
Citation: Szántó, A.; Hajdu, S.; Sziki,

G.Á. Optimizing Parameters for an

Electrical Car Employing Vehicle

Dynamics Simulation Program. Appl.

Sci. 2023, 13, 8897. https://doi.org/

10.3390/app13158897

Academic Editor: Andrea Prati

Received: 13 July 2023

Revised: 30 July 2023

Accepted: 31 July 2023

Published: 2 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Optimizing Parameters for an Electrical Car Employing Vehicle
Dynamics Simulation Program
Attila Szántó * , Sándor Hajdu and Gusztáv Áron Sziki

Faculty of Engineering, University of Debrecen, 4028 Debrecen, Hungary; hajdusandor@eng.unideb.hu (S.H.);
szikig@eng.unideb.hu (G.Á.S.)
* Correspondence: szanto.attila@eng.unideb.hu

Abstract: At the Faculty of Engineering of the University of Debrecen we have dealt with the design
and construction of electric prototype race cars for more than a decade. With a focus on more
conscious design and racing we developed a vehicle dynamics simulation program, which can be
used to generate the dynamics functions of the cars from their technical characteristics and data. In this
publication, we deal with the optimization of the technical parameters of the above-mentioned cars for
various competition tasks using our simulation program. This is a completely new field of application
of the used optimization methods. This concept and idea can effectively help student teams all
over the world to prepare for various domestic and international competitions. One of the applied
methods is a graphic procedure, the other one is the widely used “adaptive simulated annealing”
(ASA). After a brief description of the simulation program, the applied optimization methods and
developed MATLAB codes for them are described. Finally, to demonstrate the effectiveness of the
methods, we optimize the parameters of a prototype race car for different competition tasks and
present the obtained results.

Keywords: electric prototype race car; vehicle dynamics simulation; optimization; MATLAB/Simulink

1. Introduction

The Faculty of Engineering of the University of Debrecen has a long experience in the
designing, development, and construction of prototype race cars with alternative (mainly
electric) drive [1,2]. In the last few years, student teams at our faculty have designed
and constructed several race cars with electric or pneumatic drive and have taken part
in, and achieved success in, domestic and international competitions. In 2014 and 2015
the prototype race car, which was developed by the student team of the Department
of Mechanical Engineering, scored first and second place in the MVM Race organized
by the Hungarian Electric Works Ltd. The team from our faculty has also took part in
the “Shell ECO Marathon” competition—which was organized in London in 2016 and
2017—and successfully completed the competition. For the more conscious design of the
prototype race cars, a simulation program [3] was developed in the MATLAB/Simulink
(9.5, R2018b) environment. This program has a modular structure, thus the different
structural units of the car (electric motor, powertrain, front and rear suspension, and
vehicle body) are simulated in separate modules. The above program, which is described
briefly in Section 3, is capable of calculating the vehicle dynamic functions of the car from
its technical data. The above data can, in certain cases, be found in the technical description
of the different machine parts of the car, but in most cases the data have to be determined
experimentally [4–10]. Regarding electric motors, for the experimental determination of
the input simulation data and characteristics [6–10], a complex measurement system was
developed previously by the authors [11].

Optimum selection (adjustment) [12] of the vehicle’s technical data is very important
in racing, since even with a fundamentally good vehicle construction, the best possible

Appl. Sci. 2023, 13, 8897. https://doi.org/10.3390/app13158897 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13158897
https://doi.org/10.3390/app13158897
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-9524-841X
https://orcid.org/0000-0002-6959-4746
https://doi.org/10.3390/app13158897
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13158897?type=check_update&version=1

Appl. Sci. 2023, 13, 8897 2 of 20

result can only be achieved if the values of the above data are chosen properly for the
specific competition task. To be able to find the optimal values of technical data, different
optimization procedures were developed for our vehicle dynamics simulation program [3].

These procedures, and particularly their applications for the above specific purpose
(which are described in detail in this publication), are novel, and differ from usual engi-
neering applications.

In Section 2, a detailed review of the different optimization methods including “sim-
ulated annealing” together with their applications are presented. In Section 3, a brief
description of our simulation program [3] is given, while in Section 4, the basic concepts of
optimization are summarized. In Section 4.1 optimization applying a graphical procedure
is presented, while in Section 4.2 optimization using simulated annealing (SA) [13–16] is de-
scribed and applied for the determination of the optimal values of the technical data of the
race car [3] that was the winner of the MVM Race in 2014, for different competition tasks.

2. Literature Review

In the field of optimization, numerous methods have been developed and applied
to various engineering problems [17–27]. Widely used optimization algorithms and
techniques are fuzzy logic [28,29], adaptive neuro-fuzzy inference systems [30,31], the
Taguchi method [32,33], the grey system theory [26,34,35], teaching–learning-based opti-
mization [36,37], genetic algorithms [38], particle swarm optimization [39], tabu search [40],
and simulated annealing [13–16].

There is extensive literature on the optimization of vehicles using the above-mentioned
algorithms and procedures. In [41], a multi-objective optimization is introduced applying
the particle swarm algorithm to optimize the drivetrain and control system of a plug-in
hybrid vehicle. In [42], a multi-objective optimization is presented using a genetic algorithm
to improve acceleration performance, fuel consumption, and to mitigate emission of a
vehicle. In [43], a genetic algorithm is applied to optimize the drivetrain of an electric
vehicle. In [44], an evolutionary algorithm is applied to solve a multi-objective optimization
problem on the drivetrain cost and energy consumption of a vehicle. In [45], an evolutionary
global optimization-based, derivative-free, multi-objective genetic algorithm is applied to
optimize the component sizing of the drivetrain of a parallel hybrid electric bus.

