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In recent years, the investigation into and development of graphene-based materials
have been continuing, and have formed the basis of a remarkably large number of the
latest publications in the fields of materials science, applied chemistry, and electronics.
The interest in graphene-based materials ranges from the synthesis to the modification of
them, from the point of view of their practical application in several industrial and research
fields. Most applications of GO-based materials and components take advantage of their
properties such as capability of rejecting monovalent ions, high salt rejection, high chemical
and physical stability, high water permeability, high selectivity, and reduced fouling [1].

The peculiar chemical and physical properties of GO-based materials enable them to
form into a variety of shapes. Among others, membrane production takes advantage of the
self-assembling behavior of graphene and graphene-related materials, enabling the possi-
bility of producing thin components with controllable selectivity and high permanence [2].
The separation capacity relies on the sieving ability of nanochannels in the membrane,
according to molecular size [3]. Accordingly, G- and GO-based membranes have found
applications in several areas, such as gas separation [4], organic solvent filtration [5], water
purification [6], and desalination [7,8]. The latter topics are of particular interest, as the
global water demand has been estimated to continue at a similar growth rate until 2040,
projecting a 20 to 30% increase from existing water consumption rates [9]; based on these
data, hybrid graphene-based membrane materials may represent a valuable solution for
water purification to meet global freshwater demand. The performance and selectivity of
G- and GO-based materials can be further increased by properly modifying the chemical
properties of the membrane, either via chemical modification [10] or via the addition of a
photochemical functionality, by introducing photo-active materials such as titania [11]. In
addition to the removal of pollutants, graphene and its derivatives are materials that are
well known to be used for water desalination, which represents another valuable approach
to the fulfilment of a resilient and sustainable use of water resources [12].

Graphene-based materials have also found a wide range of applications in the field of
energy production and storage. In the first case, GO has been investigated as a possible
alternative electrolyte in hydrogen-fed fuel cells (i.e., Proton Exchange Membrane Fuel
Cells, PEM) at high temperatures and low relative humidity, which would enhance both
kinetic aspects and the efficiency of the electrode reaction with respect to what occurs
currently with the most widespread electrolyte (i.e., Nafion®), operating at 60–80 ◦C.

GO has attracted a lot of interest due to the easy production of both self-standing [13,14]
and hybrid electrolytes, with the latter based on Nafion® [15–17] or more thermally stable
polymers based on polyimides [18,19] or poly(ether sulfones/ketones) [20,21]. Composites
with pure or functionalized GO can show higher mechanical properties as well as enhanced
water uptake and proton-conducting behaviors.

The important self-assembling, mechanical, and insulating features of GO are derived
from oxygen-bearing functional groups, namely hydroxyl, carboxyl, carbonyl, and epox-
ide moieties [22], which can lead to the formation of hydrophilic regions separated by
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hydrophobic graphitic domains. The resulting structure may enhance the ion exchange
and in particular the transport of protons [23].

Free-standing pure GO membranes have been fabricated and successfully exploited as
electrolytes in preliminary tests, showing a higher water uptake compared to Nafion® [14,24]
as well as better mechanical properties, lower permeability to hydrogen, and promising
in-plane proton conductivity. However, a lower open circuit voltage compared to the one
exhibited by Nafion®-based devices and poor fuel cell performance have been detected,
which may be due to both low through-plane conductivity and high-temperature dura-
bility. Therefore, innovative procedures to modify GO with alternative functionalities
(e.g., sulfonic groups covalently bonded with the basal plane) are needed to enhance ionic
conductivity and both the thermal and structural stability of the material.

G and G-related materials also have excellent supporting material properties and
the ability to stabilize various electrocatalysts such as metal nanoparticles, metal oxides,
and polymers. Such properties, together with a certain electrocatalytic ability for redox
reactions, have allowed the use of graphene as a catalytic material for enhanced glucose
oxidation in a glucose fuel cell [25].

The aforementioned channeling properties determined by the stacking of graphene
layers can also be exploited for the development of hydrovoltaic generators. The latter
approach provides a new method for obtaining energy from water that consists of the
hydration of the nanochannels, where the overlapping EDLs can exhibit charge selectivity,
repelling the co-ions while allowing counter-ions to pass through. This characteristic
can enable the generation of electricity via the evaporation of water or directly from
moisture. This represents one of the latest extents of graphene-based materials in the field
of sustainable energy production [26].

In the case of energy storage purposes, for instance, graphene flakes can be incor-
porated in metal oxides to be used as electrodes in lithium-ion batteries (LIBs). It has
been proven that self-assembled SnO2-graphene nanocomposite films can easily have Li-
ions inserted into their structure, achieving high specific energy density without relevant
charge/discharge degradation [27]. Functionalized graphene sheet–sulfur nanocomposites
with a 3D layered structure have also been used for LIBs [28], providing high capacity and
good cycling stability. Porous graphene networks prepared via CVD have been assembled
in LIBs as high-performance anode materials [29], demonstrating high reversible capacity.

Finally, graphene is a valuable candidate for the development of advanced microelec-
tronic components, such as electrochemical sensors. Among others, applications have been
reported such as the detection of free chlorine in water using graphene-like carbon-based
resistive sensors [30], and, in more general terms, the development of new water quality
sensors for the identification of deteriorating water quality [31].
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