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Abstract: At the Faculty of Engineering of the University of Debrecen we have dealt with the design
and construction of electric prototype race cars for more than a decade. With a focus on more
conscious design and racing we developed a vehicle dynamics simulation program, which can be
used to generate the dynamics functions of the cars from their technical characteristics and data. In this
publication, we deal with the optimization of the technical parameters of the above-mentioned cars for
various competition tasks using our simulation program. This is a completely new field of application
of the used optimization methods. This concept and idea can effectively help student teams all
over the world to prepare for various domestic and international competitions. One of the applied
methods is a graphic procedure, the other one is the widely used “adaptive simulated annealing”
(ASA). After a brief description of the simulation program, the applied optimization methods and
developed MATLAB codes for them are described. Finally, to demonstrate the effectiveness of the
methods, we optimize the parameters of a prototype race car for different competition tasks and
present the obtained results.

Keywords: electric prototype race car; vehicle dynamics simulation; optimization; MATLAB/Simulink

1. Introduction

The Faculty of Engineering of the University of Debrecen has a long experience in the
designing, development, and construction of prototype race cars with alternative (mainly
electric) drive [1,2]. In the last few years, student teams at our faculty have designed
and constructed several race cars with electric or pneumatic drive and have taken part
in, and achieved success in, domestic and international competitions. In 2014 and 2015
the prototype race car, which was developed by the student team of the Department
of Mechanical Engineering, scored first and second place in the MVM Race organized
by the Hungarian Electric Works Ltd. The team from our faculty has also took part in
the “Shell ECO Marathon” competition—which was organized in London in 2016 and
2017—and successfully completed the competition. For the more conscious design of the
prototype race cars, a simulation program [3] was developed in the MATLAB/Simulink
(9.5, R2018b) environment. This program has a modular structure, thus the different
structural units of the car (electric motor, powertrain, front and rear suspension, and
vehicle body) are simulated in separate modules. The above program, which is described
briefly in Section 3, is capable of calculating the vehicle dynamic functions of the car from
its technical data. The above data can, in certain cases, be found in the technical description
of the different machine parts of the car, but in most cases the data have to be determined
experimentally [4–10]. Regarding electric motors, for the experimental determination of
the input simulation data and characteristics [6–10], a complex measurement system was
developed previously by the authors [11].

Optimum selection (adjustment) [12] of the vehicle’s technical data is very important
in racing, since even with a fundamentally good vehicle construction, the best possible
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result can only be achieved if the values of the above data are chosen properly for the
specific competition task. To be able to find the optimal values of technical data, different
optimization procedures were developed for our vehicle dynamics simulation program [3].

These procedures, and particularly their applications for the above specific purpose
(which are described in detail in this publication), are novel, and differ from usual engi-
neering applications.

In Section 2, a detailed review of the different optimization methods including “sim-
ulated annealing” together with their applications are presented. In Section 3, a brief
description of our simulation program [3] is given, while in Section 4, the basic concepts of
optimization are summarized. In Section 4.1 optimization applying a graphical procedure
is presented, while in Section 4.2 optimization using simulated annealing (SA) [13–16] is de-
scribed and applied for the determination of the optimal values of the technical data of the
race car [3] that was the winner of the MVM Race in 2014, for different competition tasks.

2. Literature Review

In the field of optimization, numerous methods have been developed and applied
to various engineering problems [17–27]. Widely used optimization algorithms and
techniques are fuzzy logic [28,29], adaptive neuro-fuzzy inference systems [30,31], the
Taguchi method [32,33], the grey system theory [26,34,35], teaching–learning-based opti-
mization [36,37], genetic algorithms [38], particle swarm optimization [39], tabu search [40],
and simulated annealing [13–16].

There is extensive literature on the optimization of vehicles using the above-mentioned
algorithms and procedures. In [41], a multi-objective optimization is introduced applying
the particle swarm algorithm to optimize the drivetrain and control system of a plug-in
hybrid vehicle. In [42], a multi-objective optimization is presented using a genetic algorithm
to improve acceleration performance, fuel consumption, and to mitigate emission of a
vehicle. In [43], a genetic algorithm is applied to optimize the drivetrain of an electric
vehicle. In [44], an evolutionary algorithm is applied to solve a multi-objective optimization
problem on the drivetrain cost and energy consumption of a vehicle. In [45], an evolutionary
global optimization-based, derivative-free, multi-objective genetic algorithm is applied to
optimize the component sizing of the drivetrain of a parallel hybrid electric bus.

In reference [46], in another application field, a particle swarm algorithm is applied
for the optimization of vehicle fleets. In [47], MATLAB/Simulink simulations are applied
to examine various powertrain configurations and components for designing a hybrid
powertrain. The performance optimization was based on the simulation results. In [48], the
optimum matching of an electric vehicle powertrain is presented, setting up the objective
functions by maximum grade ability and driving range and the optimum problem is solved
by applying simulated annealing. In [49], a vehicle powertrain-mounting system is opti-
mized by applying simulated annealing. In [50], the vibration damping optimization of a
vehicle powertrain system using simulated annealing is presented. Finally, in reference [51],
a heuristic method is used to optimize the gearshift schedules of electric vehicles.

