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Abstract: Road maintenance systems (RMS) are crucial for maintaining safe and efficient road
networks. The impact of climate change on road maintenance systems is a concern as it makes them
more susceptible to weather events and subsequent damages. To tackle this issue, we propose an
RMSDC (Road Maintenance Systems Using Deep Learning and Climate Adaptation) technique to
improve road maintenance systems based on Deep learning and Climate Adaptation. RMSDC aims
to use the multivariate classification technique and divides the dataset into training and test datasets.
The RMSDC combines Convolutional Long Short-Term Memory (ConvLSTM) techniques with road
weather information and sensor data. However, in emerging nations, the effects of climate change are
already apparent, which makes road networks particularly susceptible to extreme weather, floods,
and landslides. Therefore, climate adaptation of road networks is essential, especially in developing
nations with limited financial resources. To address this issue, we propose an intelligent and effective
RMSDC that utilizes deep learning algorithms based on climate change predictions. The ConvLSTM
block effectively captures the relationship between input features over time to calculate the root-mean
deviation (RMSD). We evaluate RMSDC performance against frameworks for downscaling climate
variables using two metrics: root-mean-square error (RMSE) and mean absolute difference. Through
real evaluations, RMSDC consistently outperforms approaches with a reduced RMSE of 0.26. These
quantitative results highlight how effective RMSDC is in addressing maintenance systems on road
networks leading to proactive road maintenance strategies that enhance traffic safety, reduce costs,
and improve environmental sustainability.

Keywords: deep learning; road maintenance systems; climate change; sensors data; RMSDC tech-
nique; multivariate classification; ConvLSTM

1. Introduction

The development of resilience in communities that are susceptible to the impacts of
climate change is crucial for effectively adapting to the changing climate. Small developing
countries are already feeling the effects of climate change, and with the projected increase in
temperatures, the situation is anticipated to deteriorate further [1]. However, adaptation to
climate change can be costly and many developing countries lack the necessary resources [2].
Transportation networks are particularly vulnerable to extreme weather events caused
by climate change, putting island nations at risk [3]. Significant investments in road
network adaptation will be necessary to ensure the safety of their populations and the
continuity of local businesses [4]. Investigating whether adaptation expenses can be
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minimized while maintaining safe driving conditions and an uninterrupted traffic flow is
essential. Deep learning, an artificial intelligence technique that uses reinforcement learning
to teach artificial neural networks to perform complex tasks, has achieved superhuman
intelligence in various challenging applications [5]. This makes it a suitable tool for complex
systems like weather and traffic. Even if human-induced greenhouse gas emissions stopped
today, the signs of climate change caused by human activity are already evident and
expected to worsen [6]. In February 2018, the concentration of carbon dioxide in the
Earth’s atmosphere reached over 407 parts per million, the highest recorded in the past
650,000 years. Furthermore, the average global temperature has risen by 1.8 degrees Celsius
since 1880 [7]. The long-term effects of human-induced climate change are still uncertain.
However, they are predicted to include sea-level rise, heatwaves, more frequent and severe
storms, altered precipitation patterns, and increased floods and droughts in some areas [8].
As the world continues to warm, these consequences will likely intensify and place more
stress on social and ecological systems [9].

1.1. Effects of Climate Change on Road Systems

Road transportation is crucial in modern society and various industries, ranging from
traditional tuk-tuks to advanced electric vehicles. Although road networks are significant
contributors to greenhouse gas emissions, they are indispensable for realizing the objective
of the Paris Agreement, which aims to limit global warming to below 2 degrees Celsius by
the year 2100 [10]. However, as temperatures continue to rise, road networks are becoming
increasingly vulnerable to the consequences of climate change [11–13]. These impacts
include rising sea levels, intensifying extreme weather events, altered precipitation patterns,
and frequent floods and droughts. Without proper precautions, these consequences could
damage or destroy road networks, limiting accessibility and compromising the safety
of road users [14]. Effective adaptation to climate change can enhance the resilience of
road networks, particularly in developing countries. Innovative building materials, early
warning systems, and improved maintenance techniques can all contribute to building
resilience [2]. Maintaining road networks is a critical component of creating resilient roads,
with the potential to reduce government spending in low-income countries significantly.
Transportation agencies may need to adjust system maintenance practices to account for
the effects of climate change, such as changes in average air temperatures and winter
precipitation patterns. Such modifications may necessitate more durable detour routes,
rapid maintenance patrols to address more frequent potholes and buckling problems,
and winter maintenance adjustments. This paper aims to investigate the application of
deep learning to intelligent road maintenance systems as a potential solution to adapt to
climate change, particularly in developing countries. The experiment involves training
deep reinforcement agents to comprehend how traffic and adverse weather conditions
contribute to road deterioration, maintenance costs, and traffic flow. The study also aims
to investigate possible variations in the performance of deep learning algorithms under
different scenarios. The paper proposes creating a simulation environment that replicates
the general state of a road, taking into account the impacts of traffic, extreme weather events,
maintenance activities, and costs. The simulation includes regular traffic flow, the opening
and closing of roads for maintenance, and a budget for maintenance activities. Three deep
reinforcement agents interact with the simulator, and their performance is evaluated based
on their ability to manage the road’s maintenance budget, prevent unacceptable levels of
road deterioration, and maintain traffic flow on the more extensive road network. The study
will also include comparisons with two non-intelligent agents: random and hard-coded.