In reference [46], in another application field, a particle swarm algorithm is applied
for the optimization of vehicle fleets. In [47], MATLAB/Simulink simulations are applied
to examine various powertrain configurations and components for designing a hybrid
powertrain. The performance optimization was based on the simulation results. In [48], the
optimum matching of an electric vehicle powertrain is presented, setting up the objective
functions by maximum grade ability and driving range and the optimum problem is solved
by applying simulated annealing. In [49], a vehicle powertrain-mounting system is opti-
mized by applying simulated annealing. In [50], the vibration damping optimization of a
vehicle powertrain system using simulated annealing is presented. Finally, in reference [51],
a heuristic method is used to optimize the gearshift schedules of electric vehicles.

Although the application of such algorithms has an extended literature in the automo-
tive industry, the presented application of simulated annealing to optimize the technical
parameters of prototype race cars for various competition tasks is a completely new field
of application and we have not found any examples of it in the scientific literature. This
concept and idea can effectively help student teams all over the world in preparing for
various domestic and international competitions.

Since, in our case, to optimize the parameters of our race car [3], the objective function
is not available in closed form, its value can only be determined by simulation, so only
metaheuristic algorithms can be considered [52]. Of these, we chose simulated annealing,
which is an efficient and robust stochastic algorithm, that is characterized by a high con-
vergence speed, and has various applications in different engineering and IT fields [15,16].
A detailed description of the operation principle of SA can be found in reference [15] and
further descriptions in the references [13,14].

Appl. Sci. 2023, 13, 8897 3 of 20

Simulated annealing is an optimization algorithm that can be used to determine the
global minimum of an objective function by being able to solve the problem of getting stuck
in local minima. The algorithm is based on the physical process of metallurgical annealing,
where metal is heated and then slowly cooled. If the system cools very slowly, it can reach
thermal equilibrium at each temperature. The probability P of the system being in a state
with energy E at a given temperature T is given by the Boltzmann distribution according
to Equation (1) [15]:

P(E) =
1

Z(T)
·e(−

E
k·T) (1)

where Z(T) is the normalization factor and k = 1.3806 × 10−23
[

J
K

]
is the Boltzmann

constant. If the system cools too quickly, it can enter a metastable state (i.e., “get stuck” in
a higher energy state). The process of simulated annealing is based on the Monte Carlo
method, and instead of the energy E, the value of the objective function φ is used, and
instead of the temperature T, an artificial heat treatment temperature TA is introduced.
Figure 1 demonstrates the flow chart of the general simulated annealing algorithm [15].

Appl. Sci. 2023, 13, x FOR PEER REVIEW 3 of 20

Since, in our case, to optimize the parameters of our race car [3], the objective function
is not available in closed form, its value can only be determined by simulation, so only
metaheuristic algorithms can be considered [52]. Of these, we chose simulated annealing,
which is an efficient and robust stochastic algorithm, that is characterized by a high con-
vergence speed, and has various applications in different engineering and IT fields [15,16].
A detailed description of the operation principle of SA can be found in reference [15] and
further descriptions in the references [13,14].

Simulated annealing is an optimization algorithm that can be used to determine the
global minimum of an objective function by being able to solve the problem of getting
stuck in local minima. The algorithm is based on the physical process of metallurgical
annealing, where metal is heated and then slowly cooled. If the system cools very slowly,
it can reach thermal equilibrium at each temperature. The probability 𝑃 of the system
being in a state with energy 𝐸 at a given temperature 𝑇 is given by the Boltzmann dis-
tribution according to Equation (1) [15]: 𝑃(𝐸) = 1𝑍(𝑇) ∙ 𝑒 ∙ (1)

where 𝑍(𝑇) is the normalization factor and 𝑘 = 1.3806 10 is the Boltzmann con-
stant. If the system cools too quickly, it can enter a metastable state (i.e., “get stuck” in a
higher energy state). The process of simulated annealing is based on the Monte Carlo
method, and instead of the energy 𝐸, the value of the objective function 𝜙 is used, and
instead of the temperature 𝑇, an artificial heat treatment temperature 𝑇 is introduced.
Figure 1 demonstrates the flow chart of the general simulated annealing algorithm [15].

Figure 1. Flow chart of the general simulated annealing algorithm [15].

Let us assume a one-dimensional continuous optimization problem (dim(x) = 1). In
the neighborhood of state 𝑥 , a new state 𝑥 will be generated stochastically applying
Equation (2) [15]:

Figure 1. Flow chart of the general simulated annealing algorithm [15].

Let us assume a one-dimensional continuous optimization problem (dim(x) = 1). In
the neighborhood of state xk, a new state xk+1 will be generated stochastically applying
Equation (2) [15]:

xk+1 = xk + r·∆sl ∀r ∈ [−1, 1] (2)

where ∆sl is the current step length and r is a random number. The new state xk+1 is
unconditionally accepted as the new (and currently optimal) state if the value of the
objective function decreases:

ϕ
(

xk+1
)
≤ ϕ

(
xk
)

(3)

Appl. Sci. 2023, 13, 8897 4 of 20

Otherwise, the Metropolis criterion (4) gives the probability of accepting the state xk+1

as a new state [15]:

e
(− ϕ(xk+1)−ϕ(xk)

k·Tm
A

)
≥ p ∀p ∈ [0, 1] (4)

where Tm
A is the current annealing temperature and p is a random number. The steps at

which the objective function increases are called “up-hill” steps. The procedure takes place
within the inner loop until a given number of evaluation cycles, Nk, is done [15].

As the algorithm progresses, the step size (i.e., the search area) decreases, and it should
be chosen in the outer loop so that the ratio of accepted and evaluated steps be close to
0.5 [53]

q =
Naccepted

Nevaluated
≈ 0.5 (5)

If the ratio is too high, too many unnecessary steps will be accepted, so the calculation
time will be too long. On the other hand, if the above ratio is too small, it can result in
“getting stuck” in a local minimum.

There is a direct connection between the annealing temperature TA and the step length
∆sl . At high temperature, a large decrease of the objective function is acceptable, and a
large step length can be chosen to cover a large search area. The initial temperature should
be large enough so that all steps are accepted. Based on the above, simulated annealing has
the theoretical possibility of finding the global minimum.

