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Abstract: Stress is one of the primary triggers of serious pathologies (e.g., depression, obesity, heart
attack). Prolonged exposure to it can lead to addictive substance consumption and even suicide,
without ignoring other adverse side effects in the economic, work and family spheres. Early detection
of stress would relax the pressure of medical practice exercised by the population affected and result in
a healthier society with a more satisfying quality of life. In this work, a convolutional-neural-network
(CNN) model is proposed to detect an individual’s stress state by analyzing the diffusive dynamics
of the photoplethysmographic (PPG) signal. The characteristic (p, q)-planes of the 0–1 test serve as
a framework to preprocess the PPG signals and feed the CNN with the dynamic information they
supply to typify an individual’s stress level. The methodology follows CRISP-DM (Cross Industry
Standard Process for Data Mining), which provides the typical steps in developing data-mining
models. An adaptation of CRIPS-DM is applied, adding specific transitions between the usual stages
of deep-learning models. The result is a CNN model whose performance amounts to 97% accuracy in
diagnosing the stress level; it compares with other published results.

Keywords: PPG signal; convolutional neural networks; stress detection; diffusive dynamics

1. Introduction

The pace of life in today’s society tends to be increasingly unbridled and highly
competitive, especially in large cities. These circumstances contribute to the fact that stress
triggers have worsened over the years [1]. When stress is persistent and prolonged over
time, it can lead to severe psychological disorders, such as anxiety or depression and
also physiological disorders, such as obesity, due to poor eating behaviors, cardiovascular
diseases, hypertension, low-back pain, ulcers, multiple sclerosis, diabetes, cancer risk and
stroke, among others [2,3], substantially worsening the quality of life of an individual and
their psychological well-being, leading in the most extreme cases to suicide, according to
data reported by the World Health Organization [4]. Likewise, numerous investigations
show the relationship between stress, acute or chronic, and addictive substances [5] or the
appearance of infectious diseases [6]. Due to stress, the costs it entails for society acquire a
non-negligible magnitude [7]. The estimated cost to the global economy of depression and
anxiety in terms of productivity amounts to a trillion dollars a year [8].
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1.1. Stress Overview

The notion of stress has faded over time as it has been used indiscriminately to
precisely describe the physiological response to stress, the stimulus–response interaction
or, globally, all the factors involved (e.g., stimulus, perception, the form of adaptation) [9].
Hans Selye defined stress in 1950 as a state of biological activation triggered in an individual
when interacting with external agents that force his ability to adapt [10]. According to
Richard S. Lazarus, stress also refers to an alteration of an individual’s homeostatic balance
(physiological systems) that causes a stress response, which is nothing more than the
body’s attempt to cope with the stressor [11]. The World Health Organization (WHO)
associates stress with physiological reactions that prepare the body for action. A stressful
factor or stressor is any element that leads to the physiological reaction to stress. They
can be natural objects perceived as stressors by the individual, for example, a weapon, or
situations internally perceived as uncertain or potentially threatening. The intensity of
the physiological reaction to stressful factors highly depends on the individual and the
specific situation. However, even with the multiple dimensions that stress eventually spans
in its clinical spectrum, a generic description of stress that encompasses practically all those
factors that intervene “grosso modo” in a stressful episode responds to “tension, mental or
physical, caused by overwhelming situations (stressing factors) that cause psychosomatic
reactions or psychological disorders, sometimes very serious, in order for the individual to
adapt or cope with them” [12].

Stress can be classified as acute or chronic [13]. Acute stress comprises the immediate
response of the body to a stressor in order to achieve a state adaptive to the stimulus and
to survive; as soon as the stressor is gone, the bodily imbalance ceases to exist. However,
chronic stress is one in which the stressful stimulus does not disappear quickly and the
state of stress can last for a not insignificant period, such as months or even years.

Stress has become an endemic disease that affects everyone equally, regardless of age,
origin or condition. The origin of stress is very varied and manifests itself in many daily
situations, whether in the workplace, academic settings or family. It can be traumatic in response
to adverse events, such as a natural catastrophe, war or serious accident, or as a result of an
adverse event, such as job loss or illness. In this sense, innumerable studies link stress with the
COVID-19 pandemic [14] or the harmful reactions that work stress entails for the body [15].
New stressors are generally perceived as more stressful and the physiological response tends to
be more intense [16].

Positive or motivating reactions are effective in the short term when faced with low
levels of acute stress. Such reactions can help individuals manage situations where they
are under pressure, such as during an exam or job interview. Research has shown that
prolonged exposure to acute stress can negatively impact motor-skill performance and
pose a risk to physical and mental health and personal safety [9]. Chronic stress further
aggravates its incidence in the body, causing more severe disorders, such as hypertension,
obesity, diabetes, deficiencies in the immune system and cancer that do not go away when
the stressor stops. The care of the terminally ill, long-term unemployment, economic
problems, post-traumatic stress of war veterans and work overload illustrate chronic stress.

Stress control is entrusted to the autonomic nervous system (ANS), triggering a set of
bodily changes of all kinds (e.g., hormonal, immunological, physiological, psychological)
to counteract the stressful stimulus and thus restore the original homeostatic state [17].
Simply put, when encountering a stressful situation, whether short term or long term, the
body responds by triggering various physical indicators. These include elevated glucose
levels, heightened heart rate, wider opening of coronary vessels, narrowed peripheral
blood vessels, dilated pupils and increased sweating. Early recognition of these indicators
would help stop its progress and, perhaps, irreversible damage that would inexorably
affect the well-being and health of society.



Appl. Sci. 2023, 13, 8902 3 of 24

1.2. Stress Diagnosis

To accurately and consistently measure stress levels, a method must involve analysis
of specific electrophysiological, biochemical and psychometric parameters, monitoring the
subject’s development over time and examining the type and aspects of the stressor [18].
This work focuses exclusively on the electrophysiological parameters the photoplethysmo-
graphic (PPG) signal provides.

In the last decade, the diagnosis and preliminary clinical analysis of an individual’s
state of health have been supported by non-invasive methods of monitoring biological
signals [19]. The PPG signal deserves special attention, given its easy acquisition with
affordable devices and the amount of physiological information it contains [20].

The PPG signal represents the volumetric variation experienced by the blood flow
in the microvascular circulation of the tissues [21]. Photoplethysmography or photo-
plethysmogram (PPG) is an electro-optical technique that makes it possible to measure said
volumetric variation in a barely invasive way and with minor sensitivity to the location
of the sensors [20,22]. The dynamics of blood flow or hemodynamics through the periph-
eral capillary network can be an ideal candidate to accurately detect the state of stress or
relaxation (non-stress) of an individual.

The first photoplethysmograph or pulse oximeter, attributed to the physiologist Alrick
Hertzman, dates from 1937. Technological advances have led to the commercialization
of increasingly economical pulse oximeters, of smaller size and lighter weight [23,24],
giving them tremendous versatility for their application in very different areas, such as
health, sports or the agri-food industry [25]. Likewise, its use has been extended to the
clinical environment to monitor physiological parameters related to the cardiorespiratory
system [26]. Unlike other biological signals, which require bulky equipment or multiple
accessories, such as the use of gels in EEG (Electroencephalogram) signals or electrodes in
ECG (Electrocardiogram) signals or GSR (Galvanic Skin Response) signals, PPG signals
use reduced electronics that have favored the proliferation of small pulse oximeters with
low-cost sensors and easy integration with other smart devices [27].