1.2. Contributions

The work presented here offers the following key contributions:

• The proposed RMSDC architecture is innovative for multivariate time-series inter-
pretability in road maintenance, particularly for multiple time-step forecasts.
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• The spatial and temporal attention mechanisms are jointly trained in a unified design
to learn the temporal and spatial contributions. The domain knowledge for the Road
Maintenance dataset is utilized to explain the learned interpretations.

• RMSDC achieves state-of-the-art prediction accuracy while remaining interpretable. In
most evaluations, RMSDC outperforms the baseline models, while in a few instances
it matches the forecast accuracy of the baseline models.

2. Related Work

Road infrastructure is crucial for nations’ economic and social well-being, providing
numerous benefits. However, it is essential to note that road construction, maintenance,
and usage have substantial environmental impacts [14]. In light of recent warnings from
the UN’s International Panel on Climate Change (IPCC) about climate change, there is
a growing consensus on the need for sustainable development of infrastructure systems,
particularly transportation networks [15]. The focus has shifted towards finding sustainable
methods to maintain and repair eroding pavement networks while minimizing costs,
greenhouse gas emissions, and the use of non-renewable resources [16].

Traditional assessments of pavement repair options have primarily considered eco-
nomic and technical factors, overlooking the environmental implications [17]. Air pollution
and climate change are two significant environmental challenges, with human-made green-
house gas emissions contributing to global warming and posing severe consequences
for the environment, society, and economy [18]. Since the transportation industry is a
significant contributor to air pollution, special attention must be given to its impact [19].
Furthermore, the projected increase in natural disasters due to global warming necessitates
a greater emphasis on Maintenance and Rehabilitation (M&R) procedures, which may
increase pollutant emissions [18].

Creating a viable long-term maintenance framework is essential for policymakers to
avoid significant capital waste while maintaining an acceptable level of service, especially
considering financial constraints [20]. To achieve this, prediction models are required to
develop effective maintenance strategies. Numerous budget allocation models have been
proposed to address project-level and network-level concerns [21]. Recent studies have
focused on pavement performance forecasting using local datasets or Long-Term Pavement
Performance (LTPP) data [22,23]. The cost-effectiveness of methods is crucial for both
data collection and maintenance frameworks. Collecting data should be economically
feasible for small businesses, and cost-effectiveness is necessary to prevent budget waste in
maintenance frameworks. Engineers have been investigating which maintenance methods
yield the best results, often employing cost-effectiveness or cost–benefit analysis to assess
their techniques [24,25]. Maintaining pavements over a long period allows for more
cost-effective and environmentally friendly options to be explored, leading to extended
service life and reduced capital costs. Combining treatments and developing reliable
schedules can significantly contribute to these outcomes [26–28]. Additionally, the timing
of maintenance treatments is crucial, and developing maintenance schedules based on
long-term deterioration research has been the focus of extensive studies [29–32].

Machine learning has shown great potential in civil engineering by utilizing mod-
els created from data to mimic human intelligence. Many studies have tried integrating
machine learning with civil engineering to tackle diverse engineering challenges [33–36].
Deep learning, a popular technique, has been widely used for damage recognition, crack
detection, and prediction [37–40]. Reinforcement learning has emerged as a recent method
to maximize cost-effectiveness in determining ideal treatment schedules [32,41]. Reinforce-
ment learning (RL) can be applied to overcome decision-making challenges in long-term
maintenance. Pavement authorities face difficulties stemming from the intricate nature
of pavement deterioration, the presence of alternative treatments, and the utilization of
diverse pavement performance indicators. Machine learning techniques, particularly rein-
forcement learning, offer a sequential decision-making approach for large-scale simulations
and optimization of long-term maintenance planning [32,42–50] as shown in Table 1.
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Table 1. Earlier research on the use of AI for infrastructure management.