With decreasing temperature TA, the step length must be reduced, since Equation (4)
only accepts an objective function that decreases to a smaller extent, which results in a
smaller acceptance rate q. There are various approaches to setting the step length. One of
these is the following simple but effective way [54]:

∆sl+1 =

∆sl
(

1 + c· q−0.6
0.4

)
i f q > 0.6

∆sl i f 0.4 ≤ q ≤ 0.6

∆sl
(

1 + c· 0.4−q
0.4

)−1
i f q < 0.4

(6)

The change of the step length is adjusted by the parameter c, whose value is usually
set to 1 [23]. In Figure 2 ratio ∆sl+1

∆sl is plotted vs. acceptance ratio q.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 20

𝑥 = 𝑥 𝑟 ∙ ∆𝑠 ∀ 𝑟 ∈ [−1, 1] (2)

where ∆𝑠 is the current step length and 𝑟 is a random number. The new state 𝑥 is
unconditionally accepted as the new (and currently optimal) state if the value of the ob-
jective function decreases: 𝜑(𝑥) ≤ 𝜑(𝑥) (3)

Otherwise, the Metropolis criterion (4) gives the probability of accepting the state 𝑥 as a new state [15]:

𝑒 ∙ 𝑝 ∀ 𝑝 ∈ [0, 1] (4)

where 𝑇 is the current annealing temperature and 𝑝 is a random number. The steps at
which the objective function increases are called “up-hill” steps. The procedure takes
place within the inner loop until a given number of evaluation cycles, 𝑁 , is done. [15]

As the algorithm progresses, the step size (i.e., the search area) decreases, and it
should be chosen in the outer loop so that the ratio of accepted and evaluated steps be
close to 0.5 [53] 𝑞 = 𝑁𝑁 0.5 (5)

If the ratio is too high, too many unnecessary steps will be accepted, so the calculation
time will be too long. On the other hand, if the above ratio is too small, it can result in
“getting stuck” in a local minimum.

There is a direct connection between the annealing temperature 𝑇 and the step
length ∆𝑠 . At high temperature, a large decrease of the objective function is acceptable,
and a large step length can be chosen to cover a large search area. The initial temperature
should be large enough so that all steps are accepted. Based on the above, simulated an-
nealing has the theoretical possibility of finding the global minimum.

With decreasing temperature 𝑇 , the step length must be reduced, since Equation (4)
only accepts an objective function that decreases to a smaller extent, which results in a
smaller acceptance rate q. There are various approaches to setting the step length. One of
these is the following simple but effective way [54]:

∆𝑠 = ⎩⎪⎨
⎪⎧ ∆𝑠 1 𝑐 ∙ 𝑞 − 0.60.4 𝑖𝑓 𝑞 0.6∆𝑠 𝑖𝑓 0.4 ≤ 𝑞 ≤ 0.6∆𝑠 1 𝑐 ∙ 0.4 − 𝑞0.4 𝑖𝑓 𝑞 0.4 (6)

The change of the step length is adjusted by the parameter 𝑐, whose value is usually
set to 1 [23]. In Figure 2 ratio ∆𝑠𝑙 1∆𝑠𝑙 is plotted vs. acceptance ratio q.

Figure 2. The way of step length adjustment [15]. Figure 2. The way of step length adjustment [15].

In an homogeneous algorithm, the temperature TA is reduced after Nl step length
adjustments, completing a “Markov chain” in the outer loop m. We always assume that we
have found the optimal state at the current temperature Tm

A . The simplest way to reduce
the temperature is to multiply it by a given α constant (7) [13,15]:

Tm+1
A = α·Tm

A , 0 ≤ α ≤ 1 (7)

Appl. Sci. 2023, 13, 8897 5 of 20

Recommended values of α vary between 0.5 and 0.99. If the temperature changes
slowly enough (i.e., α → 1), it is more likely to find the global minimum, while small α
values lead to results more quickly.

The calculation is then restarted and continues with the currently optimal xopt state
and the updated temperature. In this case, the stopping (convergence) criterion is defined
by Inequality (8): ∣∣∣ϕ(xk−i

)
− ϕ

(
xopt)∣∣∣ ≤ ε, i = 0, . . . , Nε − 1 (8)

where ε is a problem specific factor and Nε is the number of steps.
The convergence of simulated annealing procedure can be guaranteed with suitable

values for Tm=0
A , Nk, Nl , Nm, α, and Nε which have clear meanings and can be tuned easily

by “wait-and-see” [23].

3. Brief Description of the Simulation Program

The applied simulation program [3] is based on the vehicle dynamics model presented
in Figure 3 [3]. In the model, the car is divided into four structural units. These units are the
driven rear wheels with the rotating machine parts connected to them (Unit 1), the freely
rotating front wheels with the rotating machine parts connected to them (Unit 2), the body
of the car including the stator of the electric motor (Unit 3), and the rotor of the electric
motor (Unit 4).

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 20

In an homogeneous algorithm, the temperature 𝑇 is reduced after 𝑁 step length
adjustments, completing a “Markov chain” in the outer loop 𝑚. We always assume that
we have found the optimal state at the current temperature 𝑇 . The simplest way to re-
duce the temperature is to multiply it by a given 𝛼 constant (7) [13,15]: 𝑇 = 𝛼 ∙ 𝑇 , 0 ≤ 𝛼 ≤ 1 (7)

Recommended values of 𝛼 vary between 0.5 and 0.99. If the temperature changes
slowly enough (i.e., 𝛼 → 1), it is more likely to find the global minimum, while small 𝛼
values lead to results more quickly.

The calculation is then restarted and continues with the currently optimal 𝑥 state
and the updated temperature. In this case, the stopping (convergence) criterion is defined
by Inequality (8): 𝜑(𝑥) − 𝜑(𝑥) ≤ 𝜀, 𝑖 = 0, … , 𝑁 − 1 (8)

where 𝜀 is a problem specific factor and 𝑁 is the number of steps.
The convergence of simulated annealing procedure can be guaranteed with suitable

values for 𝑇 , 𝑁 , 𝑁 , 𝑁 , 𝛼, and 𝑁 which have clear meanings and can be tuned
easily by “wait-and-see” [23].