Although the application of such algorithms has an extended literature in the automo-
tive industry, the presented application of simulated annealing to optimize the technical
parameters of prototype race cars for various competition tasks is a completely new field
of application and we have not found any examples of it in the scientific literature. This
concept and idea can effectively help student teams all over the world in preparing for
various domestic and international competitions.

Since, in our case, to optimize the parameters of our race car [3], the objective function
is not available in closed form, its value can only be determined by simulation, so only
metaheuristic algorithms can be considered [52]. Of these, we chose simulated annealing,
which is an efficient and robust stochastic algorithm, that is characterized by a high con-
vergence speed, and has various applications in different engineering and IT fields [15,16].
A detailed description of the operation principle of SA can be found in reference [15] and
further descriptions in the references [13,14].
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Simulated annealing is an optimization algorithm that can be used to determine the
global minimum of an objective function by being able to solve the problem of getting stuck
in local minima. The algorithm is based on the physical process of metallurgical annealing,
where metal is heated and then slowly cooled. If the system cools very slowly, it can reach
thermal equilibrium at each temperature. The probability P of the system being in a state
with energy E at a given temperature T is given by the Boltzmann distribution according
to Equation (1) [15]:

P(E) =
1

Z(T)
·e(−

E
k·T ) (1)

where Z(T) is the normalization factor and k = 1.3806 × 10−23
[

J
K

]
is the Boltzmann

constant. If the system cools too quickly, it can enter a metastable state (i.e., “get stuck” in
a higher energy state). The process of simulated annealing is based on the Monte Carlo
method, and instead of the energy E, the value of the objective function φ is used, and
instead of the temperature T, an artificial heat treatment temperature TA is introduced.
Figure 1 demonstrates the flow chart of the general simulated annealing algorithm [15].
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Let us assume a one-dimensional continuous optimization problem (dim(x) = 1). In
the neighborhood of state xk, a new state xk+1 will be generated stochastically applying
Equation (2) [15]:

xk+1 = xk + r·∆sl ∀r ∈ [−1, 1] (2)

where ∆sl is the current step length and r is a random number. The new state xk+1 is
unconditionally accepted as the new (and currently optimal) state if the value of the
objective function decreases:

ϕ
(

xk+1
)
≤ ϕ

(
xk
)

(3)



Appl. Sci. 2023, 13, 8897 4 of 20

Otherwise, the Metropolis criterion (4) gives the probability of accepting the state xk+1

as a new state [15]:

e
(− ϕ(xk+1)−ϕ(xk)

k·Tm
A

)
≥ p ∀p ∈ [0, 1] (4)

where Tm
A is the current annealing temperature and p is a random number. The steps at

which the objective function increases are called “up-hill” steps. The procedure takes place
within the inner loop until a given number of evaluation cycles, Nk, is done [15].

As the algorithm progresses, the step size (i.e., the search area) decreases, and it should
be chosen in the outer loop so that the ratio of accepted and evaluated steps be close to
0.5 [53]

q =
Naccepted

Nevaluated
≈ 0.5 (5)

If the ratio is too high, too many unnecessary steps will be accepted, so the calculation
time will be too long. On the other hand, if the above ratio is too small, it can result in
“getting stuck” in a local minimum.

There is a direct connection between the annealing temperature TA and the step length
∆sl . At high temperature, a large decrease of the objective function is acceptable, and a
large step length can be chosen to cover a large search area. The initial temperature should
be large enough so that all steps are accepted. Based on the above, simulated annealing has
the theoretical possibility of finding the global minimum.

With decreasing temperature TA, the step length must be reduced, since Equation (4)
only accepts an objective function that decreases to a smaller extent, which results in a
smaller acceptance rate q. There are various approaches to setting the step length. One of
these is the following simple but effective way [54]:

∆sl+1 =


∆sl
(

1 + c· q−0.6
0.4

)
i f q > 0.6

∆sl i f 0.4 ≤ q ≤ 0.6

∆sl
(

1 + c· 0.4−q
0.4

)−1
i f q < 0.4

(6)

The change of the step length is adjusted by the parameter c, whose value is usually
set to 1 [23]. In Figure 2 ratio ∆sl+1

∆sl is plotted vs. acceptance ratio q.
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In an homogeneous algorithm, the temperature TA is reduced after Nl step length
adjustments, completing a “Markov chain” in the outer loop m. We always assume that we
have found the optimal state at the current temperature Tm

A . The simplest way to reduce
the temperature is to multiply it by a given α constant (7) [13,15]:

Tm+1
A = α·Tm

A , 0 ≤ α ≤ 1 (7)
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Recommended values of α vary between 0.5 and 0.99. If the temperature changes
slowly enough (i.e., α → 1), it is more likely to find the global minimum, while small α
values lead to results more quickly.