No. of Ref. Research Method Main Category

[44]

Identifying damage to
infrastructure assets

CNN Building
[45] CNN Road
[46] CNN Water
[37] KNN Bridges
[47] CNN Power

[48]
Timing of

Maintenance and
Rehabilitation

ML Bridges
[41] RL Road
[32] RL Road
[43] RL Road
[29] GA Road

[22]

Performance Forecast

KNN Road
[37] ANN Dam
[49] ANN Sewer
[50] RNN Power

There is a growing interest in adapting super-resolution architectures based on deep
learning techniques for statistical downscaling, driven by the climate system’s spatiotempo-
ral characteristics and underlying non-linear behavior. Vandal et al. [51] proposed DeepSD,
which treats intricate precipitation data as a single image. DeepSD incorporates the super-
resolution architecture SRCNN [52], based on convolutional neural networks, to effectively
capture spatial relationships. Other researchers have suggested ResLap [53], which utilizes
a super-resolution network based on the Laplacian pyramid [54] to enhance the quality of
derived climate change estimates. Additionally, deep learning, specifically reinforcement
learning, is employed to predict the maintenance planning of road assets by integrating
Life Cycle Assessment (LCA) and Life Cycle Cost Analysis (LCCA).

3. Theory and Methods

Deep learning techniques are rapidly being applied to road maintenance systems
to increase the accuracy of repair recommendations while lowering costs. This section
provides a high-level overview of CNNs, RNNs, and LSTMs for time series analysis as they
apply to road maintenance systems.

3.1. Time-Series and Automated Statistical Downscaling (ADS)

ADS refers to a collection of data points arranged in chronological order, and it finds
application in various fields that involve temporal measurements. It can be either univariate,
relying on a single parameter, or multivariate, depending on multiple parameters.

In statistical downscaling, the Autoregressive-Scaling Model with covariate selec-
tion and prediction (ASD) is used for downscaling precipitation, and two critical steps
are involved.

Researchers can obtain insights into the geographical distribution of road surface
characteristics and how they vary over time by discussing the spatial and temporal aspects
separately. Analyzing spatial characteristics can assist in identifying regional patterns and
potential hotspots of specific State categories, whereas analyzing temporal elements can
reveal seasonal trends and daily variations in road surface conditions. This understanding
is critical for developing effective road maintenance methods and adjusting to changing
weather conditions, ultimately improving the resilience and safety of the road network.

Firstly, the classification of rainy and non-wet days (precipitation exceeding 1 mm) is
performed, followed by the prediction of the total amount of precipitation specifically for
rainy days. Subsequently, the anticipated precipitation can be expressed as follows:

E(Y) = R× E(Y|R) where R =

{
0, i f P(Rainy) < 0.5
1, Otherwise

(1)
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Rainy and non-rainy days are represented as a binary variable in the framework, de-
noted as R. The proposed framework [55] employs five pairs of classification and regression
approaches to test its effectiveness.

The discrepancy between the actual and expected results is then quantified as the
loss. A loss function is employed to measure this difference. This study utilized two loss
functions: Mean Square Error (MSE) and Categorical Cross-Entropy.

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (2)

CategoricalCrossEntropy = −
n

∑
i=1

yi × log ŷi (3)

In this context, the gradient computation for each parameter involves using the loss,
with y representing the real value and ŷ representing the projected value. The gradients
provide insights into the potential adjustments needed for the parameters. This process,
known as backpropagation, occurs during the tuning phase or learning process. By carefully
adjusting the network’s weights, the loss over the entire dataset is minimized, thereby
enhancing the model’s generalization ability.

3.2. Time Series Analysis Using Convolutional Neural Networks (CNNs)

CNNs are a sort of neural network widely used for image analysis; however, they
can also be used to analyze time series. A CNN can be used in time series analysis for
road maintenance to extract features from time series data by applying filters that capture
patterns in the data. The filters’ output is then sent through pooling layers to minimize
the input’s dimensionality and identify the most critical characteristics. CNNs have been
demonstrated to be helpful in time series analysis for road maintenance [56], mainly when
dealing with big datasets of road photographs.

Subsequently, the feature maps obtained from the convolution process undergo fur-
ther processing using an activation function, commonly the widely used Rectified Linear
Unit (ReLU).

ReLu(x) = max(0, x) (4)

The pooling layer is employed to reduce the size of the feature maps generated by the
preceding convolutional layer. Figure 1 illustrates the different stages of the convolution
process.
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The last layer utilizes the softmax activation function (as opposed to ReLU) to deter-
mine the probability of data belonging to a specific class.

The softmax function, when given an input vector denoted as z and containing K real
numbers (corresponding to the output layer), is expressed as follows:
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So f tmax = (z)i =
ezi

∑k
j=1 ezi

, f or i = 1, . . . . . . . . . . . . , k. (5)

3.3. RNNs for Time Series

Analysis: RNNs are a sort of neural network that can handle sequential data, making
them ideal for time series analysis of road maintenance. RNNs use feedback connections
to maintain information over time, allowing them to capture temporal dependencies in
data. Standard RNNs, on the other hand, are susceptible to the vanishing gradient problem,
which limits their ability to detect long-term dependencies in data.