3. Brief Description of the Simulation Program
The applied simulation program [3] is based on the vehicle dynamics model pre-

sented in Figure 3 [3]. In the model, the car is divided into four structural units. These
units are the driven rear wheels with the rotating machine parts connected to them (Unit
1), the freely rotating front wheels with the rotating machine parts connected to them
(Unit 2), the body of the car including the stator of the electric motor (Unit 3), and the rotor
of the electric motor (Unit 4).

Figure 3. The developed vehicle dynamics model for the prototype race car together with the forces
and torques acting on its different structural units [3].

Regarding the modelled vehicle in [3], the rear wheels are connected to the electric
motor through a chain drive. The mathematical connection between 𝑀 and 𝑀
is given by the Equation (9):

Figure 3. The developed vehicle dynamics model for the prototype race car together with the forces
and torques acting on its different structural units [3].

Regarding the modelled vehicle in [3], the rear wheels are connected to the electric
motor through a chain drive. The mathematical connection between Mwheel and Mmotor is
given by the Equation (9):

Mwheel = −η·i12·Mmotor (9)

where i12 =
z2

z1
(10)

Appl. Sci. 2023, 13, 8897 6 of 20

The meaning of the notations in Figure 3 and in Equations (9) and (10) can be found
in the Nomenclature. To be able to simulate the electric motor, it must also be modelled.
Regarding the prototype race car in [3], a series-wound DC motor was applied to drive the
car. The developed model for this motor [3] is presented in Figure 4.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 20

𝑀 = −ƞ ∙ 𝑖 ∙ 𝑀 (9)

where 𝑖 = (10)

The meaning of the notations in Figure 3 and in Equations (9) and (10) can be found
in the Nomenclature. To be able to simulate the electric motor, it must also be modelled.
Regarding the prototype race car in [3], a series-wound DC motor was applied to drive
the car. The developed model for this motor [3] is presented in Figure 4.

Figure 4. The applied model for the simulation of the series-wound DC motor [3].

Based on the models—presented in Figures 3 and 4—dynamic and electromagnetic
equations were written for the various structural units [3]. Based on the equations, a sim-
ulation program was developed in MATLAB/Simulink [3]. The modular structure of the
simulation program is presented in Figure 5.

Figure 5. The block diagram of the simulation program in MATLAB Simulink [3].

The simulation program is built up of five modules according to our dynamics
model. The modules are: vehicle body (Module 3), front wheels and connected rotating
machine parts (Module 2), rear (back) wheels and connected rotating machine parts (Mod-
ule 1), motor (Module 4), and power transmission system (Module 5).

A detailed description of the internal structure and operation of each module can be
found in reference [3].

The inputs of the program and its output functions are listed in the Nomenclature.
The electromagnetic and dynamic characteristics of the applied electric motor (𝑅 , 𝑉 , 𝑅 , 𝑅 , 𝑅 , 𝐿 , 𝐿 , 𝐿 , 𝐽 , 𝑀) were measured previously [8,9], and the output
functions (𝐼(𝑡), 𝑀 (𝑡), 𝜔 (𝑡)) of the motor simulation program module were val-
idated by test measurements [9]. Some of the other vehicle parameters (𝑙, 𝑙 , 𝑙 , 𝑤, 𝑚 ,

L
a

R
r

L r

Rs Ls

Mmotor Mres
Mload

dI/dtI

-

+

Rbatt

Vbatt

Rwire

Mmotor=Lsr I2

Figure 4. The applied model for the simulation of the series-wound DC motor [3].

Based on the models—presented in Figures 3 and 4—dynamic and electromagnetic
equations were written for the various structural units [3]. Based on the equations, a
simulation program was developed in MATLAB/Simulink [3]. The modular structure of
the simulation program is presented in Figure 5.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 20

𝑀 = −ƞ ∙ 𝑖 ∙ 𝑀 (9)

where 𝑖 = (10)

The meaning of the notations in Figure 3 and in Equations (9) and (10) can be found
in the Nomenclature. To be able to simulate the electric motor, it must also be modelled.
Regarding the prototype race car in [3], a series-wound DC motor was applied to drive
the car. The developed model for this motor [3] is presented in Figure 4.

Figure 4. The applied model for the simulation of the series-wound DC motor [3].

Based on the models—presented in Figures 3 and 4—dynamic and electromagnetic
equations were written for the various structural units [3]. Based on the equations, a sim-
ulation program was developed in MATLAB/Simulink [3]. The modular structure of the
simulation program is presented in Figure 5.

Figure 5. The block diagram of the simulation program in MATLAB Simulink [3].

The simulation program is built up of five modules according to our dynamics
model. The modules are: vehicle body (Module 3), front wheels and connected rotating
machine parts (Module 2), rear (back) wheels and connected rotating machine parts (Mod-
ule 1), motor (Module 4), and power transmission system (Module 5).

A detailed description of the internal structure and operation of each module can be
found in reference [3].

The inputs of the program and its output functions are listed in the Nomenclature.
The electromagnetic and dynamic characteristics of the applied electric motor (𝑅 , 𝑉 , 𝑅 , 𝑅 , 𝑅 , 𝐿 , 𝐿 , 𝐿 , 𝐽 , 𝑀) were measured previously [8,9], and the output
functions (𝐼(𝑡), 𝑀 (𝑡), 𝜔 (𝑡)) of the motor simulation program module were val-
idated by test measurements [9]. Some of the other vehicle parameters (𝑙, 𝑙 , 𝑙 , 𝑤, 𝑚 ,

L
a

R
r

L r

Rs Ls

Mmotor Mres
Mload

dI/dtI

-

+

Rbatt

Vbatt

Rwire

Mmotor=Lsr I2

Figure 5. The block diagram of the simulation program in MATLAB Simulink [3].

The simulation program is built up of five modules according to our dynamics model.
The modules are: vehicle body (Module 3), front wheels and connected rotating machine
parts (Module 2), rear (back) wheels and connected rotating machine parts (Module 1),
motor (Module 4), and power transmission system (Module 5).

