performance based on their individual online learning activity sequence.

Specifically, the contributions of this paper are as follows:

(1) We propose a representation of an online learning activity sequence that can be used
as the input for a deep neural network to predict students’ academic performance.

(2) We design an unsupervised autoencoder based on a deep neural network. This
can extract latent features from the sequence of students’ online learning activities,
which can then be used for visual analysis and further improve the accuracy of our
predictions.

(3) We designed an end-to-end prediction model of student’s performance based on the
online learning activity sequence. This model is composed of an autoencoder and a
classifier based on a deep neural network. Aiming to address the imbalance in the
training dataset, we use an algorithm based on K-Means and SMOTE to resample the
training dataset, which improves the accuracy of the prediction model for non-major
classes.

The rest of this article is organized as follows. In Section 2, we introduce the pre-
liminaries and background of this study and discuss related works. We propose a new
representation, autoencoder, and end-to-end prediction model in Section 3. The results of
the experiment are shown and discussed in Section 4. In Section 5, we list the key findings
of this study and discuss potential future research directions.

2. Problem Definition and Related Work
2.1. Problem Definition

In educational data mining, the prediction of students’ performance is regarded as a
classification task of supervised learning. Researchers collect a training dataset containing
students’ demographic features, assessment scores, online learning behavior variables,
and corresponding performance to train the models established by algorithms based on
machine learning. After training, the prediction results of a student’s performance can be
obtained by inputting the new student’s features into the prediction model. A training
dataset D containing m students can be expressed as D = {(S1, P1), (S2, P2), . . ., (Sm, Pm)};
Si is the feature vector of the i-th student; and Pi is the academic performance of the i-th
student. The prediction model obtained by training can be regarded as a function f . For a
student with an unknown performance of feature vector Sx, we can obtain the prediction
result of performance Px by using f based on Sx, which is then expressed as Px = f (Sx). If
Sx is a sequence of features, an early prediction means that using the part of Sx in front can
predict a student’s performance.
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2.2. Related Work

Online learning behavior analysis has become one of the most concerning issues in
learning analysis and educational data mining. Researchers identify learning behavior
patterns [8–11], measure learning engagement [12–14], identify cognitive styles [15,16],
set up students’ portraits [17,18] and recommend learning resources [13,19] by analyzing
student records of online learning behavior. The results of these studies reflect that the
records of students’ online learning behavior contain a lot of important information in the
learning process.

Luo et al. extracted 20 features from the logs of an LMS to describe learners’ online
learning behavior. These features were statistics of students accessing different online
learning activities. They also used the Random Forest method to establish a prediction
model of students’ performance, expressed in six grades, A-F, with an average prediction
accuracy of 49% in five types of courses [5]. Lee et al. gathered the logs of students’
watching videos in two courses from MOOC, extracted 16 features of watching videos and
8 features of answering questions, and established a regression model of course scores
using a feedforward neural network. Under the condition that the model contained eight
hidden layers, the Mean Absolute Error (MAE) between the prediction results and actual
scores was reduced to 6.8 [6]. Xie et al. collected logs regarding the mixed teaching
of information technology courses in three universities from SPOC, but did not specify
what features were created to describe online learning behavior. The experimental results
showed that the prediction model established using the ECOC algorithm had a higher
prediction accuracy than the classical SVM method, with a prediction accuracy of 80% [7].
Wang et al. collected logs of 488 undergraduates in 10 courses from Moodle, which is the
most famous LMS, and extracted 10 indicators of activity engagement, including counting-
based and duration-based features. They used the Partial Least Squares (PLS) method to
establish a structural model of online behavioral engagement and learning achievement
and analyzed the online engagement activities that have the greatest impact on learning
achievement [20]. They extracted eight counting-based behavioral features from the logs
and established a four-class prediction model using the decision tree, achieving a prediction
accuracy of 70%. Because the decision tree is a typical white box model, they also extracted
the most important six rules that affected academic performance from the established
prediction model [21]. Zhang et al. extracted 19 behavioral features in the five stages of
preparation, progress, resource learning, forum interaction, and test from the logs, and
established a prediction model using logistic regression, achieving a prediction accuracy
of 95% [22]. Chen et al. paid attention to the performance of online short-term courses,
used the content features and behavioral features discussed in forums as indicators, and
established prediction models using four classifiers: K-Nearest Neighbor (KNN), Support
Vector Machine (SVM), Linear Discriminant Analysis (LDA), and Random Forest (RF). The
experimental results showed that the performance of classifiers in different courses was
not consistent, and the highest prediction accuracy was 89% [23].

