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Abstract: Deep convolutional neural networks have demonstrated significant performance improve-
ments in face super-resolution tasks. However, many deep learning-based approaches tend to
overlook the inherent structural information and feature correlation across different scales in face
images, making the accurate recovery of face structure in low-resolution cases challenging. To address
this, this paper proposes a method that fuses multi-scale features while preserving the facial structure.
It introduces a novel multi-scale residual block (MSRB) to reconstruct key facial parts and structures
from spatial and channel dimensions, and utilizes pyramid attention (PA) to exploit non-local self-
similarity, improving the details of the reconstructed face. Feature Enhancement Modules (FEM) are
employed in the upscale stage to refine and enhance current features using multi-scale features from
previous stages. The experimental results on CelebA, Helen and LFW datasets provide evidence that
our method achieves superior quantitative metrics compared to the baseline, the Peak Signal-to-Noise
Ratio (PSNR) outperforms the baseline by 0.282 dB, 0.343 dB, and 0.336 dB. Furthermore, our method
demonstrates improved visual performance on two additional no-reference datasets, Widerface
and Webface.

Keywords: face super-resolution; structure-preservation; attention mechanism; feature fusion

1. Introduction

Face Super-Resolution (FSR) is a subfield of image super-resolution that focuses on
restoring Low-Resolution (LR) face images to High-Resolution (HR) counterparts using
algorithms. It can increase the resolution of an LR face image of low quality and recover
the details. Its purpose is to address the limitations posed by image acquisition systems
or environmental conditions in many real-world scenarios [1]. By doing so, FSR aims to
enhance the quality and improve the visibility of key facial features that are often degraded
in LR images. This technique finds significant applications in various domains, including
face vision tasks [2], public security, and other relevant fields [3,4].

Existing FSR methods can be categorized into two main groups: traditional methods
and deep learning-based methods. Traditional methods can be further classified into
interpolation-based methods, reconstruction-based methods, and learning-based methods.
Notably, Baker et al. [5] were among the first to propose FSR methods that employed manual
image priors and Gaussian image pyramids for face reconstruction. Since then, numerous
significant advancements have been made in this field. During the initial stages of FSR
research, researchers primarily focused on designing shallow learning-based methods
that leveraged techniques such as local linear embedding [6], eigentransformation [7],
and principal component analysis [8]. However, these methods demonstrated limited
representation capabilities, making it challenging to generate high-quality HR face images.
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In recent years, deep learning-based approaches leveraging Convolutional Neural
Networks (CNNs) have made remarkable advancements in various computer vision tasks,
including FSR. The limited information available in LR images makes the task of recov-
ering high-resolution images unstable and non-unique. As a result, there are infinite
possible high-resolution images corresponding to a single low-resolution image, making
super-resolution challenging. To obtain stable and meaningful results, it is essential to
employ appropriate optimization algorithms. Researchers have explored various methods,
including deep learning networks and image priors, to address the ill-posed nature of
super-resolution problems and enhance the performance and stability of super-resolution
techniques. Neural networks, with their ability to extract deep features from images, are
particularly meaningful for super-resolution tasks with insufficient feature information.

Zhang et al. [9] utilize an extremely deep residual network to learn feature representa-
tions of images. The increased depth enhances the network’s capability for deep feature
extraction, leading to the learning of more powerful and informative feature represen-
tations, thus achieving more accurate and detailed super-resolution reconstruction. On
the other hand, Lai et al. [10] employ a Laplacian pyramid to decompose LR images into
multiple scales. Deep convolutional neural networks are then applied at each scale to
extract features, resulting in improved SR performance.

To exploit neural networks for recovering finer facial structures, researchers have
proposed several studies to incorporate additional face prior information [11], such as facial
parsing maps [12], facial heat maps [13], and facial landmarks [14,15], to guide the network
during face reconstruction. Although the inclusion of prior information enhances network
performance, it presents significant limitations. Firstly, acquiring and annotating the prior
information requires additional effort, and obtaining reliable priors from low-resolution
face images is challenging [16]. Secondly, inaccurate face prior information can lead to
erroneous reconstruction outcomes. To address these challenges, alternative methods
without prior knowledge have been proposed [16–19]. These approaches leverage the
powerful representation and learning capabilities of neural networks and achieve excellent
performance by enhancing facial feature representation or utilizing attention mechanisms
to guide the network in recovering facial structures. By circumventing the reliance on
explicit prior information, these methods offer a more robust and effective solution for FSR.