A detailed description of the internal structure and operation of each module can be
found in reference [3].

The inputs of the program and its output functions are listed in the Nomenclature.
The electromagnetic and dynamic characteristics of the applied electric motor (Rbatt, Vbatt,
Rwire, Rs, Rr, Ls, Lr, Lsr, Jr, Mres) were measured previously [8,9], and the output functions
(I(t), Mmotor(t), ωmotor(t)) of the motor simulation program module were validated by test
measurements [9]. Some of the other vehicle parameters (l, l f , lb, w, m0, m f , mb, J f , Jb, R, A)
were also measured [3], while the remaining ones (η, C) were approximated on the basis of
literature data.

Appl. Sci. 2023, 13, 8897 7 of 20

4. Description of the Optimization Methods

The basic concepts related to optimization can be found in reference [12]. These
concepts are clarified below.

The race car can be described with a finite number of technical data. Data that cannot
be modified during the optimization procedure, are called design parameters, while others
are called design variables. Together, they unambiguously define the vehicle model.

The introduction of design parameters is necessary because in most cases not all the
data of the vehicle can be chosen freely. This may be due to the fact that the competition
rules make restrictions (or fix the value) on certain data, or other practical or economic
reasons (such as the use of an existing vehicle chassis, motor, or other vehicle components),
or we may simply know the optimal value of a given technical data.

The design variables are categorized as mathematically continuous or discrete. It is
usually easier to work with continuous design variables (since they can take any value in
a given interval), but in certain situations (for example, if we need to select a rim for our
car from the available sizes), you must use discrete design variables. In the intermediate
case, when we know that we are looking for the value of a design variable in a discrete
set containing a large number of elements (e.g., chain gear ratio selection), we talk about
pseudo-discrete design variables. In this case, we solve the problem by considering the
design variable to be continuous and then finding the most suitable discrete value closest
to it.

The given fixed values of the design variables and parameters define a possible
vehicle construction. This construction may be suitable for the designer, or it may also be
possible that it does not meet the functional or other requirements. The conditions that
the given construction must meet are called optimization conditions. These can be, for
example, geometric optimization conditions, such as the minimum and maximum required
track or wheelbase of the race car, or conditions related to the technical implementation,
such as the minimum number of sprocket teeth in a chain drive, below which the chain
drive cannot work. A construction that satisfies all the optimization conditions is called a
permissible construction.

There are usually a large or infinite number of constructions that meet the optimization
conditions. To select the optimal vehicle construction, we interpret an objective function
on the set of design variables, the value of which is a quantity (metric) characteristic of
the vehicle (for example, the time required to cover a given distance or reach a given
speed, energy consumption, or top speed), based on which metric the designer prefers, one
construction will be selected over another. In most cases, we formulate the optimization
problem as the minimization of the objective function. The selection of the objective function
has a significant effect on the whole optimization process, and thus, on the resulting optimal
construction. We have the option of simultaneously interpreting several objective functions,
but we recommend this only if the interpretation of one objective function is not sufficient
and the objective functions do not contradict each other.

The simulation program presented in Section 3 can be used for optimization purposes
in two ways: firstly, it helps to design a new vehicle. In this first case, only certain technical
data (design parameters) have a given fixed value, for example, satisfying the competition
rules. For the other technical data (design variables) we must find the optimal values,
which are the most suitable for the given competition task (e.g., 100 m drag race). Secondly,
it helps to prepare an existing vehicle for a given competition task. In this second case,
we can vary or adjust only a few of the vehicle’s technical data. In both cases, using the
simulation program and the optimization procedure, the possibility of successful racing
can be significantly increased, and a lot of time and cost can be saved.

In the following, we present the applied optimization methods, together with the
necessary program codes that were developed in MATLAB.

Appl. Sci. 2023, 13, 8897 8 of 20

4.1. Approximation of the Optimal Technical Data Using a “Graphical Method”

In technical practice, it often happens that we search for the optimum with only
one or two design variables, and the objective function has a “smooth” behavior, free of
discontinuities or sudden changes. In this case, instead of computationally demanding
optimization methods, we have the option of using a simpler “graphical method”. In this
procedure, we generate a uniform “grid” on the space of design variables and calculate
the values of the objective function at the grid points. Due to the nature of the task, the
values of the objective function can be represented on one- or two-variable diagrams
and the optimum can be read with a good engineering approximation. Of course, this
procedure cannot be used in the case of a higher-dimensional design variable space or a
highly complex objective function.

If we intend to optimize only one of the variables (for example, the gear ratio in the
chain drive) then the objective function is a univariate function. Let the optimization
problem be to find the optimal value of the gear ratio (i12) at which a speed of 40 km/h
can be reached by the race car in the shortest possible time (t). In this problem the design
variable is the gear ratio, and the objective function is function t(i12). Applying our
simulation program, we calculate the velocity–time function of the vehicle at different gear
ratios and read the time required to reach a speed of 40 km/h. After that, the above time
is plotted as a function of the gear ratio (Figure 6), and then the approximate value of the
optimal gear ratio, corresponding to the minimum time, is read from the graph.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 20

4.1. Approximation of the Optimal Technical Data Using a “Graphical Method”
In technical practice, it often happens that we search for the optimum with only one

or two design variables, and the objective function has a “smooth” behavior, free of dis-
continuities or sudden changes. In this case, instead of computationally demanding opti-
mization methods, we have the option of using a simpler “graphical method”. In this pro-
cedure, we generate a uniform “grid” on the space of design variables and calculate the
values of the objective function at the grid points. Due to the nature of the task, the values
of the objective function can be represented on one- or two-variable diagrams and the
optimum can be read with a good engineering approximation. Of course, this procedure
cannot be used in the case of a higher-dimensional design variable space or a highly com-
plex objective function.