The calculation is then restarted and continues with the currently optimal xopt state
and the updated temperature. In this case, the stopping (convergence) criterion is defined
by Inequality (8): ∣∣∣ϕ(xk−i

)
− ϕ

(
xopt)∣∣∣ ≤ ε, i = 0, . . . , Nε − 1 (8)

where ε is a problem specific factor and Nε is the number of steps.
The convergence of simulated annealing procedure can be guaranteed with suitable

values for Tm=0
A , Nk, Nl , Nm, α, and Nε which have clear meanings and can be tuned easily

by “wait-and-see” [23].

3. Brief Description of the Simulation Program

The applied simulation program [3] is based on the vehicle dynamics model presented
in Figure 3 [3]. In the model, the car is divided into four structural units. These units are the
driven rear wheels with the rotating machine parts connected to them (Unit 1), the freely
rotating front wheels with the rotating machine parts connected to them (Unit 2), the body
of the car including the stator of the electric motor (Unit 3), and the rotor of the electric
motor (Unit 4).
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Regarding the modelled vehicle in [3], the rear wheels are connected to the electric
motor through a chain drive. The mathematical connection between Mwheel and Mmotor is
given by the Equation (9):

Mwheel = −η·i12·Mmotor (9)

where i12 =
z2

z1
(10)
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The meaning of the notations in Figure 3 and in Equations (9) and (10) can be found
in the Nomenclature. To be able to simulate the electric motor, it must also be modelled.
Regarding the prototype race car in [3], a series-wound DC motor was applied to drive the
car. The developed model for this motor [3] is presented in Figure 4.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 20 
 

𝑀 = −ƞ ∙ 𝑖 ∙ 𝑀  (9)

where 𝑖 =  (10)

The meaning of the notations in Figure 3 and in Equations (9) and (10) can be found 
in the Nomenclature. To be able to simulate the electric motor, it must also be modelled. 
Regarding the prototype race car in [3], a series-wound DC motor was applied to drive 
the car. The developed model for this motor [3] is presented in Figure 4.  

 
Figure 4. The applied model for the simulation of the series-wound DC motor [3]. 

Based on the models—presented in Figures 3 and 4—dynamic and electromagnetic 
equations were written for the various structural units [3]. Based on the equations, a sim-
ulation program was developed in MATLAB/Simulink [3]. The modular structure of the 
simulation program is presented in Figure 5. 

 
Figure 5. The block diagram of the simulation program in MATLAB Simulink [3]. 

The simulation program is built up of five modules according to our dynamics 
model. The modules are: vehicle body (Module 3), front wheels and connected rotating 
machine parts (Module 2), rear (back) wheels and connected rotating machine parts (Mod-
ule 1), motor (Module 4), and power transmission system (Module 5). 

A detailed description of the internal structure and operation of each module can be 
found in reference [3]. 

The inputs of the program and its output functions are listed in the Nomenclature. 
The electromagnetic and dynamic characteristics of the applied electric motor (𝑅  , 𝑉 , 𝑅 , 𝑅 , 𝑅 , 𝐿 , 𝐿 , 𝐿 , 𝐽 , 𝑀 ) were measured previously [8,9], and the output 
functions (𝐼(𝑡), 𝑀 (𝑡), 𝜔 (𝑡)) of the motor simulation program module were val-
idated by test measurements [9]. Some of the other vehicle parameters (𝑙, 𝑙 , 𝑙 , 𝑤, 𝑚 , 

L
a

R
r

L r

Rs Ls

Mmotor Mres
Mload

dI/dtI

-

+

Rbatt

Vbatt

Rwire

Mmotor=Lsr  I2

Figure 4. The applied model for the simulation of the series-wound DC motor [3].

Based on the models—presented in Figures 3 and 4—dynamic and electromagnetic
equations were written for the various structural units [3]. Based on the equations, a
simulation program was developed in MATLAB/Simulink [3]. The modular structure of
the simulation program is presented in Figure 5.
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Figure 5. The block diagram of the simulation program in MATLAB Simulink [3].

The simulation program is built up of five modules according to our dynamics model.
The modules are: vehicle body (Module 3), front wheels and connected rotating machine
parts (Module 2), rear (back) wheels and connected rotating machine parts (Module 1),
motor (Module 4), and power transmission system (Module 5).

A detailed description of the internal structure and operation of each module can be
found in reference [3].