3.4. Time Series Analysis Using Long Short-Term Memory (LSTM) Networks

LSTMs are a sort of RNN that overcomes the vanishing gradient problem by con-
trolling the flow of information through the network with a memory cell and numerous
gating methods. The memory cell maintains information over time steps, while the gating
mechanisms control the flow of information into and out of the cell. LSTMs have been
demonstrated to be effective in time series analysis for road maintenance, mainly when
dealing with data with long-term dependencies.

CNNs are used to analyze road images and identify different types of road surface
damage in the proposed approach in “A Deep Learning Technique to Improve Road Main-
tenance Systems Based on Climate Change”. In contrast, LSTMs are used to analyze climate
data, estimate the probability of further damage, and prioritize maintenance actions. The
suggested approach captures spatial and temporal connections in the data by combining
CNNs and LSTMs, which can increase the accuracy of maintenance suggestions. Previous
research has demonstrated the usefulness of deep learning approaches, such as CNNs and
LSTMs, in time series analysis for road maintenance.

3.5. Convolutional LSTM Networks

LSTMs, a variant of RNNs introduced by Hochreiter et al. [57], differ from the tradi-
tional form by incorporating gates that enhance control over the gradient flow. These gates
consist of the forget gate (F), which determines which components of the cell state can be
discarded; the input gate (I), which regulates the addition or modification of components
in the cell state; and the output gate (O), which determines the portion of the cell state to be
output. The following equations and Figure 2 depict the three LSTM network modules:

ft = σ
(

W f × [ht−1, xt] + b f

)
(6)

it = σ(Wi × [ht−1, xt] + bi) (7)

ot = σ(Wo × [ht−1, xt] + bo) (8)

Ĉt = tanh(Wc × [ht−1, xt] + bc) (9)

Ct = ft × Ct−1 + it × Ĉt) (10)

ht = ot × tanh(Ct) (11)

These gates enable LSTMs to overcome the issue of vanishing gradients and maintain
longer-term memory. In traditional RNNs, the gradient often diminishes significantly over
long sequences, rendering the learning process ineffective.
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The LSTM method for multivariate tuning comprises three stages: data conversion,
LSTM modeling, and tuning. The data conversion module converts time-series data into
supervised learning sequences and identifies the variable sets with the highest regression
coefficients for the predictive value Y. The LSTM modeling module connects multiple LSTM
perceptrons to construct an LSTM network. The tuning module iteratively adjusts the pa-
rameters based on root-mean-square deviations (RMSE) and updates the data for further
training. The data conversion module tackles the challenge of multivariate problems with
high dimensions by leveraging the periodicity of the data and reducing rows of data to a sin-
gle row; it involves two processes: data preparation and data conversion. The second data
conversion operation aims to combine multiple rows into one by transforming time-series
data into supervised learning sequences based on the data’s periodicity. Consequently,
the operation defines the problem as finding a positive integer number. In the statistical
downscaling problem, we consider the transfer function between high-resolution observa-
tions and coarse-resolution outputs using a spatiotemporal sequence of state variables as
input. To address this, we propose an end-to-end trainable model called ConvLSTM SR
(Convolutional LSTM Statistical Downscaling) by integrating fully connected LSTMs with
convolutions. This model combines convolutional LSTMs with a super-resolution block.

The LSTM model used in our study, along with a simplified block diagram, is depicted
in Figure 2. The LSTM model is constructed using the function: Ct = f (X), where ht
represents the variable value, C denotes the climate state, Ot represents the set of predictor
variables on the tth day, and Ct−1 represents the variable value on the (t− 1)th day.

4. RMSDC Technique Based on Multivariate Classification for Road Maintenance
Systems and Climate Change

Road maintenance systems (RMS) are critical for guaranteeing the safety and efficiency
of nations’ road networks. Concerns have been made about the negative consequences of
climate change on road maintenance systems, which make road networks more vulnerable
to weather events and consequent damage. To solve this issue, we offer RMSDC (Road
Maintenance Systems Using Deep Learning and Climate Adaptation), a new strategy that
uses Convolutional Long Short-Term Memory (ConvLSTM) techniques with climate change
forecasts to improve road maintenance systems.

We use a multivariate dataset in this study that includes road surface condition
measurements (S1–S11), friction, temperature (Ta), moisture content (S7), road surface
temperature (Tsurf), water content, vehicle speed, direction, geographical coordinates
(latitude and longitude), elevation (height), and other relevant parameters. The categorical
variable “State” describes the general condition of the road surface, with values ranging
from 1 to 6 for Dry, Moist, Wet, Icy, Snowy, and Slushy.

We divide the dataset into training and test sets and use deep learning classification
techniques to create RMSDC. The ConvLSTM architecture is used to capture temporal
dependencies and interactions in data—notably, those that exist between input features
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across time. The RMSDC model mixes road weather and sensor data, effectively adapting
to climate change projections and calculating the root-mean deviation (RMSD).