Li et al. constructed a studen–tproblem interactive network using the mouse logs of
students in the interactive online question library and used a Graph Neural Network (GNN)
to predict students’ performance, achieving an accuracy of 66% and 55% in short-term and
long-term predictions, respectively. The prediction accuracy of their network was higher
than the three classic classifiers of Gradient Boosting Decision Tree (GBDT), SVM and
Logistic Regression (LR) [24]. Thomas et al. extracted the learning behavioral features from
the logs of an LMS and trained a bidirectional Long Short-Term Memory (LSTM) Recurrent
Neural Network, which achieved an 80% prediction accuracy [25]. Zhang et al. established
a prediction model using multi-source sparse attention convolutional neural networks
called MsaCNN to predict students’ course grades according to the features of students and
courses. The prediction accuracy was up to 84.9%, and the experimental results showed
that the performance of this model was better than that of LR, SVM, KNN, decision tree,
RF and other models [26]. Seyhmus et al. collected 3518 undergraduate students’ logs from
an LMS, extracted eight counting-based learning behavioral features, and established a
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prediction model based on FNN to predict students’ course grades, achieving a prediction
accuracy of 80.47% [27]. Hajra et al. constructed the behavioral characteristics of learners
based on VLE click streams, counted the numbers of clicks on different objects by learners
in different time periods, and constructed an artificial neural network to predict learners’
performance [28]. Some researchers use convolution, long-short-term memory (LSTM), and
attention to aggregate sequences extracted from click logs to construct learners’ behavior
features [29–31]. However, these features still depend on learners’ long-term logs, which
cannot be used for early prediction. A comparison of related works is shown in Table 1.

Table 1. Comparison of related works.

Ref. Data Sources Features Machine Learning Model Evaluation

[5] Blended courses 21 features of learning behavior RF Accuracy: 0.49

[6] MOOC 16 features of watching videos
8 features of answering questions FNN MAE: 6.8

[7] SPOC Not specifically indicated ECOC Accuracy: 0.8
[21] MOOC 8 features of learning behavior DT Accuracy: 0.7
[22] Blended courses 19 features of learning behavior LR Accuracy: 0.95

[23] Online short course 3 features of content
10 features of learning behavior SVM Accuracy: 0.89

AUC: 0.8

[24] Online question library
4 features of students
6 features of questions
12 features of mouse movement

GNN Accuracy: 0.66

[25] LMS 5 features of students
4 features of assign and exam BiLSTM Accuracy: 0.8

[26] LMS Sequence of student grade records CNN with attention Accuracy: 0.85
[27] LMS 8 features of learning behavior FNN Accuracy: 0.8
[28] OULA 54 features of learning behavior FNN with SVD Accuracy: 0.86

In general, the results of related works indicate that students’ online learning behavior
records contain a lot of valuable information, such as students’ learning style, degree of
engagement and cognitive characteristics, and they can be used to predict students’ per-
formance. Deep neural networks perform better than the classical classifiers in predicting
students’ performance [32]. However, the features of learning behavior used in previous
studies are based on statistics rather than sequence, and cannot be used to predict students’
performance at the beginning of or during the learning process. Classical classifiers cannot
extract more representative hidden features from the original data. In addition, the compar-
ison of the features of online learning activities and other types of features used to predict
students’ performance is absent in previous studies.

3. Method
3.1. Representation of an Online Learning Activity Sequence

In this section, we propose a representation of the learning activity sequence, and the
results can be used as the input for a deep neural network. This method can be used to
represent the whole or partial sequence of online learning activities of learners, which is
beneficial for predicting learners’ performance as early as possible, rather than generating
statistical features of online learning behavior only after the online course ends. There
are m students S = {s1, s2, . . ., sm}. The online learning process is divided into n phases
according to durations such as hours, days, or weeks, or according to different modules of
the course P = {p1, p2, . . ., pn}. A collection of c online learning activities that we observe
is A = {a1, a2, . . ., ac}. We represent the sequence of learning activities of all students as a
three-dimensional tensor Rm×n×c, and element ri,j,k in R represents the weight of learning
activity ak attended by student si in phase pj. The weight can be the time spent, the number
of clicks or the scores obtained by a student on this learning activity recorded by the online
learning system.
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We use an example to explain this representation in detail. Table 2 contains some
sample logs of students’ learning behaviors recorded by the learning management system,
including the duration of two students’ three learning activities in two days. We take the
duration directly as the weight of this activity. The sequence of these students’ online
learning activities can be represented by a three-dimensional tensor, as shown in Figure 1a.

Table 2. Sample logs of students’ learning behaviors.

Student Date Activity Duration (Minute)

S1 1 January 2022 A1 25

S1 1 January 2022 A2 30

S1 1 January 2022 A3 50

S1 2 January 2022 A1 10

S1 2 January 2022 A3 50

S2 1 January 2022 A1 20

S2 1 January 2022 A2 5

S2 1 January 2022 A3 100
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Figure 1. Three-dimensional tensor representing the sequence of students’ online learning activities.