The inputs of the program and its output functions are listed in the Nomenclature.
The electromagnetic and dynamic characteristics of the applied electric motor (Rbatt, Vbatt,
Rwire, Rs, Rr, Ls, Lr, Lsr, Jr, Mres) were measured previously [8,9], and the output functions
(I(t), Mmotor(t), ωmotor(t)) of the motor simulation program module were validated by test
measurements [9]. Some of the other vehicle parameters (l, l f , lb, w, m0, m f , mb, J f , Jb, R, A)
were also measured [3], while the remaining ones (η, C) were approximated on the basis of
literature data.
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4. Description of the Optimization Methods

The basic concepts related to optimization can be found in reference [12]. These
concepts are clarified below.

The race car can be described with a finite number of technical data. Data that cannot
be modified during the optimization procedure, are called design parameters, while others
are called design variables. Together, they unambiguously define the vehicle model.

The introduction of design parameters is necessary because in most cases not all the
data of the vehicle can be chosen freely. This may be due to the fact that the competition
rules make restrictions (or fix the value) on certain data, or other practical or economic
reasons (such as the use of an existing vehicle chassis, motor, or other vehicle components),
or we may simply know the optimal value of a given technical data.

The design variables are categorized as mathematically continuous or discrete. It is
usually easier to work with continuous design variables (since they can take any value in
a given interval), but in certain situations (for example, if we need to select a rim for our
car from the available sizes), you must use discrete design variables. In the intermediate
case, when we know that we are looking for the value of a design variable in a discrete
set containing a large number of elements (e.g., chain gear ratio selection), we talk about
pseudo-discrete design variables. In this case, we solve the problem by considering the
design variable to be continuous and then finding the most suitable discrete value closest
to it.

The given fixed values of the design variables and parameters define a possible
vehicle construction. This construction may be suitable for the designer, or it may also be
possible that it does not meet the functional or other requirements. The conditions that
the given construction must meet are called optimization conditions. These can be, for
example, geometric optimization conditions, such as the minimum and maximum required
track or wheelbase of the race car, or conditions related to the technical implementation,
such as the minimum number of sprocket teeth in a chain drive, below which the chain
drive cannot work. A construction that satisfies all the optimization conditions is called a
permissible construction.

There are usually a large or infinite number of constructions that meet the optimization
conditions. To select the optimal vehicle construction, we interpret an objective function
on the set of design variables, the value of which is a quantity (metric) characteristic of
the vehicle (for example, the time required to cover a given distance or reach a given
speed, energy consumption, or top speed), based on which metric the designer prefers, one
construction will be selected over another. In most cases, we formulate the optimization
problem as the minimization of the objective function. The selection of the objective function
has a significant effect on the whole optimization process, and thus, on the resulting optimal
construction. We have the option of simultaneously interpreting several objective functions,
but we recommend this only if the interpretation of one objective function is not sufficient
and the objective functions do not contradict each other.

The simulation program presented in Section 3 can be used for optimization purposes
in two ways: firstly, it helps to design a new vehicle. In this first case, only certain technical
data (design parameters) have a given fixed value, for example, satisfying the competition
rules. For the other technical data (design variables) we must find the optimal values,
which are the most suitable for the given competition task (e.g., 100 m drag race). Secondly,
it helps to prepare an existing vehicle for a given competition task. In this second case,
we can vary or adjust only a few of the vehicle’s technical data. In both cases, using the
simulation program and the optimization procedure, the possibility of successful racing
can be significantly increased, and a lot of time and cost can be saved.

In the following, we present the applied optimization methods, together with the
necessary program codes that were developed in MATLAB.
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4.1. Approximation of the Optimal Technical Data Using a “Graphical Method”

In technical practice, it often happens that we search for the optimum with only
one or two design variables, and the objective function has a “smooth” behavior, free of
discontinuities or sudden changes. In this case, instead of computationally demanding
optimization methods, we have the option of using a simpler “graphical method”. In this
procedure, we generate a uniform “grid” on the space of design variables and calculate
the values of the objective function at the grid points. Due to the nature of the task, the
values of the objective function can be represented on one- or two-variable diagrams
and the optimum can be read with a good engineering approximation. Of course, this
procedure cannot be used in the case of a higher-dimensional design variable space or a
highly complex objective function.

If we intend to optimize only one of the variables (for example, the gear ratio in the
chain drive) then the objective function is a univariate function. Let the optimization
problem be to find the optimal value of the gear ratio (i12) at which a speed of 40 km/h
can be reached by the race car in the shortest possible time (t). In this problem the design
variable is the gear ratio, and the objective function is function t(i12). Applying our
simulation program, we calculate the velocity–time function of the vehicle at different gear
ratios and read the time required to reach a speed of 40 km/h. After that, the above time
is plotted as a function of the gear ratio (Figure 6), and then the approximate value of the
optimal gear ratio, corresponding to the minimum time, is read from the graph.
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Figure 6. The time that is necessary for reaching the 40 km/h speed as a function of the gear ratio.