In our technology-driven world, Big Data has seen a significant increase in capabilities
due to the availability of tools for collecting vast amounts of data. Within the clinical
field, there exist large public databases containing a vast number of biological samples
from both healthy individuals and those with various pathologies. These samples are
organized by age range for ease of access. It is common to come across simple technological
solutions that use biological signals to communicate a subject’s physiological characteristics.
By conducting a thorough examination of biological signals, including the PPG signal,
using advanced techniques, like those described in studies by Toker et al. (2020), Wu et al.
(2022) and Park et al. (2022) [28–30], we expect to uncover more functional nuances of the
physiological system that generates these signals over time.

In order to fully comprehend how a complex system is functioning, it is crucial to
examine the dynamic correlation structures and fluctuations, also known as intrinsic vibra-
tions, in the data [31]. This requires techniques capable of detecting local and global details
during dynamic transitions at various time scales, as highlighted by [32–34]. In recent years,
the field of Deep Learning (DL) and its applications have broken into innumerable fields,
such as natural language processing, information processing, more education, cybersecu-
rity, robotics and control, among others. Many scientific findings support convolutional
neural networks’ (CNNs)’ benefits, either via deep or shallow methods [35,36]. In health,
especially in clinical settings, techniques based on DL, given their versatility, precision,
flexibility and high performance, have provided satisfactory results in processing large
amounts of data based on biomedical signals [37,38].

1.3. Work Aims

This work aims to create and test a model that can accurately determine an individual’s
stress level using PPG signals—data extracted from a national project. The model is
compared with studies using machine-learning techniques to detect stress through different
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biological signals. Typically, the biological markers used to diagnose stress rely on the
shape of biological signals. These signals can be easily affected by temporary changes in
an individual’s physical activity or mindset and can also vary depending on the timing of
the measurement. As a result, these markers may not accurately reflect the level of stress a
person is experiencing.

This paper is focused on analyzing the geometric distribution of the dynamics or
diffusive behavior of the PPG signal. We will use the (p, q)-plane suggested by the
0–1 test [39–41] to achieve this. Based on the two-dimensional structure of this distri-
bution, equivalent to an image, we propose a model that utilizes DL to automate stress
detection in a subject. In the last decade, CNNs have experienced a notable expansion, with
magnificent results in the field of computer vision, in particular, in image recognition. Its
proven reliability in image classification tipped the balance in its favor when choosing the
neural network (NN) model we could implement. The promising results produced by this
work further confirm its leading role.

It is essential to mention that before this work, no method had been proposed to
identify stress based on the PPG signal considering the diffusion dynamics of the unique
signal of each individual. The uniqueness of the dynamics is because the structure of each
person’s vascular bed affects the diffusion constant of blood flow.

The proposed formulation will allow a highly portable system sensor crucial in certain
risky professions, such as truck drivers, pilots and factory workers, among others, with a
neural network of low weight in terms of memory consumption and efficiency above 90%
in detecting acute stress.

In addition, the proposed method can be generalized in the state-of-the-art artificial
intelligence classifiers—our proposal uses a conventional CNN—as a method of classifying
time series via prior conversion to the (p, q)-plane.

The rest of the paper is organized as follows. Section 2 describes the proposed convo-
lutional neural network architecture, supported by an analysis of the PPG signal-diffusive
behavior, as well as the metrics to evaluate its performance. Section 3 shows the obtained
results, both graphically and numerically, regarding the metrics that allow to judge the
capacity of the neural network to distinguish a stressed state in a subject. In Section 4, we
analyze and interpret the obtained results and provide a comparative analysis of these
findings with other relevant studies. Finally, in Section 5, we shortly outline the conclusions
drawn from this study, which serve as the basis for future work.

2. Materials and Methods

The approach to designing the model that assesses stress is based on the well-known
CRISP-DM (Cross Industry Standard Process for Data Mining) methodology, as described
by Chapman et al. (2000) [42]. Then, regarding image classification, it uses CNNs as a
learning technique due to their remarkable capabilities in machine vision. After prepro-
cessing the PPG signals, a two-dimensional Euclidean spatial transformation (using the
series of Fourier transforms) is performed to obtain multiple (p, q)-planes. The 0–1 test
suggested this method [39–41,43]. The input information to our model comprises a massive
set of (p, q)-planes, two-dimensional planes that characterize the diffusive dynamics of
PPG signals. Their stability and robustness against morphological changes of the PPG
signal make this model a suitable alternative for determining a stressful episode.

To better understand the applied model and the results, the database is described
in Section 2.1. Next, in Section 2.2, the CNN design architecture is explained and in
Section 2.3, the parameters used to evaluate the model are enumerated.

2.1. PPG Signal

The original PPG signals used in this work come from 40 students from the UPM
(Universidad Politécnica de Madrid), healthy young people between the ages of 18 and 30,
who participated in a study of a national investigation that tried to evaluate the degree of
incidence of mental stress in different biological signals. The volunteers declared that they
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were not habitual consumers of psychotropic substances and accredited the absence of a
diagnostic history of chronic disease and/or psychopathologies. Through quota sampling,
compliance with gender parity was satisfied, 50% men and 50% women [12,18]. Signals
were captured from the middle finger of the left hand and sampled at a frequency of
250 Hz [18], with the psychophysiological telemetric system “Rehacor-T” version “Mini”
from Medicom MTD Ltd., Taganrog, Russia [18].

The signals were compiled in two sessions, of approximately 60 min each, undertaken
simultaneously but separated by two weeks [12]. In the first session, called the basal level,
the biological signals were captured; in our case, the interest is focused exclusively on the
PPG signal under uninterrupted relaxation conditions. During the baseline session, the
subjects were relaxed in the supine position and the physiological baseline values of each
individual were established in the absence of exposure to stressors. In a second session, two
weeks later, the same subjects were subjected to acute emotional stress through a memory
test, a stress anticipation test, public exposure to a video and an arithmetic task, following
the guidelines defined in the Trier Social Stress Test (TSST) [44]. The Trier Social Stress
Test Guidelines have become a standard protocol for inducing and estimating moderate
psychosocial stress in controlled settings. Many studies have confirmed its potential to
induce significant changes in physiological parameters.

At the beginning of the stress level session, each subject is subjected to a relaxation
period to avoid the influence of the state with which they arrive at the session. Subsequently,
the following stimuli or stressors were applied consecutively: a videotaped memory test,
a period in anticipation of the stress in which the patient was the informed subject—we
were “evaluating their results”—the presentation of the video to an audience and finally
an arithmetic task. The timing of the activities contemplated in the basal and stress level
sessions is summarized in Figure 1.

34
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recording of biological signals

recording of biological signals
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Figure 1. (Color online) Outline of the protocol for basal and stress sessions, adapted from [12,18].
The sessions lasted 60 minutes, although the time for acquisition of biological signals, such as the
PPG signal, was limited to 40 minutes. C (informed consent); P (preparation and placement of
sensors); I (initial interview); RT (relaxation time and measurement of normal status); PR (presession
relaxation); M (videotaped memory task); SA (stress anticipation test); V (video public exposition
test); AT (arithmetic task); E (end of session).