As can be seen from Figure 1a, the representation of a student’s learning activities
in a phase is similar to the representation of Bag Of Word (BOW) [33], which is based on
the assumption that there is no significant difference between different students’ activity
sequences in a phase. For the activities in which students do not participate in a phase,
the representation sets the weight of these activities as 0. In order to avoid the influence of
different orders of magnitude on the weights and accelerate the convergence of the deep
neural network during the training, we use the Max–Min Value (1) to normalize all weights
according to the type of activity. In this example, the weight of activity A1 is {25, 10, 20},
and the weight of A2 is {30, 5}, while the weight of A3 is {50, 50, 100}. After normalization,
the final representation is shown in Figure 1b.

X′ =
X− Xmin

Xmax − Xmin
(1)

3.2. Autoencoder of Learning Activity Sequence

Autoencoder is a self -supervised deep learning method, which has the ability to rep-
resent learning and dimensionality reductions. It has achieved great success in many fields,
such as image compression and anomaly detection [34]. Using the proposed representation,
the online learning behavior sequence of all students can be used as the input for the deep
neural network, but this representation will lead to the high-dimensional curse [35]. If
we want to use this sequence for prediction, we need to use a one-dimensional vector
with n × c dimension as a student’s feature. Usually, an online course is divided into
many phases, according to days or weeks, and includes dozens of types of activities, so
the dimensions of the feature vectors may be in the hundreds or even thousands, which
seriously affects the accuracy of recognition and predictionn. To alleviate this problem, we
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designed an autoencoder based on a deep neural network to reduce the dimension of the
original feature vectors. The autoencoder can extract low-dimensional latent features from
the original feature vectors and can be integrated with other deep neural networks as part
of an end-to-end system. The structure of our autoencoder is shown in Figure 2.
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As shown in Figure 2, the autoencoder we designed includes an input layer, an output
layer, and six hidden layers. The number of neurons contained in the input layer and the
output layer is equal to the dimension of the original feature vectors, and both are n × c.
The number of artificial neurons contained in other hidden layers is shown in this figure.
The activation function used by all layers except the two hidden layers is the Rectified
Linear Activation Function (RELU) [36], and the size of the latent feature generated by
the encoder can be customized. During training, the autoencoder uses the cross-entropy
function (2) to obtain the loss between the original input and the reconstructed input.

loss = − 1
m∑ m

i=1[xilnx̂i + (1− x̂i)ln(1− xi)] (2)

After pre-training, the autoencoder can be integrated with other classifiers to form a
new prediction model. In the training process, the autoencoder requires three parameters:
the number of epochs, named countepoch, the size of a batch, named batch_size, and an
optimizer for updating the parameters of the artificial neurons, named optimizer. For
each batch of the training dataset, we need to obtain the loss between the output of the
autoencoder and the original input and use the optimizer to update the parameters of all
neurons in the autoencoder according to the gradients.

3.3. End-to-End Prediction Model of Students’ Performance

Based on the method of representation and the use of the autoencoder to extract
latent features from online learning activity sequences, as described in the previous two
subsections, we designed an end-to-end performance prediction model based on each
student’s online learning activity sequence. The structure of this prediction model is shown
in Figure 3. This model can take part of the learner’s online learning activity sequence as
input, and use the pre-trained autoencoder to extract latent features from the sequence to
predict the learner’s performance as soon as possible.



Appl. Sci. 2023, 13, 8933 7 of 17

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 18 
 

3.3. End-to-End prediction Model of Students’ Performance 
Based on the method of representation and the use of the autoencoder to extract la-

tent features from online learning activity sequences, as described in the previous two 
subsections, we designed an end-to-end performance prediction model based on each stu-
dent’s online learning activity sequence. The structure of this prediction model is shown 
in Figure 3. This model can take part of the learner’s online learning activity sequence as 
input, and use the pre-trained autoencoder to extract latent features from the sequence to 
predict the learner’s performance as soon as possible. 

As can be seen from Figure 3, the input for this model is the students’ logs of learning 
behavior, obtained from an LMS. Logs are normalized and represented to generate the 
input for the autoencoder. The autoencoder extracts the latent features from the original 
feature vectors for the FNN-based classifier to predict students’ performance. The number 
of neurons contained in the last hidden layer is equal to the number of prediction grades. 
The result of the prediction model is the students’ grades. 

 
Figure 3. The structure of the proposed end-to-end prediction model of students’ performance. 

The hyperparameters‘ setting is one of the most important factors affecting the per-
formance of a deep neural network [37]. The FNN-based classifier we designed contains 
five hidden layers, and the maximum number of neurons in a hidden layer is 512. These 
two important hyperparameters come from our previous survey. The survey results show 
that when the number of hidden layers exceeds five and the maximum number of neurons 
in the hidden layer is 512, FNN can generally achieve a prediction accuracy of more than 
80% in various tasks predicting students’ performance. 