Since we have to run the program for many different gear ratios, we automated the
process with the application of a self-developed MATLAB code (Figure 7).
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In the MATLAB code above, we first specify the gear ratio range and the step size
which are [2.5; 6] and 0.05, respectively. After that, we run the simulation program with
every gear ratio value one by one. For this, we use a for loop in the program code. After
that, the program records the times required to reach 40 km/h for each run and then plots
them as a function of the corresponding gear ratios.

If we intend to optimize two of the variables, then the objective function is a bivariate
function. In this case, the procedure presented previously for a univariate function can still
be used. Let the optimization problem be to find the optimal values of the gear ratio and
center-of-mass position (lb) at which a speed of 40 km/h is reached by the car in the shortest
possible time. Variable lb is the distance of the centre of mass of the vehicle from the rear
shaft, and its value can be varied in the [0.4; 1] m range. Applying our simulation program,
we calculate the velocity–time function of the vehicle at the different center-of-mass position
and gear ratio pairs and read the time required to reach a speed of 40 km/h. After that,
the above time is plotted as a function of the center-of-mass position and gear ratio pairs
(Figure 8). Finally, the approximate center-of-mass position and gear ratio, corresponding
to the minimum time, are read from the graph.
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center-of-gravity position.

Based on Figure 8, the optimal values of the center of mass and the gear ratio are
approximately 0.4 m and 4. The MATLAB program code (Figure 9) developed to automate
the process is similar to the one in Figure 7. The only difference is that here two loops
are used.
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4.2. Determination of the Optimal Technical Data Using Simulated Annealing

For three or more variables, or when greater accuracy is required, we can no longer use
the graphical method, instead we can use the stochastic method simulated annealing (SA).
To realize the optimization, we used the simulated annealing function (simulannealbnd) in
the Global Optimization Toolbox within MATLAB, which based on the general method of
simulated annealing, described in Section 2. The above-mentioned MATLAB function uses
a variant of SA which is the adaptive simulated annealing (ASA) [16]. In this variant (ASA),
the algorithm parameters that control temperature scheduling and random-step selection,
are set automatically. The values of the above parameters in the traditional version (SA) are
usually adjusted by the user, based on their own experience, as was previously mentioned
in Section 2. This is a significant disadvantage of traditional SA compared to ASA. During
the optimization we used the default settings in MATLAB, in which the step length equals
the current temperature, and direction is uniformly random. The current temperature
is calculated from the initial temperature applying the formula T = T0·0.95m, where m
denotes the annealing parameter, which is the same as the iteration number.

As an example, we first show the application of simulated annealing in the case of one
design variable. The task is the same as in Section 4.1, namely, to determine the optimal
gear ratio of the race car [3], with which a speed of 40 km/h can be reached in the shortest
possible time. Regarding the objective, first, it is necessary to create a MATLAB function,
which calculates the time required to reach 40 km/h speed at different gear ratios (i12). The
program code that was developed for this is shown in Figure 10.
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Figure 10. The MATLAB code that was developed to calculate the time required to reach 40 km/h
speed at different gear ratios (i12).

After that, the optimization program code is created (Figure 11), applying simulated
annealing, using the MATLAB function presented in Figure 10.

Comparing this result with the one obtained by the graphical method, it can be seen
that they are equal to a good approximation.

The optimization program code determines the minimum time required to reach
40 km/h speed and the value of the corresponding optimal gear ratio. While the program
is running, the actual values can be monitored in real-time in four windows (Figure 12).

In the following, we apply simulated annealing for the optimization of two design
variables of the same car. These variables are the gear ratio and the position of the center of
mass of the car. Currently, in the case of the above-mentioned car, we can vary only these
parameters easily, and they have a significant effect on the dynamic characteristics of the
car. Thus, we decided to optimize the above parameters for the following two objectives:

• Reaching 40 km/h speed in the shortest possible time;
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• Covering a distance of 100 m from a standing position in the shortest possible time
(drag race).
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Figure 12. MATLAB windows for monitoring the parameter values in real-time. The first window
(a) shows the current value of the gear ratio, the second one (b), the calculated times for the previously
analyzed gear ratios, the third one (c), the smallest time vs. the number of iterations, and the fourth
one (d), the optimal value of the gear ratio at which the time is minimum. At the end of the run, the
optimal value is displayed in the MATLAB Command Window.

Regarding the first objective, good acceleration in the 0–40 km/h speed range is an
important factor for driving on a racetrack with many sharp turns. (The top speed of the
car is between 60 and 80 km/h, depending on the settings of the technical data.) To realize
the optimization, regarding the first objective, first, it is necessary to create a MATLAB
function that calculates the time required to reach 40 km/h speed at different gear ratios
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(i12) and the position of the centre of mass (lb) pairs. The program code that was developed
for this is shown in Figure 13.
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Figure 13. The MATLAB code that was developed to calculate the time required to reach 40 km/h
speed at different gear ratios (i12) and the position of the centre of gravity (lb) pairs.