From each PPG signal, 150 segments of 4 s duration (∼ten total minutes) randomly
chose to have enough temporal traces of the signal that cover the dynamic spectrum
captured during the sessions. With all the information collected, it is feasible to record the
blood microcirculation of each individual, a faithful reflection of the exclusive peripheral
capillary network of each subject. Apart from preliminary preprocessing, to alleviate the
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impact of the noise that the data-acquisition process entails, the PPG signals undergo a
subsequent and crucial transformation that characterizes their diffusive behavior.

Figure 2 illustrates the time evolution of the PPG signal both in the basal and stressed
states, specifically in this illustrative example, 40 s of PPG signal during a memory task
after viewing a video. Figure 2 shows how the harmonic cadence of the time evolution of
the PPG signal, characteristic of a relaxed state, is disrupted in the stressed state. During
the stress episode, the PPG cycles undergo a more intense amplitude modulation by more
accelerated breathing, which simultaneously induces a frequency modulation, translating
into an increased heart rate. In any case, the PPG signal’s morphology, as seen in the
figure, is frequently disturbed due to measurement noise or various artifacts (sharp peaks
in the cycles), which in a morphological analysis would introduce a significant bias in
the statistics considered. Furthermore, a substantial data sample is required to stabilize
the morphological statistics to mitigate the spurious effects of noise or artifacts, making it
difficult to use in real-time applications.
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Figure 2. (Color online) Time evolution of a sample PPG signal (40 s), which corresponds to #1 subject,
both in the basal state (blue solid line) and in the stressed state (red solid line), when the subject faces
a videotaped memory task.

The two-dimensional (p, q)-planes, established via the 0–1 test, determine the geo-
metric distribution of the diffusive behavior of the PPG signal and, therefore, become
pattern-specific dynamics of each individual (cf. [45] for a more detailed description of
the mathematical apparatus underlying the (p, q)-planes). Our CNN model’s practical
recognition of these patterns constitutes the cornerstone of this work.

For that reason, the (p, q)-planes representative of each individual, genuine biometric
pattern, as demonstrated in de Pedro-Carracedo et al. [43], serve as input to the CNN for its
proper training and validation. From each individual, 150 (p, q)-planes were obtained in the
basal state and 150 (p, q)-planes in the stressed state. Considering the 40 study participants,
there are 12,000 dynamic patterns saved as RGB images, with dimensions initially 875× 656.
The image was resized using the bilinear interpolation method to dimensions 224 × 168 for
their treatment by our proposal. The preprocessing of the images also required a scaling
transform of the 8-bit RGB images by dividing them by 255 to rescale them from their
original range [0, 255] to range [0, 1] before feeding to the proposed CNN. All the software
development of the model was carried out in Python, with the assistance, among others,
of Tensorflow—a framework specifically designed to facilitate the programming of the
handling of NN and the previous preprocessing of the input images—and scikit-learn, a
library for Machine Learning (ML).
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2.2. Neural Network Architecture

Once the dataset, the 12,000 (p, q)-planes or representative patterns of the 40 subjects,
is available, the repository is organized into two subsets of data: one for training (training+
validation) and one for testing for the creation and evaluation of the model to be developed,
as is usual in ML. On the first subset, the data for training is reserved for applying the DL
algorithm and, thus, can obtain the model’s parameters. The data for validation is used to
readjust the hyperparameters prior to each iteration of the training phase and to evaluate
our model in each epoch, saving the best of them, which in our case uses a batch size of
30 patterns chosen at random if the performance finally achieved is to be achieved. The
model is trained using the training set and evaluated once each epoch using the validation
set. We define our training schedule to stop the training after a predefined number of
epochs without improvement in validation set loss and accuracy. This can result in a final
classification that falsely favors the selected validation subset and prevents the model from
correctly generalizing. To accurately assess how well the model performs, it is necessary to
use a separate set of data called “testing”, not included in the training phase.

Although various validation techniques organize the data in multiple ways [46], in
our case, 60% of the data is assigned to the training phase, 20% to the validation phase and
20% to the test phase, according to a balancing of the data; that is, in each of the phases the
same number of patterns is available in the basal and stressed state, as well as the same
number of patterns for each subject.

A model test design was carried out using the adapted CRISP-DM methodology. This
task consisted of generating and evaluating successive models with different convolutional
layers (from 2 to 4) and other numbers and sizes of initial filters, allowing us to converge
on the final model with the best performance presented. The general architecture of the
CNN model is illustrated in Figure 3. Since the problem of identifying a stressed state is
not simple, the following successive layers are contemplated:

• Four stages of 2D convolutional layer (Conv2D) + Max Pooling 2D layer. Convolu-
tional layers are applied to feature maps (feature maps) that are fed from RGB images
of dimensions 224 × 168 with a depth of 1 (channels). The image format is irrelevant
in geometric analysis, as in our case.
In the first two stages, the convolutional layers contain a particularly large kernel,
of dimension 13 × 13 (the filter consists of the kernel and a bias) and a pooling of
2 × 2 (the sliding window that scrolls through the convolutional layer to output the
maximum number of values from the four input window pixels). In the last two
stages, the convolutional layers, with dimensions 9 × 9 and the pooling layers, with
a pooling window of dimension 2 × 2. The kernels of dimensions 13 × 13 facilitate
the identification of those more global patterns or characteristics present in the input
images while the kernels of the innermost layers, with dimensions 9 × 9, allow more
local patterns to be captured.

• Flatten Layer: a layer that transforms the input image matrix into a one-dimensional
array.

• Dense Layer: fully connected hidden layer of 12 neurons with ReLU activation function.
The Rectified Linear Unit (ReLU) function defined as f (x) = x if x 6 0 and f (x) = 0
if x < 0, applied to the feature maps, provides the non-linearity required to carry
out the task detection of stress patterns [47]. Furthermore, it has been chosen for
its low computational cost to achieve good stochastic gradient descent convergence
performance. It allows the network-learning process to be faster without penalizing
generalization, avoiding the vanishing gradient problem that other activation func-
tions tend to (sigmoid, tangh and others). Also, added to the dense layer, it reduces
the risk of overfitting [48].

• Dense Layer: fully connected layer (fully connected) of 1 neuron with activation func-
tion sigmoid that encodes the probability that one of the two classes (basal and stress)
is being treated.
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Sigmoid activation

0–1 test

ReLU activation

Max Pooling

Flatten

Encoder feature extraction

Convolution

input

Preprocessing

PPG signal

(p, q)-planes

output 0: basal state
1: stress state

Classifier

Dense

Figure 3. (Color online) General convolutional network architecture proposed for stress detec-
tion/prediction.

Table 1 describes each layer in more detail. As seen in Table 1, the number of feature
maps obtained by the convolutional layers (depth or third dimension of the vector that
appears in the Output Format column) increases progressively from 16 to 32. Layers of
type pooling, with a pool of 2, halve the dimensions of the feature maps of the preceding
convolutional layer and, therefore, their size by 4. Finally, the total number of trainable
parameters is 224,265 (the sum of the values appearing in the last column).