Although deep learning-based methods have significantly improved FSR tasks, they
often overlook the intrinsic features of face images. Firstly, the face possesses fixed key parts
and shapes, such as symmetrical features on both sides and consistent texture structures in
the hair. However, these inherent features are underutilized, leading to a limited represen-
tation capability of the network. As a result, facial deformations occur in the reconstructed
faces, making it challenging to recover accurate details. Additionally, LR face images
exhibit non-local self-similarity, where similar feature patterns occur at different parts and
scales. Unfortunately, existing CNN-based methods tend to neglect the exploitation of this
self-similarity, hindering the recovery of fine facial details.

In light of the aforementioned issues, inspired by SPARNet [16], this paper presents an
improved face super-resolution network that fuses multi-scale features while preserving
structural information, without additional facial prior to supervising the reconstruction
process. The primary contributions are as follows:

• We propose a novel multi-scale residual structure that effectively extracts features
and integrates feature information from two branches: key face components and
intrinsic image structure. This approach aims to restore facial images with improved
structural clarity.

• To address feature loss resulting from network depth and maximize the utilization of
information at different scales, we incorporate pyramid attention and feature enhance-
ment module into the network architecture. These components effectively explore the
correlations among features at various scales, compensating for the loss of information
and aiding in the reconstruction of finer details.
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• The proposed method is evaluated on five publicly available datasets and compared
with other state-of-the-art methods, and the results show that the proposed method
outperforms other methods in both qualitative and quantitative results.

2. Related Work
2.1. Face Super-Resolution

Deep neural networks have revolutionized FSR tasks by achieving remarkable ad-
vancements. Face super-resolution methods can be broadly categorized into two groups
based on the utilization of facial priori information.

The first category comprises methods that leverage facial prior information. Yu
et al. [13] introduced a two-branch multitasking network that utilizes underlying and
intermediate feature information to enforce constraints on the facial components of LR
faces, leading to improved preservation of the complete facial structure. Chen et al. [12]
proposed FSRNet, which achieves impressive results in SR of very low-resolution faces by
incorporating facial landmark heat maps into the feature map to resolve facial features, it
aims to concentrate on the localization of facial signs, but it does not adequately consider
the region around the sign’s facial attributes. Kim et al. [14] devised a face attention loss
based on facial landmark heat maps and employed a progressive training method for
face reconstruction, while the process of extracting heat maps of facial landmarks greatly
increases the training process. In order to restore fundamental facial features without
distortion, Ma et al. [15] proposed an iterative collaboration approach that employs facial
priors generated by their face keypoint recovery network to assist in FSR. However, the
multi-stage iterative process also amplifies errors due to incorrect priors. To obtain SR
images at arbitrary scales, Grm et al. [11] incorporated identity prior into the reconstruction
process and employed multiple models for progressive cascade reconstruction of faces, but
the cascading structure also makes the network larger In order to fully capture the potential
of prior information and multi-scale information, Wang el al. [20] proposed a two-stage
network, a ParsingNet is used to extract parsing map, which is then combined with LR
image as input to the reconstruction network, crucial facial details and contours are restored
by integrating multi-stage features. While utilizing additional facial prior information en-
hances network performance, it necessitates extra data annotation efforts, and the challenge
of facial structure deformation arising from inaccurate face prior information persists.

The second category encompasses methods that do not rely on facial a priori informa-
tion. In order to obtain sharper facial details, Tuzel et al. [18] introduced a method featuring
a two-branch sub-network, where one branch focuses on global constraints to reconstruct
face images while the other branch enhances local facial details. Chen et al. [16] proposed a
novel spatial residual attention network that employs facial attention units to prioritize the
recovery of important facial structures, thereby enhancing the network’s representation
capability, while it lacks inter-channel correlation interaction. To fully leverage the facial
attribute information. Xin et al. [19] presented a facial attribute capsule network that trans-
forms extracted facial feature maps into facial attribute capsules to obtain a complete facial
structure, leveraging semantic and probabilistic information to generate corresponding
high-resolution faces. To restore facial fine details and textures, Dastmalchi et al. [17]
incorporated wavelet prediction into their network to predict missing wavelet details of
facial images, resulting in finer face reconstructions. However, the incorporation of wavelet
prediction also increases the training overhead of the network. These methods demonstrate
the effectiveness of alternative strategies that exploit network architectures and attention
mechanisms to recover facial details without relying on explicit facial prior information.