The training classifier and training autoencoder are supervised learning [38] and self-
supervised learning [39], respectively, which is the most significant difference between 
them. The parameters required for training a classifier named countepoch, batch_size, op-
timizer are the same as those in the training autoencoder. We oversampled the training 
dataset at the beginning. This is because almost all training datasets on students’ perfor-
mance are imbalanced. Students with a grade of excellent or fail are fewer than those re-
ceiving other grades. If the prediction model is directly trained by the original imbalanced 
datasets, it will cause the problem of minority class deviation. The cross-entropy function 
(8) is still used to obtain the loss function between the predicted result and actual grades. 

  

Figure 3. The structure of the proposed end-to-end prediction model of students’ performance.

As can be seen from Figure 3, the input for this model is the students’ logs of learning
behavior, obtained from an LMS. Logs are normalized and represented to generate the
input for the autoencoder. The autoencoder extracts the latent features from the original
feature vectors for the FNN-based classifier to predict students’ performance. The number
of neurons contained in the last hidden layer is equal to the number of prediction grades.
The result of the prediction model is the students’ grades.

The hyperparameters‘ setting is one of the most important factors affecting the perfor-
mance of a deep neural network [37]. The FNN-based classifier we designed contains five
hidden layers, and the maximum number of neurons in a hidden layer is 512. These two
important hyperparameters come from our previous survey. The survey results show that
when the number of hidden layers exceeds five and the maximum number of neurons in
the hidden layer is 512, FNN can generally achieve a prediction accuracy of more than 80%
in various tasks predicting students’ performance.

The training classifier and training autoencoder are supervised learning [38] and self-
supervised learning [39], respectively, which is the most significant difference between them.
The parameters required for training a classifier named countepoch, batch_size, optimizer
are the same as those in the training autoencoder. We oversampled the training dataset at
the beginning. This is because almost all training datasets on students’ performance are
imbalanced. Students with a grade of excellent or fail are fewer than those receiving other
grades. If the prediction model is directly trained by the original imbalanced datasets, it
will cause the problem of minority class deviation. The cross-entropy function (8) is still
used to obtain the loss function between the predicted result and actual grades.

4. Experimental Results and Discussion
4.1. Setting of Experiments
4.1.1. Dataset

The experimental dataset used in this research is the Open University Learning Ana-
lytics (OULA) dataset [40], which is one of the most well-known open and high-quality
datasets in the field of educational data mining. It includes demographic features of
students and interactive records of students’ learning activities in the virtual learning envi-
ronment (VLE). The dataset contains the academic performance grades, 32,593 students’
scores of assessments in 22 courses and 10,655,280 records of interaction between students
and online learning activities.
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There are four reasons we used the OULA dataset as the experimental dataset in this
study. Firstly, the dataset contains logs of students’ online learning activities, which is
consistent with the goals of this study. Secondly, the dataset contains the performance
grade of each student in each course, which can be used to evaluate learning. Thirdly, the
volume of the dataset is extremely large, which can effectively avoid overfitting during
model training and ensure that the model has a better generalization ability. Fourthly, the
dataset is publicly available, and many studies have been conducted on it, which allows
for meaningful comparison.

In this dataset, the performance of students in each course is described by four grades:
Distinction, Fail, Pass, and Withdraw. As shown in Figure 4, in 22 courses, the number
of students with different grades is imbalanced, and the students obtaining a Fail or
Distinction are always fewer than the students obtaining a Pass and Withdraw.
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4.1.2. Experimental Environment and Parameters of Training

We used Numpy, Pandas, and Pytorch, which are famous Python packages to rep-
resent, normalize, and construct autoencoder and prediction models in practice. We
performed the experimental program on a high-performance computer. The fundamental
configuration of this computer is i7-4790 3.6 Ghz, 4 core, 16 GB memory, NVIDIA geforce
GTX 1080 Ti. The five baseline models used for comparison were from scikit-learn 1.2.1,
which are LogisticRegression, RandomForestClassifier, LinearSVC, KNighborsClassifier
and MultinomialNB. These models are most commonly used by researchers to predict stu-
dents’ performance [2]. The parameters of these models were the default values provided
by scikit-learn.

There are several critical parameters in the training autoencoder and prediction model.
According to the configuration of the computer and the properties of the experimental
dataset, we carried out many preexperiments, aiming to reduce the value of the loss
function as much as possible and avoid overfitting. The selected training parameters are
shown in Table 3.
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Table 3. Training parameters selected in this study.