The goal of the RMSDC (Road Maintenance and Smart Data Collection) is to create a
dynamic framework that enables the development of rules for opening and closing roads
based on changing weather and traffic data. These policies should ensure smooth traffic
flow while keeping road maintenance costs within a predetermined budget. This section
provides a detailed explanation of our proposed RMSDC technique and the suggested deep
architecture.

This paper addresses the significant challenge statistical downscaling approaches
face in effectively capturing spatiotemporal dependencies. We present a method that
leverages recurrent convolutional LSTM to downscale ensembles of Smart Roads outputs,
considering multiple starting conditions. Additionally, we propose a study approach to
augment various state variables. To achieve this, we introduce additional variables related
to weather conditions, such as surface temperature, wind speed, and air temperature. These
weather variables play a crucial role, as heavy rain can lead to floods and landslides, which
can impact the condition of the road.

The road is characterized by parameters such as estimated traffic volume, maintenance
budget, and whether it is paved or unpaved. The present weather and traffic conditions
influence the road’s state. If the model keeps the road open, traffic can utilize it, whereas
if it is closed, maintenance activities can be carried out to restore the road to its original
condition.

Spatial Parameters—Latitude and Longitude: These geographic coordinates describe
the measurement site’s location. Examine how road surface conditions differ according to
latitude and longitude, discovering places with distinct State categories.

Height: The elevation above sea level indicates the altitude of the place. Investigate
how road surface conditions change with elevation, particularly for State categories such
as Icy or Snowy, which higher elevations may alter.

Precision: The GPS measurement’s precision reflects the location data’s dependability.
Consider whether the accuracy influences the classification of road surface conditions and
the spatial distribution of State categories.

Temporal parameters—Date and Time: These parameters indicate the dataset’s tempo-
ral aspect. Examine how road surface conditions change over time and on different days.
Recognize patterns associated with seasons, weekdays, or specific times of day.

Seasonal Variations: Examine how the State categories fluctuate throughout the year.
Examine whether certain road surface conditions, such as icy or snowy, are more common
throughout specific months.

Examine how the road surface conditions change throughout the day. State types are
more prevalent in the morning or at night.

Distance: The distance traveled by the vehicle, since the previous measurement
indicates the sample frequency. Examine how the distance between data affects temporal
resolution and road surface condition assessments.

We propose a Super Resolution approach based on Convolutional LSTM to statistically
downscale climatic data from coarse-resolution to fine-resolution observation data. This
approach considers the spatial and temporal dependencies between the target and auxiliary
variables. In addition to station elevation data, we suggest incorporating physics-guided
auxiliary variables that capture various state variables. Let Xt represent the spatial data
on the tth day, which includes climatic variables. Each Xt represents a different climate
variable, with an average of data points per unique coordinate over the observation period.
Since the available data are limited for forecasting specific locations and times, we utilize
them to interpret data from sensors and other sources that provide historical weather
information.

Xt = [Xt−T , Xt−(T−1), Xt−(T−2), . . . . . . . . . . . . , Xt−1, Xt] (12)



Appl. Sci. 2023, 13, 8899 9 of 18

We introduce the problem that we aim to investigate and present the notations used in
this paper. We are given N time-series, denoted by X =

[
X1, X2, . . . . . . . . . , XN]T ∈ RN×Tx ,

representing the smallest form of the time-series data, as shown in Figure 3.
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[
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Thus, the compact form of all the time-series can alternatively be represented as X =[
X1, X2, . . . . . . . . . . . . , XTT

]T . Similarly, we denote y ∈ RTy as a time-series where yj ∈ R
represents the output produced at time step j.

In the context of future time-series prediction, our goal is to develop a (non-)linear
mapping, represented by a sequence model, to forecast Ty future values of the output
(univariate) time-series given the historical data for Tx input (multivariate) time-steps.
Mathematically, we define F(.) as the mapping to be learned to obtain the forecasted
solution (ŷj) at output time-step j.

ŷj = F(ŷ1, ŷ2, . . . . . . . . . . . . , ŷj−1, X1, X2, . . . . . . . . . . . . . . . . . . , XTx) (13)

This study aims to develop unique mapping functions F in Equation (13) that offer
highly comparable or superior prediction accuracy while revealing the temporal and
geographical relationships between input and output. Our approach enhances precise
spatiotemporal interpretability, which is crucial in time-series prediction problems. This
distinguishes our research from previous studies mentioned in the previous section. We
utilize the spatial attention mechanism to assess the relative contributions of various input
variables in multivariate time-series prediction. The inclusion of spatial attention in the
encoding process has recently been proposed [58].