2.2. Attention Mechanism

Attention mechanisms have gained significant popularity in both high-level and low-
level computer vision tasks, such as image recognition, target detection, image classification,
image super-resolution, and image defogging. These mechanisms empower neural net-
works to dynamically adjust weights by leveraging attention graphs, enhancing network
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performance through the emphasis on crucial features and suppression of less informative
ones. Hu et al. [21] introduced Squeeze-and-Excitation Network (SE-Net), which employs
a channel attention mechanism. By calculating the adaptive weights for each channel using
a fully connected layer after converting them to single values through Global Average
Pooling (GAP), SE-Net achieves improved feature representation and network efficiency.
However, SE-Net overlooks the importance of spatial information. To address this limita-
tion, Convolution Block Attention Module (CBAM) [22] enriches the attention graph by
effectively combining spatial and channel attention, incorporating both GAP and global
maximum pooling to enhance feature diversity. The utilization of attention mechanisms has
demonstrated its value as a versatile tool in various vision tasks, enabling adaptive resource
allocation within networks and promoting enhanced performance in visual understanding
and reconstruction tasks.

In the realm of image super-resolution, Zhang et al. [9] introduced Residual Channel
Attention Network (RCAN), which was the first to combine channel attention with image
super-resolution tasks. Zhao et al. [23] incorporated a pixel attention mechanism into
their network, aiming to enhance the network’s reconstruction performance. Lu et al. [24]
proposed an attention split face super-resolution network that encompasses an internal and
external attention resolution network, resulting in improved texture details in the SR faces.
Zeng et al. [25] propose a self-attention learning network for three-stage FSR, which fully
explores the interdependence of both low and high spaces to enhance the features. These
works have contributed to the advancement of attention-based techniques in the field of
image super-resolution.

3. Methods

This section presents the improved model and its architecture, which comprises three
key improvements built upon the original model (SPARNet). Firstly, an additional structure
extraction branch is incorporated within the residual blocks to capture the intrinsic struc-
tural information of the face image. Secondly, pyramid attention is introduced during the
feature extraction stage to exploit the inter-scale correlations among the multi-scale features.
Lastly, a feature enhancement module is introduced in the upscaling stage to mitigate fea-
ture loss and enhance the overall quality of the reconstructed image. These improvements
aim to enhance the model’s capacity in capturing facial structure, utilizing multi-scale
information, and preserving fine details throughout the super-resolution process.

3.1. Network Structure

As illustrated in Figure 1, the proposed residual network for fusing multi-scale features
while preserving structure comprises three key components: a downscale module, a depth
feature extraction module, and an upscale module. Notably, both the downscale module
and upscale module are constructed using the Multi-Scale Residual Block (MSRB), which
plays a crucial role in extracting and integrating features at different scales.
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Since it is difficult to extract effective facial features directly from LR face images, a pre-
processing step is employed to upsample the LR face image ILR using Bicubic interpolation,
bringing it to the same dimension as the HR image. Shallow features are then extracted
from the upsampled image using a 3 × 3 convolutional layer, as depicted in Equation (1).
Here, Hsp denotes the feature extraction process, Hup represents the upscale operation, and
the resulting shallow features F0 are subsequently fed as input into the downscale module.

F0 = Hsp
(

Hup(ILR)
)

(1)

In the downscale module, the face image undergoes gradual encoding and down-
sampling after the extraction of shallow features. This process involves applying three
consecutive MSRBs to obtain the feature map F1, which shares the same spatial dimensions
as ILR. To mitigate the issue of gradient attenuation with increasing network depth, the
skip connections are incorporated within each Feature Enhancement Module (FEM) to fuse
features from different scales. This fusion mechanism enables the feature map to retain a
more comprehensive representation of facial information. The process can be described
as follows:

F1 = Hdown−i(F0) (2)

The downscaled face image is passed through the depth feature extraction module,
as indicated in Equation (3). To extract multi-scale features from F1, both a MSRB and a
Pyramid Attention (PA) module [26] are utilized, resulting in the generation of the deep
facial feature F2.