After that, the optimization program code is created (Figure 14), applying simulated
annealing, using the MATLAB function presented in Figure 13.
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Figure 14. The developed program code for the optimization applying simulated annealing in the
case of objective 1.

The optimization program code determines the minimum time required to reach
40 km/h speed and the values of the corresponding optimal gear ratio and center-of-
gravity position. While the program is running, the actual values can be monitored in
real-time in four windows (Figure 15).
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Figure 15. MATLAB windows for monitoring the parameter values in real-time. The first window
(a) shows the current values of the gear ratio and center-of-gravity position, the second one (b), the
calculated times for the previously analyzed gear ratio and center-of-gravity pairs, the third one (c),
the smallest time vs. the number of iterations, and the fourth one (d), the optimal values of the gear
ratio and center-of-gravity position at which the time is minimum. At the end of the run, the optimal
values are displayed in the MATLAB Command Window. In the case of the analyzed race car, the
optimal values of the gear ratio and the center-of-mass position are 4.036 and 0.407 m, respectively.

Regarding the second objective (drag race), for the optimization, first, it is necessary
to create a MATLAB function, which calculates the time required for the car to travel 100 m
at different gear ratio (i12) and the position of the center-of-gravity (lb) pairs. The program
code developed for this is shown in Figure 16.
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Figure 16. The MATLAB function that was developed to calculate the time required for the car to
travel 100 m at different gear ratio (i12) and the position of the center-of-gravity (lb) pairs.

After that, the optimization program code is created (Figure 17), applying simulated
annealing, using the MATLAB function presented in Figure 16.



Appl. Sci. 2023, 13, 8897 14 of 20Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 20 
 

 
Figure 17. The developed program code for the optimization applying simulated annealing in the 
case of objective 2. 

While the program is running, the actual values can be monitored in real-time, simi-
larly to the previous case. At the end of the run, the optimal values are also displayed in a 
MATLAB Command Window. In the case of the analyzed race car, the minimum time is 
9.74 s, and the optimal values of the gear ratio and the center-of-gravity position are 3.871 
and 0.423 m, respectively. 

After that, the simulation program was run on the [0;9.74] s time interval with the 
optimal gear ratio and center-of-gravity position pairs obtained at objective 2 (3.871 and 
0.423 m, respectively), as well as with two other, non-ideal variable pairs (3 and 0.423 m, 
5 and 0.423 m). Figure 18 shows the covered distance–time functions of the vehicle apply-
ing the above input parameters. 

 
Figure 18. The covered distance–time functions obtained by simulation applying the optimal (3.871) 
and two other gear ratios (𝑙𝑏 = 0.423 m in each case). 

Based on the figure above, it can be concluded that, when applying the optimal gear 
ratio (3.871), the vehicle travels approximately 2.5 m more in 9.74 s than when applying 
the other two gear ratios (3 and 5). From a different point of view, this means that using 

% Opening the Simulink model:
open('GENERAL.slx');

% Initial input value tip:
x_init=[3.5 0.5];
% Lower limit:
x_l=[3 0.4];
% Upper limit:
x_u=[5 1.0];

% Run parameters (continuous plotting of partial results):
options = saoptimset('PlotFcns',{@saplotbestx,@saplotbestf,@saplotx,@saplotf});

% Run optimization:
[x_opt,fval,exitFlag,output] = simulannealbnd(@GENERAL_func_dist100_i12_lb_eng,x_init,x_l,x_u,options);

% Print results:
fprintf('Number of iterations : %d\n', output.iterations);
fprintf('Optimal ratio : : %d\n', x_opt(1));
fprintf('Optimal centre of gravity position : %d\n', x_opt(2));
fprintf('Best function value (shortest time) : %g\n', fval);

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9

co
ve

re
d 

di
st

an
ce

 [m
]

time [s]

i=3

i=3.871

i=5

Figure 17. The developed program code for the optimization applying simulated annealing in the
case of objective 2.

While the program is running, the actual values can be monitored in real-time, similarly
to the previous case. At the end of the run, the optimal values are also displayed in a
MATLAB Command Window. In the case of the analyzed race car, the minimum time is
9.74 s, and the optimal values of the gear ratio and the center-of-gravity position are 3.871
and 0.423 m, respectively.

After that, the simulation program was run on the [0; 9.74] s time interval with the
optimal gear ratio and center-of-gravity position pairs obtained at objective 2 (3.871 and
0.423 m, respectively), as well as with two other, non-ideal variable pairs (3 and 0.423 m, 5
and 0.423 m). Figure 18 shows the covered distance–time functions of the vehicle applying
the above input parameters.
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Figure 18. The covered distance–time functions obtained by simulation applying the optimal (3.871)
and two other gear ratios (lb = 0.423 m in each case).

Based on the figure above, it can be concluded that, when applying the optimal gear
ratio (3.871), the vehicle travels approximately 2.5 m more in 9.74 s than when applying the
other two gear ratios (3 and 5). From a different point of view, this means that using the
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optimal gear ratio, the distance of 100 m can be covered 0.3 s faster than using the other
two gear ratios.