Parameter Value Description

countEpoch 500 Epoch for training autoencoder and prediction model
batch_size 200 Size of each batch of training data

optimizer Adam Adaptive Moment Estimation, which is the most popular optimizer at
present

learning_rate 0.001 Rate of updating artificial neuron parameters

test_percent 0.25 Proportion of dataset split for each course: 75% for training and 25% for
evaluation

4.1.3. Metrics

Since the prediction of students’ performance is regarded as a classification problem,
we used the metrics of classification to illustrate the performance of the proposed represen-
tation and the designed prediction model. Because the dataset is imbalanced, its accuracy
cannot exactly illustrate the performance of the prediction model. As there are four student
grades in the dataset, we used TPi, FPi, FNi, TNi to represent True Positive (TP), False
Positive (FP), False Negative (FN) and True Negative (TN) in the confusion matrix of each
grade. The precision and recall of each grade are denoted by Pi, Ri respectively. The
accuracy (Acc), precision (Pre), recall (Rec), and F1-score (F1) of the prediction model are
defined as (3)–(6), respectively. They have an equal impact on the performance of the
prediction model, both the major grades and non-major grades.

Acc =
1
4∑ 4

i=1
TPi + TNi

TPi + FPi + FNi + TNi
(3)

Pre =
1
4∑ 4

i=1
TPi

TPi + FPi
(4)

Rec =
1
4∑ 4

i=1
TPi

TPi + FNi
(5)

F1 =
1
4∑ 4

i=1
2× Pi × Ri

Pi + Ri
(6)

4.2. Results and Discussion

We performed three groups of experiments to evaluate the performance of the repre-
sentation of the online learning activity sequence, autoencoder, and end-to-end prediction
model. To avoid the influence of different courses, we split the experimental dataset into
22 subsets according to the courses, and the logs of each course were independently used
for model training and evaluation.

The experimental dataset contains student logs on 20 activities. We chose the logs
representing students’ learning activities, including externalquiz, forumng, glossary, oucol-
laborate, oucontent, ouelluminate, ouwiki, questionnaire, quiz and resource, while ignoring
students’ logs of non-learning activities, such as returning to the home page, and clicking
on folders. In order to eliminate random difference, all experiments were carried out five
times, and the reported experimental results are the average of all results.

4.2.1. Evaluation of Representation

In order to evaluate the performance of the representation of the online learning
activity sequence proposed in this study, we transformed the logs of students’ interaction
with VLE in each course as a three-dimensional tensor Rm×n×c by day. Then, we divided
the tensor R of each course into 10 sub-tensors according to its second dimension, with
the proportion of 10–100%; that is, each sub-tensor increases the length of the learning
activities sequence by 10%. Sub-tensors with different proportions can be used as learning
activity sequences of students in different learning phases. Clearly, the sequence of learning
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activities is short at the beginning, but it will be longer and longer in the subsequent
learning phases.

We used the FNN-based classifier in Figure 3 to evaluate the performance of prediction
caused by the different proportions of sub-tensors. The experimental results are shown in
Figure 5.
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Figure 5. Accuracy of prediction obtained from online learning activity sequences with different
proportions.

In Figure 5, there are 22 groups of data points, each of which corresponds to a course.
Data points with different colors represent the prediction accuracy achieved by using
online activity sequences with different proportions of this course. As can be seen from
Figure 5, for most courses, a longer learning activity sequence can lead to a higher prediction
accuracy, which shows that there is a strong correlation between the online learning activity
sequence and the final performance of students. Moreover, 20% of sequences can make the
classifier achieve an accuracy of 0.5, and 30% of sequences can achieve an accuracy of more
than 0.6, which means that this representation can be used to predict learners’ performance
as soon as possible.

In order to compare the features representing the online learning activity sequence with
other types of features, we took the online learning activity sequence, assessment scores and
the demographic features of students as the inputs for the FNN-based classifier in Figure 3,
used the parameters in Table 3 to train the classifier, and used 25% of the records of each
course for evaluation. In the experimental dataset, the demographic features of students
include gender, region, highest_education, IMD, age, previous_attempts, studied_credits,
and disability. The assessment scores are the percentile scores of students’ periodicity
assessments in the learning process. The experimental results are shown in Table 4.

It can be seen from Table 4 that, among the three features, the students’ assessment
scores can achieve the best prediction results on the classifier. The prediction accuracy
obtained using the learning activity sequence is 10% lower than that using assessment
scores, while the prediction accuracy obtained using the students’ demographic features is
the lowest. Although the assessment scores achieve the best prediction results, they can
only be obtained after students have completed all learning activities and cannot be used
for the early and real-time prediction of performance. The prediction result of the online
learning activity sequence reflects its a strong correlation with students’ final academic
performance, and it can be used to predict students’ performance as soon as possible and
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in real time. There is also a certain correlation between demographic features and students’
academic performance, which can be combined with other types of features.

Table 4. Prediction accuracy obtained by different types of features.