F2 = Hdeep(F1) (3)

Finally, the deep facial feature F2 is passed into the upscale module to match the
spatial dimension of HR. It is then fused with the output feature Fi from the ith MSRB
in the downscale module using an additional feature enhancement module (FEM). This
fusion process generates the final output feature Fout, which is subsequently subjected to a
3 × 3 convolutional layer to adjust the channel dimension to 3. The resulting SR image ISR
is then obtained. The operation process is as follows:

ISR = Hsp
(

Hup−i(F2) + Fi
)

(4)

3.2. Multi-Scale Residual Block

We utilize a multi-scale residual block structure, as illustrated in Figure 2. The input
feature Fin undergoes a pre-activation layer and two consecutive 3 × 3 convolutions,
resulting in the output feature F1. Subsequently, F1 is fed into two separate branches: the
Hourglass Block (HB) [27] and the Efficient Structure Extraction Module (ESEM), facilitating
multi-scale feature extraction in both spatial and channel dimensions. The spatial dimension
emphasizes key facial parts, such as the nose and eyes, which are rich in feature information.
On the other hand, the channel dimension focuses on extracting structural and edge
features from the face image. To mitigate artifacts in the reconstructed faces, additional
3 × 3 convolution layers with a stride of 2 are introduced in the downscale stage for
downsampling and fusion of shallow features. Similarly, an additional 3 × 3 convolution
layer is used in the upscale stage for upsampling and reconstruction of deep features. The
resulting multi-scale features Fscale are multiplied with the convolutional extracted features
and then added to the original features Fin to obtain the final features Fout.

The Hourglass structure was originally introduced in human pose estimation net-
works [27]. Its exceptional multi-scale feature extraction capability has yielded impressive
results in various studies [12,15,16]. Recognizing the importance of independent facial
components, such as the eyes and nose, in facial tasks, and considering the hourglass
structure’s ability to extract richer facial feature information and preserve high-frequency
details, we adopt hourglass blocks for feature extraction of key facial parts. The facial
features Fin are extracted in depth through a series of successive 3 × 3 convolutional lay-
ers, with each layer focusing on a different facial structure. To enhance convergence and
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prevent gradient explosion, normalization layers and LeakyReLU activation functions are
incorporated. Additionally, hopping connections are employed to facilitate the fusion of
feature information from different layers, mitigating information loss during layer-by-layer
feature transfer. Finally, the output features Fout are obtained for further processing.
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3.3. Efficient Structure Extraction Module

Based on the mechanism of the human visual system, the human eyes are highly
sensitive to edge information in images [28]. Consequently, edge information holds sig-
nificant importance in visual perception [29], and the visual quality of an image is closely
related to its edge information [30]. In the context of image super-resolution, the inherent
structural information of low-resolution face images, which can be considered as a form of
edge information, plays a crucial role. Building upon the inspiration from [31], we have
developed an efficient structural information extraction module that extracts edge features
and structural information from a multi-scale perspective. This approach allows us to fully
leverage the structural feature correlations present in images and effectively recover more
precise and distinct structural details in facial images.

Given the high sensitivity of edges and structures to scale variations, the input fea-
tures Fin are divided into four segments with varying channel counts using three Cross-
Convolution Blocks (CCBs) to extract features at different scales. The architecture of the
CCBs is illustrated in Figure 3a. To progressively weigh the features in the channel dimen-
sion, we employ Cross Convolution [31] and Efficient Channel Attention (ECA) [32]. This
weighting strategy enables the network to prioritize the restoration of facial structure and
enhance the preservation of contour details. Subsequently, the features extracted by the
CCB across different channels are fused, and the hierarchical features of the channels are
consolidated through two convolutional layers with PRelu activation functions and ECA.
This process yields the final output feature Fout, which can be expressed as follows:

Fout = H f use

([
HC0

3, HC1
2, HC2

1, HC3
0

])
(5)

where HCk
j denotes the kth group after the jth CCB and H f use represents the

fusion operation.
In contrast to conventional convolutions, cross-convolution employs two distinct

vertical filters k1×m and km×1, for asymmetric filtering of the features. By leveraging
gradient information in both the vertical and horizontal directions, these filters emphasize
the structural characteristics of edge contours. The edge information is subsequently fused
and reinforced to obtain the final output feature FCross

out . The process can be expressed as
follows, where b represents the bias term:

FCross
out = Conv(k 1×m, FCCB

in

)
+ Conv

(
km×1, FCCB

in

)
+ b (6)
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The structure of ECA, as depicted in Figure 3b, offers a more efficient and lightweight
alternative to SE-Net [21]. It overcomes the challenge of diminished learning caused by
dimensionality reduction. ECA starts by performing channel-wise averaging of the features.
The weight for each channel is then computed by jointly considering the aggregated features
of that channel and its neighboring channels. This is accomplished using a one-dimensional
convolution with a kernel size of k, which facilitates inter-channel feature interactions. The
calculation can be expressed as follows:

w = Sigmoid(Conv1×k(y)) (7)

For a given channel dimension C, the size k of the convolution kernel can be calculated
by Equation (8).

k =
∣∣∣ log2(C)+1

2

∣∣∣
odd

(8)

where |t|odd indicates the nearest odd number. Finally, the information of each channel is
fused to obtain the output features, which are used to enhance the information exchange
between channels at different levels by capturing the local cross-channel information.