If we intend to optimize only one of the variables (for example, the gear ratio in the
chain drive) then the objective function is a univariate function. Let the optimization prob-
lem be to find the optimal value of the gear ratio (𝑖) at which a speed of 40 km/h can be
reached by the race car in the shortest possible time (𝑡). In this problem the design variable
is the gear ratio, and the objective function is function 𝑡(𝑖). Applying our simulation
program, we calculate the velocity–time function of the vehicle at different gear ratios and
read the time required to reach a speed of 40 km/h. After that, the above time is plotted as
a function of the gear ratio (Figure 6), and then the approximate value of the optimal gear
ratio, corresponding to the minimum time, is read from the graph.

Figure 6. The time that is necessary for reaching the 40 km/h speed as a function of the gear ratio.

Since we have to run the program for many different gear ratios, we automated the
process with the application of a self-developed MATLAB code (Figure 7).

Figure 7. MATLAB code for automating the generation of the time vs. gear ratio function.

% Analysis of the effect of the ratio change:
ratios=2.5:0.05:6; % Vector of examined ratios
t_40=zeros(length(ratios)); % Time vector
v_40=zeros(length(ratios)); % Speed vetor
open('GENERAL.slx'); % Open Simulink model
for ind1=1:length(ratios)

i12=ratios(ind1); % Current examined ratio
sim('GENERAL.slx');
ind2=1;
while speed(ind2,2)<40 % Search for an index to reach a speed of 40 km/h

ind2=ind2+1;
end
t_40(ind1)=speed(ind2,1); % The time to reach 40 km/h
v_40(ind1)=speed(ind2,2);

end
plot(ratios,t_40) % Display times as a function of ratios
axis([2.5 6 4 6])

Figure 6. The time that is necessary for reaching the 40 km/h speed as a function of the gear ratio.

Since we have to run the program for many different gear ratios, we automated the
process with the application of a self-developed MATLAB code (Figure 7).

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 20

4.1. Approximation of the Optimal Technical Data Using a “Graphical Method”
In technical practice, it often happens that we search for the optimum with only one

or two design variables, and the objective function has a “smooth” behavior, free of dis-
continuities or sudden changes. In this case, instead of computationally demanding opti-
mization methods, we have the option of using a simpler “graphical method”. In this pro-
cedure, we generate a uniform “grid” on the space of design variables and calculate the
values of the objective function at the grid points. Due to the nature of the task, the values
of the objective function can be represented on one- or two-variable diagrams and the
optimum can be read with a good engineering approximation. Of course, this procedure
cannot be used in the case of a higher-dimensional design variable space or a highly com-
plex objective function.

If we intend to optimize only one of the variables (for example, the gear ratio in the
chain drive) then the objective function is a univariate function. Let the optimization prob-
lem be to find the optimal value of the gear ratio (𝑖) at which a speed of 40 km/h can be
reached by the race car in the shortest possible time (𝑡). In this problem the design variable
is the gear ratio, and the objective function is function 𝑡(𝑖). Applying our simulation
program, we calculate the velocity–time function of the vehicle at different gear ratios and
read the time required to reach a speed of 40 km/h. After that, the above time is plotted as
a function of the gear ratio (Figure 6), and then the approximate value of the optimal gear
ratio, corresponding to the minimum time, is read from the graph.

Figure 6. The time that is necessary for reaching the 40 km/h speed as a function of the gear ratio.

Since we have to run the program for many different gear ratios, we automated the
process with the application of a self-developed MATLAB code (Figure 7).

Figure 7. MATLAB code for automating the generation of the time vs. gear ratio function.

% Analysis of the effect of the ratio change:
ratios=2.5:0.05:6; % Vector of examined ratios
t_40=zeros(length(ratios)); % Time vector
v_40=zeros(length(ratios)); % Speed vetor
open('GENERAL.slx'); % Open Simulink model
for ind1=1:length(ratios)

i12=ratios(ind1); % Current examined ratio
sim('GENERAL.slx');
ind2=1;
while speed(ind2,2)<40 % Search for an index to reach a speed of 40 km/h

ind2=ind2+1;
end
t_40(ind1)=speed(ind2,1); % The time to reach 40 km/h
v_40(ind1)=speed(ind2,2);

end
plot(ratios,t_40) % Display times as a function of ratios
axis([2.5 6 4 6])

Figure 7. MATLAB code for automating the generation of the time vs. gear ratio function.

Appl. Sci. 2023, 13, 8897 9 of 20

In the MATLAB code above, we first specify the gear ratio range and the step size
which are [2.5; 6] and 0.05, respectively. After that, we run the simulation program with
every gear ratio value one by one. For this, we use a for loop in the program code. After
that, the program records the times required to reach 40 km/h for each run and then plots
them as a function of the corresponding gear ratios.

If we intend to optimize two of the variables, then the objective function is a bivariate
function. In this case, the procedure presented previously for a univariate function can still
be used. Let the optimization problem be to find the optimal values of the gear ratio and
center-of-mass position (lb) at which a speed of 40 km/h is reached by the car in the shortest
possible time. Variable lb is the distance of the centre of mass of the vehicle from the rear
shaft, and its value can be varied in the [0.4; 1] m range. Applying our simulation program,
we calculate the velocity–time function of the vehicle at the different center-of-mass position
and gear ratio pairs and read the time required to reach a speed of 40 km/h. After that,
the above time is plotted as a function of the center-of-mass position and gear ratio pairs
(Figure 8). Finally, the approximate center-of-mass position and gear ratio, corresponding
to the minimum time, are read from the graph.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 20

In the MATLAB code above, we first specify the gear ratio range and the step size
which are [2.5; 6] and 0.05, respectively. After that, we run the simulation program with
every gear ratio value one by one. For this, we use a for loop in the program code. After
that, the program records the times required to reach 40 km/h for each run and then plots
them as a function of the corresponding gear ratios.