Course
Demographic Features Score of Assessment Sequence of Online Learning Activities

Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

AAA_2013J 0.64 0.16 0.25 0.20 0.83 0.41 0.47 0.43 0.804 0.204 0.3 0.24
AAA_2014J 0.61 0.15 0.25 0.19 0.74 0.42 0.41 0.40 0.768 0.192 0.3 0.24
BBB_2013B 0.35 0.25 0.28 0.26 0.61 0.42 0.45 0.42 0.66 0.444 0.516 0.456
BBB_2013J 0.37 0.28 0.28 0.26 0.67 0.41 0.42 0.40 0.564 0.144 0.3 0.192
BBB_2014B 0.37 0.32 0.30 0.29 0.61 0.42 0.45 0.42 0.612 0.492 0.492 0.456
BBB_2014J 0.44 0.32 0.31 0.30 0.69 0.45 0.47 0.43 0.576 0.144 0.3 0.192

CCC_2014B 0.45 0.14 0.25 0.17 0.61 0.38 0.47 0.38 0.684 0.42 0.528 0.432
CCC_2014J 0.39 0.30 0.28 0.27 0.61 0.35 0.46 0.38 0.696 0.564 0.552 0.528
DDD_2013B 0.36 0.27 0.28 0.27 0.63 0.43 0.45 0.44 0.696 0.468 0.504 0.492
DDD_2013J 0.42 0.32 0.31 0.30 0.67 0.44 0.49 0.44 0.708 0.48 0.516 0.492
DDD_2014B 0.36 0.27 0.27 0.25 0.60 0.40 0.47 0.40 0.648 0.468 0.528 0.492
DDD_2014J 0.43 0.28 0.30 0.28 0.69 0.48 0.51 0.48 0.768 0.516 0.552 0.528
EEE_2013J 0.45 0.14 0.25 0.18 0.68 0.37 0.46 0.39 0.588 0.144 0.3 0.192
EEE_2014B 0.33 0.23 0.26 0.24 0.54 0.35 0.38 0.31 0.66 0.6 0.588 0.588
EEE_2014J 0.40 0.21 0.26 0.21 0.46 0.31 0.36 0.27 0.54 0.132 0.3 0.192
FFF_2013B 0.39 0.27 0.28 0.26 0.66 0.44 0.47 0.45 0.78 0.54 0.576 0.552
FFF_2013J 0.39 0.28 0.28 0.27 0.67 0.45 0.48 0.45 0.732 0.504 0.564 0.516
FFF_2014B 0.35 0.25 0.27 0.25 0.65 0.45 0.48 0.45 0.516 0.132 0.3 0.18
FFF_2014J 0.40 0.31 0.30 0.29 0.60 0.39 0.47 0.41 0.78 0.528 0.588 0.552

GGG_2013J 0.42 0.19 0.24 0.21 0.70 0.37 0.42 0.39 0.576 0.144 0.3 0.192
GGG_2014B 0.37 0.22 0.26 0.23 0.67 0.37 0.42 0.38 0.564 0.348 0.432 0.384
GGG_2014J 0.36 0.24 0.26 0.23 0.66 0.39 0.41 0.37 0.636 0.576 0.564 0.564

Average 0.41 0.25 0.27 0.25 0.65 0.4 0.45 0.4 0.55 0.31 0.38 0.33

A comparison of the prediction accuracy achieved by the three features in 22 courses
is shown in Figure 6.
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As can be seen from Figure 6, there are two outliers when using demographic features
and assessment scores, which indicates that these two types of features are occasionallt
abnormally related to student performance. Therefore, using these two kinds of features
probably cannot stably predict students’ final performance of students. When the online
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learning activity sequence is used as a feature, the prediction accuracy has no outliers,
which shows that students’ online learning activity sequence can be used to stably predict
students’ performance.

4.2.2. Evaluation of Autoencoder

The online learning activity sequence obtained by the proposed representation directly
has the problem of high dimensions. In order to alleviate this issue, we design an au-
toencoder to transform the two-dimensional vector Rm,n×c into Rm,code_size, and code_size
should be much smaller than n × c. In this group of experiments, we set code_size to 3
and used visualization to evaluate the autoencoder. The experimental dataset contains
sequences of students’ online learning activities over multiple semesters. In order to
avoid redundancy, we only selected the results of one semester of each course to show the
performance of the autoencoder. The experimental results are shown in Figure 7.
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In Figure 7, each data point represents a student, and the color of the data point repre-
sents the final performance of the student. As can be seen from Figure 7, the autoencoder
we designed can compress students’ high-dimensional features into a smaller feature space,
which is more suitable for clustering, classification, and other tasks. In Figure 7, students
with the same performance in a course have a closer distance, which shows that the au-
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toencoder can extract latent features that have a significant impact on performance. Since
extracting latent features from the original high-dimensional features using an autoencoder
is an unsupervised learning task, it also has the advantage of not requiring the special
annotation of students.