3.4. Pyramid Attention

The presence of pattern repeatability in images has been established as a crucial factor
in image restoration. Self-similarity, as a form of repeatability, refers to the occurrence of
small but similar patterns at different locations and scales within an image. It serves as
valuable prior information for image restoration algorithms [26]. However, most existing
deep neural network-based face super-resolution methods employ attention mechanisms
that solely focus on the same scale, neglecting the full potential of self-similarity in face
images. Given the symmetric nature of faces, facial images exhibit various repeatable and
similar structures. Therefore, capturing rich self-similarity information can significantly
enhance the performance of super-resolution reconstruction and reduce the model’s re-
liance on external datasets. Based on this, we introduce a pyramid attention that captures
feature correspondences at a distance from a multi-scale feature pyramid. This mechanism
enhances the interaction between nearby and distant features, resulting in the recovery of
finer facial details.

The pyramid attention structure, as depicted in Figure 4, incorporates a scale-
independent attention module called Scale Agnostic Attention (SAA) to capture the intrin-
sic correlation of the multi-scale feature maps. To input the feature FPA

in into the pyramid
attention, a five-layer feature pyramid with varying scales is constructed using Bicubic in-
terpolation. The pixel feature at layer i is represented as xi, and its corresponding mapping
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across different scales is denoted as K. Additionally, the pixel feature at the subsequent
level is downsampled to xi and referred to as zj. This downsampling operation is beneficial
for reducing image noise and effectively preserving the original structural information
even after scaling down. Hence, this operation contributes to noise reduction in the image
while maintaining the integrity of the original structural details.
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For each scale feature, two image blocks are extracted: block f for reconstruction
and block g for matching, corresponding to the block feature W f and block feature Wg,
respectively. Regarding the block features Wg, channel concatenation is applied as weights,
and convolutional matching is performed with the input feature xi. This process yields
the self-similarity feature map, which is obtained through a Softmax operation. On the
other hand, the block feature W f , channel concatenation is directly applied as transposed
convolution kernel weights. The correlation f i

out between the two scales is obtained after
performing the deconvolution operation with the self-similarity feature map. Finally, the
pyramid attention is obtained by summing up the contributions from all positions of each
scale, as expressed by the following Equation:

f i
out =

1
σ(x,K) ∑

z∈K
∑

j∈Z
∅
(

xi
δ(r), zj

δ(r)

)
θ
(
zj)

(9)

where ∅ represents the Gaussian embedding function for calculating the similarity between
two-pixel features, θ denotes the linear feature transformation function, σ represents a
scalar function for normalizing the features, and δ(r) denotes nearest neighbor similarity
constraint, where two-pixel features are considered highly correlated when and only when
they are also highly similar to their corresponding neighbors, which helps to make the
network focus more on feature-related regions while suppressing irrelevant regions and is
used to improve the robustness of the feature matching process.

3.5. Feature Enhancement Module

High-resolution image features are known to possess more precise spatial information,
while low-resolution image features contain richer contextual information [20]. Given the
complementary nature of high and low resolutions, it is crucial to leverage features at
different scales effectively. To achieve this, we introduce a Feature Enhancement Module
that refines the features during the upscale stage using the scale-specific features generated
in the downscale stage. The FEM is built with reference to [20]. We strategically place
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the FEM before each MSRB to enhance feature details within each stage and facilitate
information exchange between features at different scales.

The structure of FEM is depicted in Figure 5. Its input comprises four components:
the current feature F and the previous features F1, F2 and F3 obtained during the downscale
phase. These parts are individually fused in the Refine Block to compensate for missing
information in F. Subsequently, the output results of the three parts are weighted using ECA
to incorporate channel dimension information. Finally, the fused refinement feature Fr is
obtained by adding the weighted outputs of F and the channel attention. For instance, when
fusing F and F3, the refinement block initially aligns F and F3 to the same dimension through
nearest-neighbor interpolation or average pooling. It then calculates the feature difference
Fd between them and updates the current feature F using Fd to compensate for feature loss
due to network deepening. This process can be expressed through Equations (10) and (11).