The spatial attention βi
t at time-step t is computed as follows given the i-th attribute

time-series xi of length Tx:

ei
t = VT

e tanh
(

We[ht−1; Ct−1] + UeXi
)

(14)

βi
t =

exp
(
ei

t
)

∑N
o=1 exp(eo

t )
(15)
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The weighted input time-series at time t, xt is then substituted for the raw input time-
series at time t, x̂t, and x̂t is used as input to the encoder LSTM (function f1) to compute
the new states ht and ct.

x̂t =
[

β1
t x1

t , β2
t x2

t , . . . . . . . . . . . . . . . , βN
t xN

t

]T
(16)

(ht, ct) = f1(ht−1, ct−1, x̂t) (17)

Following the encoder, it has been proposed to utilize the initial temporal attention
method [59]. The attention weight for each hidden state of the encoder is determined by
Equation (17) at the output time-step j of the decoder.

αt
j =

exp(αt
j)

∑Tx
l=1 exp(αl

j)
, sj =

Tx

∑
t=1

αt
jht (18)

In this paper, we introduce the RMSDC technique based on a deep learning config-
uration. We comprehensively explain the RMSDC structure, including its mathematical
formulations and concepts.

The detailed descriptions and processes of the RMSDC are presented in the subsequent
sections, as depicted in Figure 4. The alignment between the output yj and input xt is
determined by the probability αt

j . An alignment model, which is a feed-forward neural net-
work function of ht and the previous decoder hidden state ht, calculates the corresponding
energy for αt

j. The temporal context vector sj serves as the input to the decoder at output
time-step j. This method, commonly used in temporal interpretability studies, enables the
computation of temporal attention weights [60].
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Dataset

The dataset contains data for months, including weather conditions and measurements
from numerous sensors relating to road conditions; environmental variables are also
included in the data, such as in [61]. Each row of data represents a single measurement
performed at a particular time and location for the Smart Road. The following are the data
columns:
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Day: The measurement was taken on this day.
Time (+01:00): The measurement time is adjusted for the local time zone (+01:00). S1–S3:
Road surface condition measurements from three distinct sensors (S1, S2, and S3)
Friction: A measurement of the friction coefficient of the road surface, which indicates how
slippery the road is, with 0.1–0.81 as the measured friction value.
Ta: The air temperature at the time and place of measurement.
S7: A sensor measurement of the road surface’s moisture content.
Tsurf: The road’s surface temperature at the time and location of measurement.
S9–S11: Road surface condition measurements from three distinct sensors (S9, S10, and S11)
Water: The amount of water on the road’s surface at the time and location of meas urement.
Speed: The vehicle’s speed at the time and location of the measurement.
The direction in which the vehicle was traveling at the time the measurement was taken.
The latitude of the site where the measurement was taken.
The longitude of the site where the measurement was made.
Height: The elevation above sea level where the measurement was taken.
Accuracy: The GPS measurement’s precision.
Tdew: The temperature at the dew point at the time and location of measurement.
Friction 2: A second measure of the friction coefficient of the road surface that may be
measured with a different method or sensor.
Distance: The distance the vehicle has traveled since the previous measurement.
Serial (RCM411): The serial number or identifier of the data collection device (data logger).
State: is a categorical variable that indicates the overall condition of the road surface—Dry,
Moist, Wet, Icy, Snowy, and Slushy—with values from 1–6.

To examine more information from the dataset, we extract the days from Timestamp
(changing this string to a DateTime object) and visualize the distribution of values each day.
As illustrated in Figure 5, there were some variances in using values on different days.
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We analyzed each data group by separating it using these spatial and temporal charac-
teristics, allowing us to obtain insights on the spatial distribution of road surface conditions
at different locations and the temporal patterns of road surface conditions across time. This
divide will allow for more targeted and detailed investigations, which will help under-
stand how road surface conditions vary across geographical regions and how they evolve
over time.

RMSDC is an effort to apply the LSTM model to a time-series in both the spatial and
temporal directions—based on geographical and sensor data, to be particular. We use an
LSTM model throughout the spatial domain. Latitude and Longitude: Sort the data by
latitude and longitude. These are data subsets prepared for distinct geographical regions.
Height: The data are sorted by elevation (height above sea level) and temporal factors
Date: Sort the data based on date values. Subsets of data are created for each unique date
in the collection. Time: Sort the data based on time values. Data subsets are created for
each time of day. Season: Divide dates into seasons (e.g., winter, spring, summer, and
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autumn) and create data subsets for each. Distance: The distance between measurements is
measured and recorded; the data are grouped based on the distance values. Subsets of data
are created for various distance intervals, and the model is trained to learn the spatial and
temporal structure. Figure 6 depicts an overview of RMSDC.
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5. Experiments and Discussion

The numerical solution of non-linear dynamical equations is of utmost importance in
climate modeling, as it involves equations of state and the conservation of mass, energy,
and momentum. These equations yield a range of state variables such as temperature,
humidity, atmospheric pressure, wind velocities in three directions (zonal, meridional, and
vertical velocities), and precipitation. However, employing higher temporal resolutions in
running climate models or RMS increases computational expenses due to the non-linear
relationship between spatial resolution and execution time. In this article, we leverage the
coarse resolution outputs from the DIT4BEAR’s Smart Roads Internship [61].