Table 1. Proposed CNN architecture for stress detection/prediction.

Layer Type Output Format Parameters Number of Parameters

Input (224, 168, 1) — —
Conv2D (224, 168, 16) kernel = 13, activation = ReLU 2720

Max Pooling 2D (112, 84, 16) Pool = 2 0
Conv2D (112, 84, 16) kernel = 13, activation = ReLU 43,280

Max Pooling 2D (56, 42, 16) Pool = 2 0
Conv2D (56, 42, 32) kernel = 9, activation = ReLU 41,504

Max Pooling 2D (28, 21, 32) Pool = 2 0
Conv2D (28, 21, 32) kernel = 9, activation = ReLU 82,976

Max Pooling 2D (14, 10, 32) Pool = 2 0
Flatten (4480) — 0

Fully Connected (12) activation = ReLU 53,772
Fully Connected (1) activation = Sigmoid 13

2.2.1. Model Configuration

A critical factor in the generation of the model is the training method, which consists
of the selection of the loss or cost function and the optimizer. The loss function stipulates
the error between the obtained and expected outputs according to the input data of the
training phase. The loss function, strongly dependent on the problem in question, must be
compatible with the activation function. Given that in our particular case, we are dealing
with a binary classification problem (stress or no stress), with an activation function sigmoid,
the function of the loss finally chosen is the binary cross-entropy (binary cross-entropy).

The optimizer adjusts the model’s parameters by propagating the prediction error the loss
or cost function offers backward. The algorithm behind the optimizer gives rise to different
types of optimizers. They all constitute adaptations or improvements in the classical Stochastic
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Gradient Descent (SGD) algorithm. In our particular case, the optimizer that has provided
the best results has been the Adaptative Moment Estimation Adam optimizer [49], which can be
considered a combination of the optimizers of ADADELTA [50] and RMSProp [51], characterized
due to its excellent computational efficiency and its minimal memory requirements [49]. Adam
is an optimizer with adaptive moments that avoid local minima during learning. To do this, it
takes as a solution not the previous gradient but the moving averages of the first and second
moments of the gradient to adjust the effective learning rate to the training dynamically.

The performance of the training is subordinated to the optimizer’s operation, which, in
turn, depends on the hyperparameters to which it is subjected. In this sense, considering
that one of the essential metrics that govern the training and test processes is the precision
(accuracy)—the value in the interval [0, 1] that specifies the percentage of images correctly
classified—, the learning rate (learning rate) was set to 0.0001. This is one of the significant
advantages of Adam, its adaptability, which allows it to gradually adjust learning to training
based on the value of the learning rate hyperparameter initially established and whose
stability strongly depends on the batch size [52].

2.2.2. Model Training

Once the model is defined and configured, we proceed with the training of the CNN
to gradually adjust the parameters of the network layers. The training data coincides with
the experiment subjects’ (p, q)-planes. The feature maps, duly normalized and resized,
correspond to the basal state (no stress) and the stressed state, according to the previously
mentioned proportions.

The set of (p, q)-planes of each sample in each iteration or epoch of the training al-
gorithm is fixed by the batch size, which for this work was set at 30 to achieve the best
possible performance and the correct adaptability of the Adam optimizer. The optimizer
uses the number of iterations (epochs) to adjust the model parameters. The performance
of the model is contingent on its value. A very high number increases the precision of
the model but can also cause overfitting problems (overfitting), apart from excessive con-
sumption of computational time in the training phase. Overfitting or overtraining causes
a lack of generalization; the system “memorizes” the training data and cannot generalize
the problem resolution to new data. For this work, the number of epochs equal to 100
was determined.

Overfitting happens when a model becomes too focused on the labeled training ob-
servations, which can lead to inaccurate predictions when using test data. In sum, the
model learns the characteristics of the training data so literally, including defects or noise,
that it cannot adequately generalize the abstract configurations. The model is limited to
identifying only the pre-established conceptual details during the learning period. On the
other hand, the opposite effect of overfitting can manifest itself, called underfitting, a model
generalization problem caused by the scarcity of training data. Like overfitting, underfitting
results in poor model performance with new samples because the model has not been
trained with enough training data and does not have enough relevant patterns to provide
comprehensive generalization.

Given the frequent appearance of overfitting during the modeling process of the CNN
network, we focus our attention on this matter. No overfitting problems arose in the pro-
posed model, so it was not necessary to use existing techniques for their
resolution [46]. Still, they were applied during the modeling process to intermediate
models, mainly by adding a penultimate layer Dropout. On the other hand, the actions
carried out to prevent the appearance of overfitting were the following: (1) select the mini-
mum number of samples to train, validate and test the model, taking into account that the
dataset is not large: 60% for training, 20% for validation and 20% for testing; (2) distribute
in a balanced way the number of (p, q)-planes of each individual in the different categories,
stress and non-stress; (3) avoid the excess of epochs with the “early stop” technique of the
training through the use of callbacks that allow training to be stopped before overfitting
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occurs during the 100 epochs established for training as well as storing the best model
obtained.

2.3. Evaluation Metrics

The training, validation and testing phases of any DL or ML model require textual
or visual tools that allow monitoring of its evolution. In this way, it is easier to interpret
potential problems that may arise during model fitting and finally certify the goodness of
fit of the proposed model. The metrics widely used to assess binary classification model
performance are described below.

2.3.1. Confusion Matrix

The confusion matrix [53] is not properly a metric to estimate the performance of a
classification in ML. However, it does bring together the factors used in the performance
metrics used in this work. In a stress classification and detection problem, as is the case at
hand, the aim is to identify, based on an input (p, q)-plane, whether or not an individual is
stressed. The variable that identifies the status or class of a subject is called the objective
variable. If the individual is stressed, the target variable is assigned a value of ‘1’; otherwise,
it is assigned a value of ‘0’. The confusion matrix contains a two-dimensional table, as
reflected in Table 2. In its columns, the classes are labeled according to the current state
according to the actual training data. Its rows represent the states predicted after the
application of the model once trained and validated.

Table 2. Confusion matrix scheme.

Actual

Positive Negative

Predicted
Positive True Positive (TP) False Positive (FP)

Negative False Negative (FN) True Negative (TN)

The terminology associated with the confusion matrix is as follows:

• True positives (True positives or TP): number of samples whose true and predicted class
is ‘1’.

• True negatives (True negatives or TN): number of samples whose true and predicted
class is ‘0’.

• False positives (False positives or FP): number of samples whose real class is ‘0’ and the
predicted class is ‘1’.

• False negatives (False negatives or FN): number of samples whose real class is ‘1’ and
the predicted class is ‘0’.

Ideally, there are always correct predictions, with no FPs or FNs.

2.3.2. Accuracy

The accuracy metric is formulated as

Accuracy =
TP + TN

TP + FP + TN + FN
. (1)

With this metric, as reflected in Equation (1), the total number of samples correctly
classified by the model (for both classes) is obtained concerning the total number of all
classified and predicted samples.