Fd = F− F3 (10)

Fr = Hp(Fd) + F (11)

where Hp represents the projection function constructed by two consecutive convolution layers.
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3.6. Loss Function

To minimize the discrepancy between the reconstructed image and the original image,
this study employs the L1 loss to optimize the network parameters during training. The
L1 loss is less sensitive to outliers, thereby promoting the preservation of high-frequency
features and facilitating a smoother training process to prevent gradient explosion. Given
an image pair consisting of LR and HR, the calculation process of the L1 loss is as follows:

LPixel =
1
N

N
∑

k=1

∥∥HSR
(

IK
LR − IK

HR
)∥∥ (12)

where k denotes the kth image pair trained, n denotes the image pixel size, HSR is the
proposed network, and ILR and ILR represent the LR and HR face images, respectively.
The optimized network undergoes continuous training to minimize the difference be-
tween the SR image and the original image, aiming to achieve a high level of resemblance
between them.

4. Experiment and Results
4.1. Experiment Settings

We conducted extensive experiments on five datasets: CelebA [33], Helen [34], LFW [35],
Widerface [36], and WebFace provided by [37]. Among them, Widerface and Webface are real-



Appl. Sci. 2023, 13, 8928 10 of 16

world datasets that exhibit unknown complex degradation processes. CelebA serves as the
training set, consisting of 202,599 face images belonging to 10,177 individuals with 40 attribute
classes. Similar to [16], we performed preprocessing on the face images. Specifically, we
selected 158,026 face images from CelebA, ensuring a balanced distribution across different
ages and genders, as the training set. To maximize the utilization of training data, we
applied data augmentation techniques such as random scaling, mirroring, horizontal flipping,
and random rotation (90◦, 180◦, or 270◦) to enhance the training samples. For the testing
phase, we used CelebA, Helen, LFW, Widerface, and WebFace datasets, ensuring that the
face images in the training and test sets are mutually exclusive. Following DIC [15], we
employed MTCNN [38] for face detection, and the face regions were cropped from the center
without pre-alignment to obtain HR images of size 128× 128 through Bicubic interpolation.
Subsequently, these HR images were downsampled to obtain LR images of size 16 × 16.

All experiments were conducted in a virtual environment using Python 3.7, CUDA
11.1, and PyTorch 1.10 on a RTX 3070 GPU. The batch size was set to 16, with the momentum
coefficient β1 set to 0.9 and the squared momentum coefficient β2 set to 0.99. We employed
the Adam optimizer with a fixed learning rate of 10−5 and a scale factor of ×8.

4.2. Evaluation Metrics

We utilize two evaluation metrics to assess the quality of SR images: PSNR and
Structural Similarity (SSIM). Additionally, for evaluating the naturalness of restored face
images on two real-world test sets, we employ the widely used Natural Image Quality
Evaluator (NIQE). PSNR measures the difference between the SR image and the HR image
by calculating the pixel mean square error between the two images. A higher PSNR value,
expressed in dB, indicates less distortion in the reconstructed image. The PSNR is calculated
as follows:

PSNR = 10log10

(
(28−1)

2

fMSE(y,y′)

)
(13)

fMSE = 1
HW

H−1
∑

i=0

W−1
∑

j=0

(
yi,j − y′i,j

)
(14)

where y indicates the HR image, y′ indicates the SR image, and H and W are the corre-
sponding height and width of the image, respectively.

SSIM evaluates the similarity between the SR image and the HR image based on
various factors such as brightness, contrast, and structure. It provides a value within the
range of [0, 1], where a higher value indicates a higher similarity and better reconstruction
effect between the two images. The calculation process of SSIM can be expressed as follows:

SSIM =
(2µxµy+c1)(σxy+c2)

(µ2
x+µ2

y+c1)(σ2
x+σ2

y+c2)
(15)

where c1 and c2 are constants, µx and µy are the means of HR images and SR images, µ2
x

and µ2
x are the standard deviations of HR images and SR images, respectively, and σxy is

the covariance.
NIQE is a no-reference metric that measures the difference between two multivariate

Gaussian models: one for natural images and the other for evaluated images without
ground truth. It utilizes quality-aware features from the natural scene statistic model. A
smaller NIQE value indicates higher visual quality. The calculation process is as follows:

D(v1, v2, ε1, ε2) =

√
((v1 − v2)

T
(

ε1+ε2
2

)−1
(v1 − v2)) (16)

where v1, v2, ε1 and ε2 represent the mean vectors and covariance matrices of the natural
images and the evaluated images.
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4.3. Ablation Study

This section presents ablation experiments conducted to analyze and verify the ef-
fectiveness of each component in our model. The components used in the experiments
include ESEM, PA, and FEM. The experiments are performed on the CelebA [33] training
set, and the Helen test set. All parameters are kept consistent with the original network.