In addition, we set the code_size to 6, 9, 12, 18, 24, 36, 48, respectively. The purpose of
this was to evaluate the influence of latent features with different sizes on the prediction
results. In order to avoid the influence of random factors, we compared the average value
of the prediction results of all courses. The experimental results are shown in Figure 8.
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Figure 8. Influence of different sizes of latent features on prediction results.

As can be seen from Figure 8, the accuracy of prediction using the latent features
extracted by the autoencoder generally improved; when code_size is 18, the improvement
in prediction accuracy is the most significant, reaching 25%. This also shows that the
autoencoder can extract more essential features, which can affect the performance of the
original online learning activity sequence. However, when using latent features, the Pre,
Rec, and F1 of the prediction model do not significantly improve, which indicates that the
accuracy of the prediction model for non-major grades is unsatisfactory. The bias of the
prediction model may be caused by an imbalanced training dataset.

4.2.3. Evaluation of End-to-End Prediction Model

In order to alleviate the bias caused by the imbalanced training dataset and improve
the prediction accuracy of the model for non-major grades, we resampled the training
dataset before training. We used an oversampling method that can make full use of the
information in the training dataset. This method can synthesize a new record based on the
existing records to make the dataset roughly balanced. As can be seen from Figure 7, the
latent features generated by the autoencoder of students with the same grades have a closer
distance in the feature space, so we used the distance-based algorithm KMeansSMOTE [41]
to oversample the imbalanced training dataset. KMeansSMOTE uses K-MEANS [42] for
clustering and SMOTE [43] for oversampling, including three steps, clustering, filtering,
and oversampling, which avoids the generation of noise and effectively overcomes the
imbalance between and within classes. The end-to-end prediction model composed of the
pretrained autoencoder and the classifier trained with the resampled dataset is shown in
Figure 5, and the results of its evaluation are shown in Figure 9.
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It can be seen from Figure 9 that the new prediction model we designed has a better
prediction performance than the original model, especially in the three metrics of Pre, Rec,
and F1, which increased by more than 10%, reflecting that the end-to-end prediction model
has a better prediction accuracy for non-major grades. In particular, when code_size is 18,
the new model has the best performance. Clearly, the size of the latent features extracted
by the autoencoder has a significant impact on the prediction performance, and how to set
the size of the latent features is a problem that needs further discussion.

We compared the performance of our model with five selected baseline models, and
the results are shown in Table 5. From Table 5, we can see that our model has obvious
advantages compared to the five baseline models, especially for non-major academic
grades.

Table 5. Performance comparison between our model and baseline model.

Model Acc Pre Rec F1

Naïve Bayes 0.47 0.14 0.26 0.17
SVM 0.58 0.41 0.39 0.35
Logistic Regression 0.53 0.29 0.32 0.25
Random Forest 0.66 0.56 0.48 0.46
KNN 0.38 0.34 0.32 0.27
Our Model 0.84 0.64 0.57 0.59

5. Key Findings and Future Research
5.1. Key Findings

(1) Students’ online learning activity sequences can be used to effectively predict stu-
dents’ learning performance. Compared with students’ demographic features and
assessment scores, a small part of the online learning activity sequences can be used
to predict students’ performance at the beginning, rather than waiting for all learning
activities to be completed. The prediction result based on online learning activity
sequence has better stability, and the prediction accuracy is proportional to the length
of the online learning activity sequence.

(2) The autoencoder based on a deep neural network can extract latent features with lower
dimensions from the original high-dimensional online learning activity sequences,
which contains the essential information of learners’ online learning behavior, so that
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students with the same performance have a closer distance in the new feature space.
Using latent features can further improve the accuracy of performance prediction.

(3) The classifier based on a deep feedforward neural network can be used to predict
students’ performance. Although there is no clear standard for the selection of
hyperparameters of this network, the experimental results show that the network with
more than five hidden layers and a single hidden layer containing up to 512 artificial
neurons can achieve a prediction accuracy of more than 70%. The parameters used
to train the autoencoder and classifier based on a deep neural network need to be
selected through experiments according to the hardware, volume and properties of
the training datasets.

(4) The training dataset containing students’ performance is often imbalanced, which
leads to bias in the prediction model for non-major grades. Distance-based and
oversampling methods such as KMeansSMOTE can generate a new, balanced training
dataset and improve the performance of the prediction model.