2.3.3. Precision

The metric precision is defined as

Precision =
TP

TP + FP
. (2)
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This metric represents, according to Equation (2), the proportion of samples correctly
classified as positive (samples with stress or TP) of the total samples classified and pre-
dicted as positive (TP + FP). Therefore, this metric quantifies the classifier’s performance
concerning false positives. In order to minimize FPs, precision should be close to 1.

2.3.4. Recall

The recall metric is
Recall =

TP
TP + FN

. (3)

This metric establishes, according to Equation (3), the proportion of samples correctly
classified by the model as positive (TP) compared to the total number of positive samples
(TP + FN). Therefore, this metric quantifies the classifier’s performance concerning failed
predictions. The sensitivity should be close to 1 to minimize FNs.

Sensitivity and precision take values in the range [0, 1]. The model will behave more
efficiently as the metrics tend to 1, although an increase in one of them necessarily entails a
decrease in the other.

2.3.5. F1-Score

The metric F1-score is the harmonic mean of the sensitivity and precision, as in
Equation (4).

F1-score = 2 · precision · recall
precision + recall

. (4)

When sensitivity and precision are disparate, the metric F1-score tends to a smaller
value. Therefore, the model will perform better the closer F1-score is to 1.

2.3.6. Cohen’s Kappa Coefficient

Cohen’s kappa coefficient κ, whose value is [−1, 1], uses the confusion matrix. Unlike
the accuracy metric, this coefficient considers the distributions of the actual and predicted
classes. When the model’s precision degrades due to the imbalance in said distributions,
the kappa coefficient admits a more objective interpretation of the model’s performance,
preferentially attending to the minority class [54]. So,

κ =
p0 − pe

1 − pe
, (5)

where p0 represents the accuracy of the model and pe is a measure of the agreement between
the model predictions and the values of the actual classes (labels). In a specific context of
binary classification, as in our work, this measure amounts to pe = pe1 + pe2 , where pei

is obtained by multiplying the percentage of the predicted class by the percentage of the
actual class, assuming they are independent: pe = pe1,real · pe1,pred + pe2,real · pe2,pred.

According to Equation (5), the further the distributions are from the predicted and
actual classes, the smaller the value of the coefficient κ maximum achievable. The maximum
value of κ poses a limiting scenario in which the number of false negatives and false
positives in the confusion matrix is zero; all observations are correctly predicted. The
coefficient κ reaches its maximum value when the model operates with balanced data, as is
the case at hand. The numerator of Equation (5) denotes the difference between the overall
precision of the model and the overall precision achieved by chance; the denominator
describes the maximum value of the difference of the numerator. An admissible model will
have a maximum and observed difference close to each other, leading to a null value of κ.
In a random model, the overall precision is random and the numerator vanishes, resulting
in a value of κ equal to 0. The value of κ can assume negative values when the general
precision of the model is even lower than that which can be set at random.

Jacob Cohen suggested an interpretation of the degree of agreement according to the
value of the coefficient κ, which was later adapted by Mary L. McHugh [55], as illustrated
in Table 3. In short, the coefficient κ is a measure of the efficiency of the model as opposed
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to a classifier that behaves randomly. Somehow, it intends to correct the evaluation bias
by considering a correct classification by chance. Although the coefficient κ has become
a frequently used metric to compare classifiers, its behavior makes it difficult to interpret
the values obtained. A heated debate has arisen about the advisability of its use as a
performance metric or a model, which is why some authors advise against its use to
compare different classifiers [56].

Table 3. Level of agreement according to the κ coefficient.

Range of Values of κ Coefficient Matching (Level of Agreement)

[0.00, 0.20] none
[0.21, 0.39] minimal
[0.40, 0.59] weak
[0.60, 0.79] moderate
[0.80, 0.90] strong
[0.91, 1.00] almost perfect

2.3.7. Mathews Correlation Coefficient

The Mathews MCC correlation coefficient also comes from the categories or classes of
the confusion matrix. Given that it is a particular case of the Pearson correlation coefficient,
it allows quantifying the existing correlation between the real classes (TP and TN) and the
classes predicted (FP and FN).

MCC =
(TP · TN)− (FP · FN)√

(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)
. (6)

The value of the Mathews correlation coefficient, according to Equation (6), is within
the range [−1, 1], where −1 indicates a complete misclassification, while +1 indicates a per-
fect classification. A null value refers to a random prediction. MCC is especially interesting
because it takes a high value only if the prediction performed well in all categories of the
confusion matrix (TP, TN, FP and FN) in proportion to both the size of the positive samples
and the size of the negative samples of the dataset in question [57]. It is also very helpful in
scenarios with unbalanced classes. Contrary to other metrics, such as accuracy, precision,
recall or F1-score, MCC recognizes the inadequacy of the model with respect to predicting
instances, reflecting its real predictive power correctly.

2.3.8. Precision–Recall Curve

The Precision–Recall (PR) curve plots the sensitivity rate (true positives) on the abscissa
and the precision metric on the ordinate (positive values correctly predicted) for different
probability thresholds. The area under the PR curve, called PR AUC (Area Under Curve),
allows evaluating the performance of the classifier in terms of balance between precision
and recall. Inspecting the AUC is advisable when the samples are not balanced, that is,
when there are few samples of a positive class. This assumption is not the case for the
dataset available in this work since the number of positive samples coincides with the
number of negative samples. The greater the area under the curve, the greater the model’s
performance. In other words, the optimum would be a curve as close as possible to the
upper right corner (high recall and high precision).

2.3.9. ROC Curve

The ROC (Receiver Operation Characteristics) curve plots the false positive rate on the
abscissa and the recall rate on the ordinate. The ROC curve relates the sensitivity of the
model (recall) to the number of negative samples classified as positive (optimistic failures).
An increase in recall (higher rate of positives predicted by the model compared to the total
number of real positives) implies fewer false negatives and, therefore, more false positives,
in short, a more optimistic model. The closer the ROC curve is to the upper left corner of
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the graph, the better the model performs. However, it must be underlined that when the
data are unbalanced, with few positive samples, the ROC curve, or the value of the area of
the ROC curve (ROC AUC), can be misleading, with a plot very close to the ideal but with
too low a precision. In this sense, the relevance of the ROC curve is limited to contexts with
balanced data or situations in which optimistic failures are intended to be highlighted. The
PR curve would be more informative in the presence of unbalanced data.

2.3.10. Curve F1-Score-Threshold

This curve represents the F1-score metric for different threshold values. F1-score-Threshold
complements the information provided by the PR curve considering jointly the values of the
precision and recall measures, compacted in their harmonic mean. It allows the evaluation of
the stability of the system performance for different threshold values. In a high-performance,
stable system, the curve is nearly a straight line; the value of F1-score remains approximately
constant and close to 1 for the full range of possible threshold values.

3. Results

Before weighing the yields achieved and comparing them with other approaches
published in the scientific literature, it is worth examining the entire process that has led to
the CNN model presented in this paper.

First, as an example of preprocessing data, Figure 4 shows two input (p, q)-planes,
one from the basal state, as shown in Figure 4a, and the other from the stress state on the
same subject, as illustrated in Figure 4b.