A total of eight sets of experiments were designed by combining the three modules.
Model 1 does not incorporate any module, models 2 to 7 incorporate only one or two mod-
ules, and model 8 incorporates all modules. The final results are compared quantitatively
to evaluate the impact of each component on the performance.

After training the networks used for ablation separately, the objective evaluation
results are presented in Table 1. Comparing model 1, which does not have any module
added, with the other models, it is evident that the addition of modules positively impacts
the network performance. Among the added modules, the inclusion of ESEM yields
the most significant improvement. The models incorporating two modules demonstrate
better reconstruction results compared to those with only one module, with model 5,
incorporating both ESEM and PA, exhibiting particularly notable effects. The PSNR value
of Model 8, after incorporating all three modules, reaches 27.744 dB, which is 0.355 dB
higher than that of Model 1. This confirms the effectiveness of the proposed method. It
can be concluded that the addition of ESEM enhances the interaction ability of internal
features across channels at each network level and improves the network’s capability to
extract structural information from the image, resulting in clearer contours and details in
the reconstructed face. The incorporation of PA enhances the network’s capability to mine
the intrinsic correlations within multi-scale feature maps. Furthermore, the inclusion of the
FEM enables the reconstruction process to retain rich spatial and contextual information
across different scale features, thereby enhancing the quality of the SR image.

Table 1. Results of ablation experiments on Helen.

Models ESEM PA FEM PSNR SSIM

1 27.389 0.817
2

√
27.533 0.822

3
√

27.425 0.819
4

√
27.585 0.823

5
√ √

27.612 0.825
6

√ √
27.684 0.828

7
√ √

27.579 0.823
8

√ √ √
27.744 0.830

To assess the impact of each module on the model’s convergence, we present the
comparison results of the training curves in Figure 6. The horizontal axis represents
the number of iterations, while the vertical axis indicates the PSNR values. Notably,
the training process of the model exhibits a smooth trajectory, characterized by minimal
oscillation. Upon reaching approximately 30K iterations, the model essentially converges.
Furthermore, it is evident that the model incorporating all three modules outperforms the
other configurations, as indicated by significantly higher PSNR values.

4.4. Comparison with Other Methods

To validate the effectiveness of the model, this study compares it with several existing
FSR methods, including the traditional interpolation method Bicubic, as well as DIC [15],
KDFSRNet [39], SISN [24], WIPA [17], and SPARNet [16]. Since SISN and KDFSRNet utilize
the same CelebA training set as ours, we utilize the pre-trained weights for testing on our
test set. For all other models, we train and test them using the official open-source code and
the datasets used in this study. The results are subjected to both qualitative and quantitative
analysis to provide a comprehensive evaluation.
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Table 2 lists the PSNR and SSIM values of our method and other compared methods
tested on the datasets with the scale factor of ×8.

Table 2. Quantitative comparison with other methods on CelebA, Helen and LFW for scale factor ×8.

Methods
CelebA Helen LFW

PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic 23.572 0.637 24.138 0.681 24.893 0.693
DIC [15] 27.155 0.789 26.790 0.797 28.478 0.815

KDFSRNet [39] 27.245 0.793 26.515 0.788 - -
SISN [24] 26.146 0.750 26.271 0.776 27.744 0.791
WIPA [17] 27.025 0.786 26.945 0.806 28.545 0.818

SPARNet [16] 27.167 0.789 27.401 0.818 28.829 0.825
Ours 27.449 0.800 27.744 0.830 29.165 0.838