Figure 19 shows the velocity–time functions of the vehicle applying the same input
parameters as in the case of Figure 18.
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Figure 19. The velocity–time functions obtained by simulation applying the optimal (3.871) and two
other gear ratios (lb = 0.423 m in each case).

Despite the fact, that after 9.74 s the highest speed can be reached using gear ratio
i12 = 3, this will not be optimal for covering the 100 m distance in the shortest time.

Figure 20 shows the energy consumption of the race car as a function of time, applying
the same gear ratios as in the case of Figures 18 and 19.
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Figure 20. Energy-consumption–time functions obtained by simulation applying the optimal (3.871)
and two other gear ratios (lb = 0.423 m in each case).

The energy consumed by the car was calculated as the definite integral from 0 to t of
the product of the battery’s terminal voltage and the intensity of the electric current flowing
through it.

Despite the fact, that in the first 9.74 s, the lowest energy consumption can be reached
using gear ratio i12 = 5, this will not be optimal for covering the 100 m distance in the
shortest time.

Depending on the type of competition (i.e., what the specific competition task is), the
optimal value for a given technical data may be different. As we have seen, depending on
whether the goal is the lowest possible energy consumption, the maximum speed achieved
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in a given time, or covering a given distance in the shortest time, the value of the optimal
gear ratio is different.

Finally, let us cite two examples. The first one is the “acceleration” race of the world-
famous Formula Student race, where the task for the car is to complete the 75 m track in the
shortest possible time from a standstill. The second is the international Shell-ECO Marathon
competition, where the task is to complete the given race distance with the lowest energy
consumption, under the condition that the average speed for the entire race distance must
be at least 25 km/h. Applying our method, we can find the optimal values of technical data
at which the best performance can be achieved regarding the above competition tasks.

5. Conclusions

In this publication, we have presented novel procedures for optimizing the technical
parameters of prototype race cars for specific competition tasks, using our vehicle dynamics
simulation program. Two types of optimization procedures were presented.

The first one is a graphical method, which can be used in case of one or two design
variables. Due to its simplicity, this method can be used effectively, and its accuracy,
in most cases, is adequate from an engineering point of view. Therefore, applying our
simulation program, and having at the maximum, two variables, the application of a
complex optimization procedure is usually not justified.

In this publication the graphical method was applied to an existing prototype race car
to optimize one and two of its parameters to a given competition tasks. These parameters
were the gear ratio in the chain drive and the horizontal distance of the center of gravity
from the back shaft.

The second procedure is an application of simulated annealing to optimize the same
parameters of the car for two different competition tasks. One of these tasks was the same
as the one in the graphical method. Applying simulated annealing, the optimal values
can be calculated directly, and it can be also applied for three or more variables, or when
greater accuracy is required.

If we want to achieve the same accuracy with the graphical method and the simulated
annealing, then in the case of the graphical method we have to run our simulation program
many more times than in the case of the simulated annealing. As a result, simulated
annealing is a more efficient method.

In case of adaptive simulated annealing—which is used by MATLAB—the algorithm
parameters, that control temperature scheduling and random step selection, are adjusted au-
tomatically by the program. Additionally, the convergence of the algorithm is theoretically
guaranteed starting from any initial parameter values. Thus, this is a robust optimization
algorithm. With the graphical method, from the point of view of robustness, it can be a
problem if we cannot read the exact location of the optimum after running the program
once, so the program must be run again with a smaller step size.

The obtained optimal values for the analyzed two parameters were the same, with a
good approximation when applying the graphical method and simulated annealing. The
simulation results showed, that using the optimal gear ratio (3.871), the distance of 100 m
can be covered 0.3 s faster than using other non-ideal gear ratios (3 and 5).

In general, it can be concluded that our vehicle dynamics simulation program, supple-
mented with the described optimization procedures, can be effectively used to optimize
the technical data of an existing or designed prototype race car for various racing tasks.
Knowing the optimal technical parameters significantly increases the possibility that a
given prototype race car successfully competes in domestic or international competitions.
Additionally, there is no need to manufacture many unnecessary machine parts and test
them under real conditions. This saves us a lot of time and significantly reduces our costs.