0

0

q c
(n
)

PPG sample diffusive dynamics (basal state)

pc(n)
0

0

q c
(n
)

PPG sample diffusive dynamics (stress state)

pc(n)

(a) (b)

Figure 4. (Color online) Example of preprocessing data (CNN input data) with PPG signals shown in
Figure 2. (a) Subject #1 in the basal state; (b) Subject #1 in the stress state when confronted with a
videotaped memory task.

Considering the (p, q)-planes, a more regular spiral configuration can be seen in the
case of the user in the basal state, mainly in the central bulb, as shown in Figure 4a. In a
stressed state, the geometric structure experiences a greater spatial dispersion both in the
arms of the spiral and in the central bulb, which adopts a more ellipsoidal arrangement,
blurring the regular configuration, as reflected in Figure 4b. In any case, in the absence of a
more exhaustive study of the geometric structures exhibited by the (p, q)-planes and their
functional link with the physiological system that generates the PPG signal, we believe that
the mechanism behind the blurring of the configuration regular in a kind of multifractal
tessellation is related to a dynamic tending towards chaos.

In more physiological terms, it leads to a more flexible and adaptable physiological
disposition to quickly counteract the stress response and restore the homeostatic balance
of the organism as soon as possible. In this regard, applying a convolutional network
model has been pivotal in detecting an individual’s basal or stress state. The successive
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convolutional layers of the network learn a hierarchy of invariant features in the (p, q)-
planes, unique to each individual and indiscernible to the human eye. An in-depth analysis
of the maps obtained by the different layers of the model’s feature extractor would provide
relevant information on these factors common to all individuals to further advance the
study and classification of stress at its different levels.

Next, let us begin by evaluating the training and validation process illustrated in
Figure 5a,b, respectively, for the 100 iterations (epochs) established by design. As can be
seen, the training and validation processes behave similarly. In the first few iterations, as
Figure 5a shows, until around iteration 16, you do not notice an increase in precision, as
you would ideally expect. During the first iterations, the precision fluctuates and then
quickly scales up to a value close to 100% (∼97%), remaining around 97% from iteration
40 onwards. The loss function, as illustrated in Figure 5b, remains virtually stable around
0.7 because, not without some logic, learning is hard and slow in the first bars. Subsequently,
the loss function decreases sharply until iteration 40, slowly decreasing until it reaches
a value close to 0 (∼0.13). Optimizing the gradient descent algorithm keeps significant
parallelism between the training and validation data. This conformance in the training
and validation data behavior is due to the Dropout layer introduced at the end of the
convolutional network. The Dropout layer avoids the slight overfitting that comes with a
somewhat more complex model than is strictly necessary.
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Figure 5. (Color online) Training and validation evolution. (a) Evolution of precision (accuracy);
(b) Evolution of loss function (loss).

The trained model, after overfitting is removed, consists of four convolutional layers
with kernel of 13 × 13, 13 × 13, 9 × 9 and 9 × 9, respectively and associated Max Pooling
layer of 2 × 2 (for the four layers), Flatten layer and Dense layer of 12 neurons (batch size
of 30 and number of epochs equals 100) and the optimizer Adam.

3.1. Metric Results

The results that emerge from the evaluation metrics are detailed below.

3.1.1. Model Confusion Matrix

An analysis of the model’s accuracy and loss function is indispensable in terms of
model performance. A ∼96.7% accuracy was achieved with the test data. These data imply
a high percentage of success in the classification with data not known a priori by the model.
However, suppose it is intended to delve into the model’s behavior in more detail. In that
case, it is convenient to pay attention to other evaluation metrics that contemplate how
many samples among those labeled as the basal state have been classified correctly (NT) or
incorrectly (FP) or, similarly, how many samples among those labeled as a stressed state
have been classified correctly (TP) or incorrectly (FN). Figure 6 shows the confusion matrix
of the proposed model.
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Of the 1560 test images (testing) corresponding to the 40 participants in the experimen-
tal protocol, 780 concern subjects in a basal state and 780 individuals in a stressed state.
According to Figure 6, the model correctly detects 730 as TN (baseline state) and 777 as
TP (stressed state), which means that the model correctly predicts a high rate of samples
labeled as baseline or stressed.
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Figure 6. (Color online) Confusion matrix of the proposed model.

The fact that the model presents a very high TP value (777 out of 780) and, consequently,
a very low FP value (3 out of 780) is especially revealing since the purpose of the model
is precisely the detection of a stressed state in order to prevent potential pathologies that
could lead to severe health disorders. In the case of the value of TN, although it remains at
high levels (730 of 780), it is lower than that of TP, implying that the FN value is somewhat
higher than FP (50 of 780). Whatever its incidence, without detracting from it, since it is
still a prediction error of the model, it is less relevant in terms of the expected goal. In any
case, there are various metrics that, based on the confusion matrix, exploit the relationships
established between the categories of the matrix. These links highlight aspects of the model
that complete its analysis and the quality attributed to it, as detailed below.

Concerning the sensitivity (recall)—the proportion of correct predictions of each class
for the total observations of the said class—, its increase runs inextricably to the detriment
of precision (accuracy) and vice versa. Therefore, for the stressed state class, it adopts a
very high value (∼1), while for the basal state class, its value remains high but somewhat
less (0.94). Sensitivity is key in this work because it quantifies the model’s performance
against failed predictions. In particular, the sensitivity of the proposed model is practically
1, indicating that there are hardly any failures in the predictions of the stressed state.
Therefore, a stress episode can be prevented and contained in almost all obvious cases
before the situation worsens.

In the context of the problem posed in this paper, F1-score, a metric that is subject
to FP and FN, that is, to sensitivity and precision, does not provide relevant information,
since both Error types are balanced. However, sensitivity is given greater significance than
precision in the case of the positive class, the stressed state. It is preferable to optimize
the value of sensitivity rather than precision, which entails minimizing FN to detect the
detrimental effects of stress as far as possible. As the data are balanced, the metric is of no
great interest, especially when its value for the basal state and stressed state classes is very
high, ∼0.96 and ∼0.97, respectively, thus confirming the model’s goodness.

Cohen’s kappa coefficient presumes to be more notorious than accuracy when faced
with unbalanced data, contrary to what happens in our work. However, it always helps
to corroborate the model’s reliability with its estimation. In addition, the similar distri-
butions of the categories of the confusion matrix facilitate the interpretation of the kappa
coefficient κ, whose value is very high, ∼0.93, which, according to Jacob Cohen and
Mary L. McHugh [55] (see Table 3), is equivalent to an almost perfect agreement between
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the actual classes and the predicted classes. This consistency provides a very high measure
of the number of model predictions that cannot be explained by chance.

The Matthews correlation coefficient further confirms the real capacity of the model to
predict instances correctly. An almost perfect classification is available with a value close
to 1, ∼0.93. The prediction remained at ideal levels in all the categories of the confusion
matrix (TP, TN, FP and FN) by the balance of positive and negative samples of the dataset
of (p, q)-planes with which it was operated. Cohen’s kappa and Matthews’ correlation
coefficients did not reach the ideal goal 1.