Based on the experimental results presented in Table 2, it is evident that our model
outperforms other methods in terms of achieving optimal PSNR and SSIM values on the
CelebA, Helen, and LFW test sets. Specifically, the highest PSNR value of 27.744 dB is
attained on the Helen test set, surpassing SPARNet [16], DIC [15], and KDFSRNet [39] by
0.343 dB, 0.954 dB, and 1.1229 dB, respectively. The corresponding SSIM value of 0.830 is
also notably higher by 0.012, 0.033, and 0.042, respectively. On the LFW test set, our model
achieves PSNR and SSIM values of 29.165 dB and 0.838, respectively, which are 0.687 dB
and 0.336 dB better than [15,16], while exhibiting a higher SSIM value by 0.023 and 0.013,
respectively. This is because SPARNet emphasizes spatial information while neglecting the
interaction between feature channels, leading to a reduction in the quality of the SR images
due to the underutilization of channel information. On the other hand, the DIC method
lacks sufficient effective LR prior information, resulting in errors between the SR images
and the HR images. KDFSRNet directly explores prior knowledge during the training
phase, propagating from the teacher network to the student network, which introduces
some dataset dependency. These experimental results highlight the superior performance
of ours compared to the other methods in producing high-quality SR results.

In order to gain a more intuitive understanding of the face reconstruction results,
Figure 7 presents the SR results of the test set images using a scale factor of 8. Upon obser-
vation, it becomes apparent that while other compared methods also achieve satisfactory
face reconstructions, our model produces results with a clearer face outline and more
comprehensive facial structure. This improvement can be attributed to the preservation
of crucial face structure information during the reconstruction process. In contrast, the
face images obtained using the Bicubic interpolation method lack significant detail and
appear excessively blurred due to a simplistic zooming approach. The DIC [15] method,
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which incorporates face-prior knowledge to facilitate network learning, exhibits noticeable
deformations in the eye position and blurred edges. The utilization of incorrect priors in LR
face images leads to substantial errors in the reconstruction, which are further amplified by
the multi-stage iterative process employed in it. Although WIPA [17], based on generative
adversarial networks, demonstrates more realistic facial textures, it still exhibits artifacts
that impair the visual effect and poorly recover essential eye positions.
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Figure 8 presents a comparison of local details for different methods. While KDFS-
RNet [39] and SPARNet [16] excel in overall image reconstruction, they struggle to fully
recover certain structural details, resulting in an overly smooth appearance. A specific
example is the interdental region highlighted in Figure 8. On the other hand, SISN [24]
incorporates attention separation between channels but fails to prioritize individual facial
key parts, leading to a lack of clarity in the reconstructed face images. In contrast, our
model exhibits richer facial textures (such as teeth, eyes, and hair) and well-defined edge
contours, while minimizing distortion. These results demonstrate the effectiveness of our
model in both face structure recovery and detail reconstruction.
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The aforementioned experiments were conducted on datasets that represent an unre-
stricted environment, which may differ significantly from real-world low-resolution face
images. To bridge this gap, we applied the proposed method and CNN-based methods
to real-world faces with unknown complex degradation, sourced from WiderFace [36]
and WebFace [37]. In order to assess the naturalness of the recovered face images, we
employed the NIQE since high-resolution reference images were not available. A lower
value indicates a better reconstruction. The results of this evaluation are presented in
Table 3, alongside comparisons with existing methods.
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Table 3. Quantitative comparison of NIQE with other methods on WiderFace and WebFace.

Methods WiderFace WebFace

Bicubic 13.6051 13.7006
DIC [15] 12.1322 12.1569

SPARNet [16] 12.1075 12.1780
Ours 11.7509 11.8835

Figure 9 presents a comparative analysis of the reconstruction results obtained by vari-
ous methods on real-world datasets. It is evident that all methods experience degradation
in performance when confronted with unknown complex degradation, resulting in smooth-
ing and blurring of the reconstructed details. In contrast, our model demonstrates clear
visual superiority and delivers more detailed facial reconstruction outcomes. It effectively
captures and reproduces high-frequency textures and intricate details, thereby enhancing
the recovery of key facial components.
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5. Conclusions

This paper introduces a novel network for face super-resolution that incorporates
multi-scale features while preserving facial structure. The proposed approach leads to
improved preservation of facial structure and edge details in the SR images, consequently
enhancing the overall quality of the reconstructed images. However, it is essential to
acknowledge its current limitation. The focus of the study is currently restricted to face
super-resolution at the scale of×8, and the network involves a higher number of parameters
compared to some lightweight alternatives. As part of our future research direction, we plan
to explore FSR at arbitrary scales. This will allow us to cater to a wider range of practical
applications with varying resolution requirements. Additionally, we will investigate and
develop lightweight network architectures to strike a balance between computational
efficiency and high-quality SR results.
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