In the future, in the case of race cars produced at the Faculty of Engineering of the
University of Debrecen, the dynamic modelling, simulation, and determination of the
optimal technical parameters of a given vehicle concept will be a natural part of the design
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process. We hope that this will greatly contribute to competing successfully, and thus to the
success of the Faculty of Engineering of the University of Debrecen.
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Nomenclature

Input parameters and characteristics of the simulation program
Notation Description
Mbrake f , Mbrakeb(Nm) Braking torques on the front and rear (back) wheels.
η Efficiency of the chain drive.
z1, z2 Number of teeth on the driver and driven sprockets.
C Drag coefficient of the vehicle.
A Maximum normal surface area of the vehicle.
l (m) Distance between the front and rear (back) shafts in the tangential direction.
l f , lb(m) Distance of the center of mass of the vehicle from the front and rear (back) shaft in the tangential direction.
w (m) Distance of the center of mass of the vehicle from the front and rear (back) shafts in the normal direction.
m0 (kg) Mass of the vehicle body including the driver
m f , mb(kg) Mass of the front and rear (back) wheels with the rotating machine parts connected to them.
J f , Jb

(
kg·m2) Moment of inertia of the front and rear (back) wheels with the rotating machine parts connected to them.

µroll f , µrollb Coefficients of rolling resistance for the front and rear (back) wheels.
R (m) Effective wheel radius.
Rbatt (Ω) Internal electric resistance of the battery.
Vbatt(V) Electromotive force of the battery.
Rwire (Ω) Resultant electric resistance of the wires connecting the battery to the motor.
Rs, Rr (Ω) Electric resistances of the rotor and stator windings.
I (A) Intensity of the current flowing through the motor.
Ls (H) Self-dynamic inductance of the stator winding.
Lr (H] Self-dynamic inductance of the rotor winding.
Lsr (H) Mutual dynamic inductance.
Jr
(
kg·m2) Moment of inertia of the rotor of the motor.

Mres (Nm) Sum of the bearing and brush friction torques on the rotor of the motor.
Output vehicle dynamic functions generated by the simulation program
Notation Description
as(t), vs(t), s(t) Acceleration, velocity and covered distance of the vehicle.
ω f (t), ωb(t), ε f (t), εb(t) Angular velocity and acceleration of the front and rear (back) wheels.
Ft f (t), Ftb(t), Fn f (t), Fnb(t) Forces that the road exerts on the front and rear (back) tires in the tangential and normal direction.
Tf (t), Tb(t), N f (t), Nb(t) Front and rear (back) shafts’ loading in the tangential and normal direction.
Mroll f (t), Mrollb(t) Rolling resistance torques.
slip(t) Tire slip.
Fair(t) Air-resistance force.
I(t) Intensity of the current flowing through the motor.
Mmotor(t), ωmotor(t) Torque and angular speed of the motor.
Econs(t) Vehicle energy consumption.
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Other notations
Notation Description
Mwheel (Nm) Magnitude of the torque exerted by the chain drive on the back shaft.
Mmotor (Nm) Magnitude of the torque exerted by the stator of the motor on its rotor.
Mroll f , Mrollb (Nm) Magnitude of the rolling resistance torque on the front and rear (back) wheels.
Fair (N) Resultant of air resistance force.
Ft f , Ftb (N) Magnitude of the force exerted by the road on the front and rear (back) wheels in the tangential direction.
Fn f , Fnb [N] Magnitude of the force exerted by the road on the front and rear (back) wheels in the normal direction.
T f , Tb (N) Load on the front and rear (back) shaft in the tangential direction.
N f , Nb (N) Load on the front and rear (back) shaft in the normal direction.
S f , Sb, S (m) Center of gravity of the front and rear (back) wheels and the whole vehicle.
i12 Gear ratio in the chain drive.
Mload(Nm) Loading torque on the rotor of the motor.
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Debrecen, Hungary, 2011; Volume 10, pp. 35–40.
2. Gábora, A.; Sziki, G.Á.; Szántó, A.; Varga, T.A.; Magyari, A.; Balázs, D. Prototype battery electric car development for Shell-ECO-

Marathon® competition. In Proceedings of the XXII International Conference of Young Engineers, Kolozsvár, Romania, 23 March
2017; pp. 167–170.

3. Szántó, A.; Hajdu, S.; Sziki, G. Dynamic Simulation of a Prototype Race Car Driven by Series Wound DC Motor in Matlab-
Simulink. Acta Polytech. Hung. 2020, 17, 103–122. [CrossRef]

4. Pálinkás, S. Influence of Speed to Rolling Resistance Factor in Case of Autobus. In Vehicle and Automotive Engineering 4: Select
Proceedings of the 4th VAE2022, Miskolc, Hungary; Springer International Publishing: Cham, Switzerland, 2011; pp. 157–164.

5. Pálinkás, S.; Tóth, Á. Development of a measurement method to determine rolling resistance. IOP Conf. Series Mater. Sci. Eng.
2022, 1237, 012013. [CrossRef]

6. Szíki, G.; Szántó, A.; Mankovits, T. Dynamic modelling and simulation of a prototype race car in MATLAB/Simulink applying
different types of electric motors. Int. Rev. Appl. Sci. Eng. 2021, 12, 57–63. [CrossRef]

7. Szántó, A.; Szántó, A.; Sziki, G.Á. Review of the modelling methods of series wound DC motors. Műszaki Tudományos Közlemények
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