5.2. Future Research

Aiming to predict students’ performance, which is an important problem in edu-
cational data mining, this study proposed a representation of students’ online learning
activity sequence and designed an autoencoder and end-to-end performance prediction
model based on a deep neural network. Important problems that need to be studied in
the future include the joint representation of various types of features, the continuous
improvement in the autoencoder to enhance the representativeness of extracted latent
features, and the method of setting hyperparameters and training parameters for a deep
neural network.
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27. Aydoğdu, Ş. Predicting student final performance using artificial neural networks in online learning environments. Educ. Inf.
Technol. 2020, 25, 1913–1927. [CrossRef]

28. Waheed, H.; Hassan, S.-U.; Aljohani, N.R.; Hardman, J.; Alelyani, S.; Nawaz, R. Predicting academic performance of students
from VLE big data using deep learning models. Comput. Hum. Behav. 2020, 104, 106189. [CrossRef]

29. Zheng, Y.; Shao, Z.; Deng, M.; Gao, Z.; Fu, Q. MOOC dropout prediction using a fusion deep model based on behaviour features.
Comput. Electr. Eng. 2022, 104, 108409. [CrossRef]

30. Fu, Q.; Gao, Z.; Zhou, J.; Zheng, Y. CLSA: A novel deep learning model for MOOC dropout prediction. Comput. Electr. Eng. 2021,
94, 107315. [CrossRef]

31. Yin, S.; Lei, L.; Wang, H.; Chen, W. Power of attention in MOOC dropout prediction. IEEE Access 2020, 8, 202993–203002.
[CrossRef]

32. Xiao, W.; Hu, J.J.E.R. A state-of-the-art survey of predicting students’ performance using artificial neural networks. Eng. Rep.
2023, e12652. [CrossRef]

33. Sethy, A.; Ramabhadran, B. Bag-of-Word Normalized n-Gram Models. In Proceedings of the Ninth Annual Conference of the
International Speech Communication Association, Brisbane, Australia, 22–26 September 2008.

34. Yang, Z.; Xu, B.; Luo, W.; Chen, F. Autoencoder-based representation learning and its application in intelligent fault diagnosis: A
review. Measurement 2022, 189, 110460. [CrossRef]

35. Donoho, D.L. High-dimensional data analysis: The curses and blessings of dimensionality. AMS Math Chall. Lect. 2000, 1, 32.
36. Agarap, A.F. Deep learning using rectified linear units (relu). arXiv 2018, arXiv:1803.08375.

https://doi.org/10.1007/s11760-021-01869-7
https://doi.org/10.1177/0735633119825575
https://doi.org/10.1177/0735633115571307
https://doi.org/10.1016/j.compedu.2016.10.001
https://doi.org/10.1109/TBDATA.2021.3125204
https://doi.org/10.1007/s10639-019-10053-x
https://doi.org/10.1016/j.chb.2019.106189
https://doi.org/10.1016/j.compeleceng.2022.108409
https://doi.org/10.1016/j.compeleceng.2021.107315
https://doi.org/10.1109/ACCESS.2020.3035687
https://doi.org/10.1002/eng2.12652
https://doi.org/10.1016/j.measurement.2021.110460


Appl. Sci. 2023, 13, 8933 17 of 17

37. Zhang, X.; Chen, X.; Yao, L.; Ge, C.; Dong, M. Deep Neural Network Hyperparameter Optimization with Orthogonal Array
Tuning. In Proceedings of the International Conference on Neural Information Processing, Vancouver, Canada, 8–14 December
2019; Springer: Berlin/Heidelberg, Germany, 2019.

38. Hastie, T.; Tibshirani, R.; Friedman, J. Overview of Supervised Learning; Springer: Berlin/Heidelberg, Germany, 2009; pp. 9–41.
39. Ericsson, L.; Gouk, H.; Loy, C.C.; Hospedales, T.M. Self-supervised representation learning: Introduction, advances, and

challenges. IEEE Signal Process. Mag. 2022, 39, 42–62. [CrossRef]
40. Kuzilek, J.; Hlosta, M.; Zdrahal, Z. Open university learning analytics dataset. Sci. Data 2017, 4, 170171. [CrossRef]
41. Last, F.; Douzas, G.; Bacao, F. Oversampling for imbalanced learning based on k-means and smote. arXiv 2017, arXiv:1711.00837.
42. Krishna, K.; Murty, M.N. Genetic K-means algorithm. IEEE Trans. Syst. Man Cybern. Part B 1999, 29, 433–439. [CrossRef]
43. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell.

Res. 2002, 16, 321–357. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/MSP.2021.3134634
https://doi.org/10.1038/sdata.2017.171
https://doi.org/10.1109/3477.764879
https://doi.org/10.1613/jair.953

	Introduction 
	Problem Definition and Related Work 
	Problem Definition 
	Related Work 

	Method 
	Representation of an Online Learning Activity Sequence 
	Autoencoder of Learning Activity Sequence 
	End-to-End Prediction Model of Students’ Performance 

	Experimental Results and Discussion 
	Setting of Experiments 
	Dataset 
	Experimental Environment and Parameters of Training 
	Metrics 

	Results and Discussion 
	Evaluation of Representation 
	Evaluation of Autoencoder 
	Evaluation of End-to-End Prediction Model 


	Key Findings and Future Research 
	Key Findings 
	Future Research 

	References