If we intend to optimize two of the variables, then the objective function is a bivariate
function. In this case, the procedure presented previously for a univariate function can
still be used. Let the optimization problem be to find the optimal values of the gear ratio
and center-of-mass position (𝑙) at which a speed of 40 km/h is reached by the car in the
shortest possible time. Variable 𝑙 is the distance of the centre of mass of the vehicle from
the rear shaft, and its value can be varied in the [0.4; 1] m range. Applying our simulation
program, we calculate the velocity–time function of the vehicle at the different center-of-
mass position and gear ratio pairs and read the time required to reach a speed of 40 km/h.
After that, the above time is plotted as a function of the center-of-mass position and gear
ratio pairs (Figure 8). Finally, the approximate center-of-mass position and gear ratio, cor-
responding to the minimum time, are read from the graph.

Figure 8. The time that is necessary for reaching the 40 km/h speed as a function of gear ratio and
center-of-gravity position.

Based on Figure 8, the optimal values of the center of mass and the gear ratio are ap-
proximately 0.4 m and 4. The MATLAB program code (Figure 9) developed to automate the
process is similar to the one in Figure 7. The only difference is that here two loops are used.

Figure 9. MATLAB program code for automating the generation of the function in Figure 8.

% Analysis of the effect of ratio and center of gravity change:
ratios=2.5:0.05:6; % Vector of examined ratios
center_of_grav=0.4:0.05:1.0; % Vector of examined center of gravity positions
t_40=zeros(length(ratios),length(center_of_grav)); % Time matrix
v_40=zeros(length(ratios),length(center_of_grav)); % Speed matrix
open('GENERAL.slx'); % Open Simulink model
for ind_i=1:length(ratios)

i12=ratios(ind_i); % Current examined ratio
for ind_s=1:length(center_of_grav)

lb=center_of_grav(ind_s); % Current examined center of gravity position
sim('GENERAL.slx');
ind_v=1;
while speed(ind_v,2)<40 % Search for an index to reach 40km/h

ind_v=ind_v+1;
end

t_40(ind_i,ind_s)=speed(ind_v,1); % The time to reach 40km/h
v_40(ind_i,ind_s)=speed(ind_v,2);
end

end
[X,Y]=meshgrid(2.5:0.05:6,0.4:0.05:1.0);
surf(X,Y,t_40') % Displays times as a function of ratios and center of gravity positions

Figure 8. The time that is necessary for reaching the 40 km/h speed as a function of gear ratio and
center-of-gravity position.

Based on Figure 8, the optimal values of the center of mass and the gear ratio are
approximately 0.4 m and 4. The MATLAB program code (Figure 9) developed to automate
the process is similar to the one in Figure 7. The only difference is that here two loops
are used.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 20

In the MATLAB code above, we first specify the gear ratio range and the step size
which are [2.5; 6] and 0.05, respectively. After that, we run the simulation program with
every gear ratio value one by one. For this, we use a for loop in the program code. After
that, the program records the times required to reach 40 km/h for each run and then plots
them as a function of the corresponding gear ratios.

If we intend to optimize two of the variables, then the objective function is a bivariate
function. In this case, the procedure presented previously for a univariate function can
still be used. Let the optimization problem be to find the optimal values of the gear ratio
and center-of-mass position (𝑙) at which a speed of 40 km/h is reached by the car in the
shortest possible time. Variable 𝑙 is the distance of the centre of mass of the vehicle from
the rear shaft, and its value can be varied in the [0.4; 1] m range. Applying our simulation
program, we calculate the velocity–time function of the vehicle at the different center-of-
mass position and gear ratio pairs and read the time required to reach a speed of 40 km/h.
After that, the above time is plotted as a function of the center-of-mass position and gear
ratio pairs (Figure 8). Finally, the approximate center-of-mass position and gear ratio, cor-
responding to the minimum time, are read from the graph.

Figure 8. The time that is necessary for reaching the 40 km/h speed as a function of gear ratio and
center-of-gravity position.

Based on Figure 8, the optimal values of the center of mass and the gear ratio are ap-
proximately 0.4 m and 4. The MATLAB program code (Figure 9) developed to automate the
process is similar to the one in Figure 7. The only difference is that here two loops are used.

Figure 9. MATLAB program code for automating the generation of the function in Figure 8.

% Analysis of the effect of ratio and center of gravity change:
ratios=2.5:0.05:6; % Vector of examined ratios
center_of_grav=0.4:0.05:1.0; % Vector of examined center of gravity positions
t_40=zeros(length(ratios),length(center_of_grav)); % Time matrix
v_40=zeros(length(ratios),length(center_of_grav)); % Speed matrix
open('GENERAL.slx'); % Open Simulink model
for ind_i=1:length(ratios)

i12=ratios(ind_i); % Current examined ratio
for ind_s=1:length(center_of_grav)

lb=center_of_grav(ind_s); % Current examined center of gravity position
sim('GENERAL.slx');
ind_v=1;
while speed(ind_v,2)<40 % Search for an index to reach 40km/h

ind_v=ind_v+1;
end

t_40(ind_i,ind_s)=speed(ind_v,1); % The time to reach 40km/h
v_40(ind_i,ind_s)=speed(ind_v,2);
end

end
[X,Y]=meshgrid(2.5:0.05:6,0.4:0.05:1.0);
surf(X,Y,t_40') % Displays times as a function of ratios and center of gravity positions

Figure 9. MATLAB program code for automating the generation of the function in Figure 8.

Appl. Sci. 2023, 13, 8897 10 of 20

4.2. Determination of the Optimal Technical Data Using Simulated Annealing

For three or more variables, or when greater accuracy is required, we can no longer use
the graphical method, instead we can use the stochastic method simulated annealing (SA).
To realize the optimization, we used the simulated annealing function (simulannealbnd) in
the Global Optimization Toolbox within MATLAB, which based on the general method of
simulated annealing, described in Section 2. The above-mentioned MATLAB function uses
a variant of SA which is the adaptive simulated annealing (ASA) [16]. In this variant (ASA),
the algorithm parameters that control temperature scheduling and random-step selection,
are set automatically. The values of the above parameters in the traditional version (SA) are
usually adjusted by the user, based on their own experience, as was previously mentioned
in Section 2. This is a significant disadvantage of traditional SA compared to ASA. During
the optimization we used the default settings in MATLAB, in which the step length equals
the current temperature, and direction is uniformly random. The current temperature
is calculated from the initial temperature applying the formula T = T0·0.95m, where m
denotes the annealing parameter, which is the same as the iteration number.