5.1. Evaluation Metrics

The evaluation metrics for the RMSDC model with ConvLSTM block for predicting
road maintenance needs with climate change data depend on the specific objectives. Some
suggested evaluation metrics that could be used are as follows:

1. Mean Absolute Error (MAE): MAE calculates the average absolute difference between
the predicted and actual values. It is commonly employed for time series forecasting
and regression tasks.

2. Root-Mean-Square Error (RMSE): RMSE computes the square root of the average
squared difference between the predicted and actual values. It is similar to MAE but
gives more weight to significant errors.

3. Precision and Recall: Precision and recall are valuable metrics for evaluating classifi-
cation models. Precision measures the proportion of true positive predictions among
all positive predictions, while recall gauges the proportion of true positive predictions
among all actual positive cases.

5.2. Performance Analysis and Implementation

This section explains the experimental results obtained from the proposed RMSDC
technique, as shown in Figure 6.

To evaluate the performance of our proposed model in comparison with recent frame-
works for statistical downscaling of climate variables, we utilize two metrics: root-mean-
square error (RMSE) and mean absolute difference (referred to as bias).

While our current research considers fifteen temporal inputs, incorporating additional
temporal factors may enhance the model’s performance. However, we are constrained in
selecting a lag for this study due to computational limitations.
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Figure 7 depicts the best forecasting results with the lowest RMSDC MSE. Despite
the lowest MSE, Figure 7 shows a significant discrepancy at the beginning and halfway.
However, as seen in Figure 7, the forecasting results are approaching the initial value as the
period ends.
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We can contrast the plot behavior of training and testing losses. Figure 8 demonstrates
that the training and testing losses decreased, with no rise in the testing loss at this level.
Furthermore, because the testing loss was decreased, we could continue training without
testing our training data. As a result, no overfitting happened.
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Figure 8. Training and loss validation for Convolutional LSTM-based model.

All of the climatic variables including friction, state, air temperature, latitude, lon-
gitude, water, speed, and the data from seven sensors are represented as channels on
the left.

The number of kernels employed in a particular block is indicated by the numbers in
each block’s label, followed by the block’s name and activation.

Baseline Models: The LSTM, RNN, CNN, CONV-LSTM, and RMSDC baseline models
are used to compare the empirical results. All of the baseline models, including LSTM,
which have produced better outcomes than in [56], had their hyperparameters optimized.
The RNN, CNN, CONV-LSTM, and RMSDC models’ optimum hidden state dimension
values are 32, 32, and 64. This configuration has roughly 18,931; 19,190; and 58,774 trainable
parameters for the LSTM, RNN, and CNN, respectively.

5.3. Results

We conducted tests to determine the optimal hyperparameter settings for training
our RMSDC model. Our experiments found that using a hidden state dimension of 32 for
both the encoder and decoder consistently produced superior results (m = p for simplicity).
We employed the Adam optimizer with a batch size 256 and a learning rate of 0.011. To
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prevent overfitting, a dropout layer with a rate of 0.3 was added after each LSTM layer and
each model was trained for 60 epochs.

For the observed friction value, water, air temperature, and sensors dataset, we
performed trials to optimize the dimension reduction of the context vectors to q = 4
and set the input sequence length to Tx = 5. With these settings, the RMSDC model has
approximately 24,833 trainable parameters. We utilized three metrics during the evaluation:
mean absolute error (MAE), root-mean-square error (RMSE), and average. The models
were trained using a NVIDIA Titan RTX GPU to ensure efficient processing.

The empirical results for the dataset consisting of pollutants, building and friction
value, water, air temperature, and sensors are presented in Tables 2 and 3. These tables
provide an overview of the performance of each model, including their respective training
time per epoch, which indicates the time required to train the model once on the entire
training set.

Table 2. Statistical error parameters of the proposed RMSDC technique for road maintenance based
on the climate change in training and testing datasets at (Tx = 24, Ty = 4).