3.1.2. ROC, PR and F1-Score-Threshold Curves

Figure 7 shows the ROC curve of the model. Its layout is scrupulously close to the
upper left corner. Therefore, an increase in sensitivity does not necessarily imply the
appearance of more false positives (FPs) and, consequently, does not affect the excellent
performance of the model, summarized in the area under the curve (ROC AUC = 0.97),
very close to 1.
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Figure 7. (Color online) ROC curve and ROC AUC for the proposed stress-detection model.

With unbalanced data, which is not the case in the present work, if there are few posi-
tive samples, the value of the ROC curve, as well as the area under the curve (ROC AUC),
could present high values; the FP rate (number of false positives/number of negative
samples) tends to remain low due to the large number of negative observations, which
makes its informative function less relevant by not reflecting the true performance of the
classifier. In this regard, the PR curve, analyzed below, becomes a complementary indicator.
However, for balanced data, as is the case at hand, the ROC curve and the area under the
curve (ROC AUC) are appropriate indicators. For the rest, the ROC curve clearly illustrates
the relationship that is established with the false positives. As already advanced with the
confusion matrix, they are counted more significantly than the false negatives: 50 of 780 for
FP, compared to 3 of 780 for FN.

In Figure 8, the Precision–Recall curve of the proposed model is represented. This
curve shows the relationship between the metrics precision and recall. The more the curve
trace extends towards the upper right corner, reflected in the trend to 1 of the area under
the curve PR AUC (∼0.94), the better the model performance. The PR curve makes it
possible to determine from what value of precision recall degrades and vice versa. The
PR curve suggests the most significant number of positive samples (stressed state) the
model can predict in scenarios with balanced data. In the presence of unbalanced data,
with few positive samples, the PR curve would deviate from its optimal regime, making it
a representative precision indicator, given the low probability of the positive class.
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Figure 8. (Color online) PR and PR AUC curve for the proposed stress-detection model.

Finally, the F1-score-Threshold curve, shown in Figure 9, completes the information
provided by the ROC curve and the area under the curve ROC AUC since it integrates
with F1-score the precision and sensitivity. In Figure 9, the stability and performance of
the model can be clearly appreciated. For a wide range of threshold values, the value of
F1-score remains constant at a height of practically 1, with a maximum value of ∼0.97 for a
threshold of 0.4565 of the positive classes.
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Figure 9. (Color online) F1-score curve for the proposed stress-detection model.

4. Discussion

In stress detection using machine-learning techniques, the most significant perfor-
mance is obtained when physiological markers from heart rate are used together, tem-
perature, humidity, blood pressure and vocal timbre [58,59]. In such a competitive job
market, overwork has become a handicap that is difficult to overcome, resulting in reduced
performance in professional activity. In many cases, self-imposed social pressure is also
felt in the academic field, with increasingly unbridled levels of demand or in activities
as routine as driving a vehicle, in which precisely a lack of concentration, the result of
fatigue, can lead to a fatal outcome [60]. Therefore, early detection of stress not only helps
to prevent accidents or severe morbid disorders but also to consolidate healthier work or
study climates.

Although the evaluation of stressful situations was traditionally limited to highly
controlled environments, with the technological development of peripheral devices, stress
detection is undertaken in real-time through portable devices, such as a bracelet, a watch or
the mobile phone itself, even very low-cost home-made devices. The growth experienced by
sensor technology has been transferred to the ubiquitous universe of mobile devices. Today,
multiple physiological parameters, such as, e.g., nasal skin temperature, heart rate, eyelid
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movement, voice inflection and typing, can be captured through the different interfaces or
sensory extensions that portable devices consist of without altering the behavioral routine.
In any case, the performance exhibited by real-time stress-detection techniques is still some-
what relevant compared to traditional methods practiced in controlled environments [61].

The most common classification algorithms that support learning algorithms in the
process of detecting mental stress are circumscribed to logistic regression, KNN (K-Nearest
Neighbor), RF (Random Forest) and SVM (Support Vector Machine). For the validation of clas-
sification models, cross-validation k-fold (k = 5 or k = 10) and cross-validation leaving one
subject out (leave-one-out cross-validation) [59]. Of all physiological indicators, ECG-derived
signals such as heart rate and skin conductance (GSR) provide the highest performance in
terms of accuracy. However, it is necessary to extract many variables to place the perfor-
mance at acceptable levels, which are often insignificant. In any case, with the number of
variables, the computation time also increases, which jeopardizes its application potential
in real-time environments. The characteristics usually provided to classification models
attend to linear aspects, both in the time domain and frequency domain and to non-linear
aspects of biological signals [62–65].

Concerning the PPG signal, its close relationship with the cardiovascular system and
its easy acquisition, even with the simple camera of a mobile [66], makes it a relevant
candidate for stress detection. Previous works related to the identification of a stressful
situation through the PPG signal are summarized in Table 4, in which it can be seen how
the performance obtained is notorious due to the marked bias that noise induces in the
morphology of the signal, as previously mentioned.

It should be noted that in all the studies that use the PPG signal, either in isolation
or with other biological signals (multimodal analysis) [65], the characteristics that make
their cataloging possible refer to the morphology of the signal implicitly or explicitly. As
a result of this, all of them are strongly conditioned by psychophysiological variations
(e.g., changes in an emotional state, physical activity), by noise disturbances coupled in the
acquisition phase of the data or due to statistical inconsistencies due to the non-stationarity
of the signals (time interval of the measurements) [27].

In that sense, it is worth highlighting the work of Seongsil Heo et al. [67], in which the
authors propose a debugging method (denoising) of the signals PPG data in order to refine
its temporal definition and thus to be able to extract higher quality features. The authors
demonstrate how removing noise from the PPG signal achieves stress detection with a
higher accuracy rate than other conventional approaches. In the same way, in the work of
Nilava Mukherjee et al. [68], the first hardware solution is proposed that enables real-time
detection of stress. However, to achieve high effectiveness, due to the susceptibility of the
PPG signal morphology, the use of 60 signal characteristics is prescribed.

With these backgrounds, the solution proposed in this work is entirely new; it ulti-
mately moves away from the usual methodology, anchored in the morphology of the PPG
signal and approaches the detection of stress from the dynamic approach of the PPG signal,
inspired by the stochastic nature of blood flow. A diffusive model highly dependent on
the vascular bed, whose physical structure is unique to each individual, is a framework to
characterize an individual’s stress level through a CNN.

According to Table 4, it can be seen how the initial attempts for stress detection
assume a multimodal character in the extraction of physiological characteristics. For a more
comprehensive review, we recommend consulting the works of Shruti Gedam and Sanchita
Paul [59] and Giorgos Giannakakis et al. [65], apart from those specifically referred to
in Table 4 and the references within them. The conjunction of various biological signals
in the stress-detection process, added to the computational requirement inherent in the
complexity of the feature-extraction algorithms, make it impossible to integrate a possible
hardware solution that operates in real-time in a portable device [69]. With this objective,
in recent years, stress-detection models have been proposed that reduce the analysis to
a single biological signal from which to extract reliable stress indicators. In addition, the
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advanced signal-processing techniques that accompany the most modern classifiers favor
optimal levels of discrimination between psychophysiological states.

Table 4. Previous work on stress detection using the PPG signal.

Previous Studies Population (Subjects) Biological Signals Classifier Best Accuracy (%)

Khalilzadeh et al. (2010) [70] 9 BVP, RR, EEG,
GSR, PPG

Elman neural
network 82.6

McDuff et al. (2014) [71] 10 PPG (HRV),
BR SVM 85.0

Maaoui et al. (2016) [72] 12 PPG (HRV) SVM RBF 94.4
McDuff et al. (2016) [73] 10 PPG (HR, HRV, BR) Naïve Bayes 86.0

Mozos et al. (2016) [74] 18 PPG, EDA, HRV
AdaBoost, KNN,

SVM RBF,
SVM

94.0

Giannakakis et al. (2017) [75] 23 facial rPPG,
facial videos

KNN, GLR,
NVB, SVM 91.68

Cheema and Singh (2019) [76] 32 PPG, ECG LS-SVM 93.0
Kalra and Sharma (2020) [77] 15 PPG MLPNN, DNN 91.0

Bobade and Vani (2020) [78] 15
ECG, PPG, ST,

RESP, EMG, EDA,
ACC

DT, RF, AB,
LDA, KNN, SVM,

ANN
95.0

Indikawati and Winiarti (2020) [79] 15 ST, PPG, EDA LR, DT, RF 96.9

Bhanushali et al. (2020) [80] 15 ECG, PPG, ST,
RESP, EMG, EDA

LDA, RF,
SVM, ANN 98.0

Nath and Thapliya (2021) [81] 40 EDA, PPG,
IBI, ST RF 94.0

Heo et al. (2021) [67] 15 PPG DT, AdaBoost, RF,
LDA, SVM 96.5

Anwar and Zakir (2022) [82] 27 PPG (PRV) KNN, GA 81.0
Mukherjee et al. (2022) [68] 15 PPG AE, SVM 99.0

Paul et al. (2023) [83] 32 PPG Threshold-based
classification 98.43

Our approach (2023) 40 PPG
(diffusive dynamics) CNN 97.0

As is known, stress is closely linked to the cardiorespiratory system, whose physiolog-
ical manifestation extends in its entire spectrum throughout the entire organism, including,
e.g., breathing, autonomic nervous system, skin temperature and sweating. The ECG signal
is its maximum exponent; therefore, it has been used in countless works, leading to the
detection of stress [59]. However, its acquisition is uncomfortable for the subject on which
the electrodes required for its measurement are arranged. In this sense, the PPG signal
has become a reliable alternative to the ECG signal since it is effortless to acquire, with
minimally invasive techniques and it contains the same physiological information as the
ECG signal [84].

Focusing on those previous works that only use the PPG signal to detect the presence
of stress in a subject, with an accuracy greater than 90%, Choubeila Maaoui et al. [72] use
seven extracted characteristics of the PPG signal. The pulse signal was acquired using a
web camera from the facial analysis of the face. They achieve 94.4% accuracy using an SVM
BRF classifier. Prerita Kalra and Vivek Sharma [77] use 18 characteristics of the PPG signal
to identify a possible stress episode, 9 of them from the time domain and the remaining 9
from the frequency domain. With a DNN, they reach 91% accuracy. Seongsil Heo et al. [67]
propose a stress-detection methodology based on the analysis of 26 characteristics of the
PPG signal. With different classifiers, they obtain a maximum accuracy of 96.5% whenever
an LDA classifier is used. In this work, unlike the previous ones, the authors demand
a minimum trace of the PPG signal, in their case of 120 s, to guarantee the published
performances. Nilava Mukherjee et al. [68] propose for the first time a hardware solution
that makes it possible to detect stress in real time, among four possible states—baseline, stress,
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amusement and meditation—with an accuracy of 99%, an F1-score of 99% and a sensitivity
98%. Memory requirements are not severe (∼1.7 MB) and latency time is ∼0.4 s, with a
minimum PPG signal trace of 5 s. To preserve such high performance, they require the
extraction of 60 characteristics of the PPG signal. Recently, Avishek Paul et al. [83] used a
threshold classification method to, based on two characteristics of the PPG signal, identify
a stress episode with an accuracy of 98.4%, a sensitivity of 96.87% and a specificity of 100%.
However, the authors do not provide conclusive evidence on the minimum PPG signal
trace, memory requirements or latency time needed to satisfy such excellent performance.

The potential of our proposal resides in the fact that with a single characteristic of the
PPG signal, its diffusive dynamics, which houses the integral spectrum of cardiorespiratory
factors, it is feasible to detect the stress of an individual with an accuracy and F1-score of
∼97% and a sensitivity also of 97% but ∼100% for the stressed state class. Its migration to
portable hardware operating in real time is immediate since its memory requirements are minimal
(∼2.8 MB, of the same order of magnitude, as suggested by Nilava Mukherjee et al. [68]) and
it takes 4 s of PPG signal, compared to 5 s for the latter, with a latency time of ∼19–20 ms, to
detect stress with virtually 100% reliability.

5. Conclusions

In this article, we propose a binary classification model based on CNNs to detect the
presence of acute stress in a subject through the PPG signal. Unlike other previous works,
our model only requires a single characteristic of the PPG signal, its diffusive dynamics, a
property inherent to the vascular bed of each human being, unrelated to external conditions
and very stable over time except in the case of pathologies that could damage the vascular
structure. Most works that use biological signals to identify stress episodes implicitly
or explicitly resort to temporal or frequency characteristics subject to their morphology.
Therefore, they are very vulnerable to noise in data-acquisition systems and eventual
psychophysiological variations, such as physical activity or a change in an emotional
state, which distort an accurate measure of stress. The PPG signal’s diffusive dynamics
reflect each individual’s reactive and inalienable tendencies, less prone to exogenous and
endogenous spurious disturbances that undermine the veracity of the stress diagnosis.

The solvency of the diffusive dynamics of the PPG signal in the face of external
and internal instrumental artifacts makes it possible, with its single analysis, to identify
episodes of acute stress with a high percentage of success with a minimum signal sample.
The solution proposed in this work reaches 97% accuracy, like its F1-score, with a sensitivity
of 99%. With a latency time of at most 20 ms, the model requires only 4 s of PPG signal
to report a stressed state. In addition, the modest memory requirements, ∼2.8 MB, make
our solution a highly attractive alternative for implementation in consumer electronics
(portable devices), which would allow not only early and accurate stress detection but also
the expeditious deployment of the necessary countermeasures before their adverse effects
have a significant impact on the family, economic and work spheres.

The CNN model has obtained a very positive evaluation in terms of the different
evaluation metrics that commonly certify the validity of a model. A weak point that partly
undermines its respectable credit is the FP value, 50 of 780, compared to the FN value, 3 of
780. Although the FP value is not entirely unacceptable, with a lower cost than the impact
of FN, it is worth further work to refine the model, mitigate the losses subject to the depth
of the CNN and minimize their degree of incidence. Along the same lines, future work
should delve into the physiological mechanisms of stress and how they converge in the
diffusive dynamics of the PPG signal so that the CNN model can be optimized with an
efficient and systematic adjustment of the hyperparameters. Its diagnostic prospects are
promising, even as a recommender system. However, its expectations will be fulfilled when
it helps to detect stress sufficiently in advance, partly mitigating the serious consequences
that it derives from modern society.
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