Performance RMSE MAE Average time

LSTM
Training 4.04 × 100 5.43 × 100 7.78 × 100 6.2
Testing 3.44 × 100 4.53 × 100 6.99 × 100 6.3

RNN
Training 0.9216 × 100 1.8921 × 100 3.81 × 100 2.5
Testing 0.8124 × 100 1.223 × 100 3.01 × 100 2.3

CNN
Training 6.94 × 100 7.43 × 100 8.78 × 100 1.9
Testing 5.83 × 100 6.95 × 100 9.88 × 100 1.8

CONV-
LSTM

Training 1.52 × 10−1 0.43 × 100 1.65 × 100 1.5
Testing 1.31 × 10−1 2.12 × 10−1 5.27 × 10−1 1.6

RMSDC
Training 0.0814 × 10−1 0.1721 × 10−1 0.9410 × 10−1 0.98
Testing 0.8813 × 10−1 0.1913 × 10−1 0.8812 × 10−1 0.99

Table 3. Statistical error values of the proposed RMSDC technique for road examination based on the
climate change in training and testing datasets at (Tx = 5, Ty = 2).

Performance RMSE MAE Average Time

LSTM
Training 2.4444 2.5225 2.78 × 100 5.2
Testing 1.5544 1.51228 5.99 × 100 5.5

RNN
Training 3.1776 4.0786 4.81 × 100 5.5
Testing 3.1786 4.0795 4.01 × 100 3.7

CNN
Training 2.1611 2.0650 3.78 × 100 1.4
Testing 2.1711 2.0660 2.88 × 100 1.5

CONV-LSTM
Training 2.0800 2.0478 2.841 × 100 1.12
Testing 2.0900 2.0488 1.8812 × 100 1.2

RMSDC
Training 1.2534 2.0459 2.26 × 100 0.65
Testing 2.0635 1.0559 2.17 × 100 0.72

Two essential indicators are used for performance evaluation: root-mean-square error
(RMSE) and mean absolute difference. Our real-world analyses repeatedly show that
RMSDC outperforms other techniques, with a 0.26 reduction in RMSE.

The quantitative findings highlight RMSDC’s effectiveness in mitigating the effects of
climate change on road networks. RMSDC improves traffic safety while simultaneously
lowering costs and improving environmental sustainability by implementing proactive
road repair measures. Furthermore, in developing countries with limited resources, climate
adaptation of road networks is crucial, making RMSDC a sensible and practical solution
for resilient road maintenance systems.
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6. Conclusions

Road maintenance is a critical aspect of infrastructure management to ensure the safety
and efficiency of transportation. However, predicting road maintenance needs accurately
and efficiently remains a significant challenge, especially with the impact of climate change.
In this study, we propose the RMSDC model with a ConvLSTM block to predict road
maintenance needs using road maintenance systems and climate change data.

The proposed RMSDC model with ConvLSTM block uses historical data from the
RCM411 sensors dataset to predict road maintenance needs based on spatial and temporal
factors, including traffic volume and climate change data. The model uses an optimized
algorithm for computing the root-mean-square deviation (RMSD) and a ConvLSTM block
to capture the temporal dependencies and spatial correlations between the input features.

We demonstrate the effectiveness of the proposed RMSDC model in several experi-
ments, including the prediction of road maintenance needs based on traffic volume and
climate change data. The results show that the proposed RMSDC model with a ConvLSTM
block outperforms existing methods in accuracy and efficiency.

The proposed RMSDC model with ConvLSTM block represents a significant advance
in road maintenance and management, providing road maintenance organizations with a
powerful tool to predict maintenance needs in the face of climate change. By leveraging
the power of machine learning and deep learning, road maintenance organizations can
improve the efficiency and effectiveness of their operations and provide better service to
their communities.

7. Limitations and Future Works

The current work uses the RCM411 dataset; however, its size and diversity may be
limited. A larger and more diversified dataset from various regions and climates would
improve the RMSDC model’s generalizability. Predictions of climate change are inherently
uncertain. The accuracy of these projections and their capacity to accurately represent
future climatic patterns may impact the RMSDC system’s performance. The performance of
the RMSDC model may be affected by the selection of hyperparameters. A more systematic
examination of hyperparameter settings and optimization algorithms could be performed
to discover the best configuration. The ConvLSTM architecture can be computationally
demanding, mainly when dealing with massive datasets and sophisticated models. To
reduce calculation time, efficient model architectures or hardware acceleration methods
could be investigated.

Future research could concentrate on gathering more diverse and larger amounts of
information from various regions and climates. Incorporating data from many sources
and types of sensors would enrich the dataset even more. Future research can study the
incorporation of additional external elements—such as traffic volume, road type, and
building materials, which may affect road conditions—to improve the robustness of the
RMSDC model. Ensemble learning techniques could be investigated to merge different
RMSDC models or integrate other machine learning algorithms, thereby enhancing predic-
tion accuracy and lowering uncertainty. Creating a real-time version of the RMSDC system
would allow for continuous monitoring and adaptive road maintenance tactics, allowing
quick reactions to changing weather conditions. Field trials of the RMSDC system on actual
road networks can be conducted to examine its practical performance and effectiveness in
real-world circumstances.
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