As an example, we first show the application of simulated annealing in the case of one
design variable. The task is the same as in Section 4.1, namely, to determine the optimal
gear ratio of the race car [3], with which a speed of 40 km/h can be reached in the shortest
possible time. Regarding the objective, first, it is necessary to create a MATLAB function,
which calculates the time required to reach 40 km/h speed at different gear ratios (i12). The
program code that was developed for this is shown in Figure 10.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 20

4.2. Determination of the Optimal Technical Data Using Simulated Annealing
For three or more variables, or when greater accuracy is required, we can no longer

use the graphical method, instead we can use the stochastic method simulated annealing
(SA). To realize the optimization, we used the simulated annealing function (simulan-
nealbnd) in the Global Optimization Toolbox within MATLAB, which based on the gen-
eral method of simulated annealing, described in Section 2. The above-mentioned
MATLAB function uses a variant of SA which is the adaptive simulated annealing (ASA)
[16]. In this variant (ASA), the algorithm parameters that control temperature scheduling
and random-step selection, are set automatically. The values of the above parameters in
the traditional version (SA) are usually adjusted by the user, based on their own experi-
ence, as was previously mentioned in Section 2. This is a significant disadvantage of tra-
ditional SA compared to ASA. During the optimization we used the default settings in
MATLAB, in which the step length equals the current temperature, and direction is uni-
formly random. The current temperature is calculated from the initial temperature apply-
ing the formula 𝑇 = 𝑇 ∙ 0.95 , where 𝑚 denotes the annealing parameter, which is the
same as the iteration number.

As an example, we first show the application of simulated annealing in the case of
one design variable. The task is the same as in Section 4.1, namely, to determine the opti-
mal gear ratio of the race car [3], with which a speed of 40 km/h can be reached in the
shortest possible time. Regarding the objective, first, it is necessary to create a MATLAB
function, which calculates the time required to reach 40 km/h speed at different gear ratios
(𝑖). The program code that was developed for this is shown in Figure 10.

Figure 10. The MATLAB code that was developed to calculate the time required to reach 40 km/h
speed at different gear ratios (𝑖12).

After that, the optimization program code is created (Figure 11), applying simulated
annealing, using the MATLAB function presented in Figure 10.

Comparing this result with the one obtained by the graphical method, it can be seen
that they are equal to a good approximation.

function [t_out] = GENERAL_func_vel40_i12_eng(i_g)

assignin('base', 'i12', i_g); % Change the value of i12 in the Workspace to the
% value of i_g obtained in the parameter

sim('GENERAL.slx'); % Run the simulation

ind_v=1;
while speed(ind_v,2)<40 % Search for an index to reach a speed of 40 km/h

ind_v=ind_v+1;
end

t_out=speed(ind_v,1);

end

Figure 10. The MATLAB code that was developed to calculate the time required to reach 40 km/h
speed at different gear ratios (i12).

After that, the optimization program code is created (Figure 11), applying simulated
annealing, using the MATLAB function presented in Figure 10.

Comparing this result with the one obtained by the graphical method, it can be seen
that they are equal to a good approximation.

The optimization program code determines the minimum time required to reach
40 km/h speed and the value of the corresponding optimal gear ratio. While the program
is running, the actual values can be monitored in real-time in four windows (Figure 12).

In the following, we apply simulated annealing for the optimization of two design
variables of the same car. These variables are the gear ratio and the position of the center of
mass of the car. Currently, in the case of the above-mentioned car, we can vary only these
parameters easily, and they have a significant effect on the dynamic characteristics of the
car. Thus, we decided to optimize the above parameters for the following two objectives:

• Reaching 40 km/h speed in the shortest possible time;

Appl. Sci. 2023, 13, 8897 11 of 20

• Covering a distance of 100 m from a standing position in the shortest possible time
(drag race).

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 20

Figure 11. The developed program code for the optimization applying simulated annealing.

The optimization program code determines the minimum time required to reach 40
km/h speed and the value of the corresponding optimal gear ratio. While the program is
running, the actual values can be monitored in real-time in four windows (Figure 12).

Figure 12. MATLAB windows for monitoring the parameter values in real-time. The first window
(a) shows the current value of the gear ratio, the second one (b), the calculated times for the previ-
ously analyzed gear ratios, the third one (c), the smallest time vs. the number of iterations, and the
fourth one (d), the optimal value of the gear ratio at which the time is minimum. At the end of the
run, the optimal value is displayed in the MATLAB Command Window.

In the following, we apply simulated annealing for the optimization of two design
variables of the same car. These variables are the gear ratio and the position of the center
of mass of the car. Currently, in the case of the above-mentioned car, we can vary only
these parameters easily, and they have a significant effect on the dynamic characteristics
of the car. Thus, we decided to optimize the above parameters for the following two ob-
jectives:

clear all
% Loading data for simulations:
GENERAL_model_data
% Open Simulink model:
open('GENERAL.slx');

% Initial ratio tip:
i_init=3.5;
% Lower limit:
i_l=3;
% Upper limit:
i_u=5;

% Running parameters (continuous plotting of partial results):
options = saoptimset('PlotFcns',{@saplotbestx,@saplotbestf,@saplotx,@saplotf});

% Run an optimization:
[i_opt,fval,exitFlag,output] = simulannealbnd(@GENERAL_func_vel40_i12_eng,i_init,i_l,i_u,options);

% Print results:
fprintf('Number of iterations : %d\n', output.iterations);
fprintf('Optimal ratio : %d\n', i_opt);
fprintf('Best function value (shortest time) : %g\n', fval);

Figure 11. The developed program code for the optimization applying simulated annealing.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 20

Figure 11. The developed program code for the optimization applying simulated annealing.

The optimization program code determines the minimum time required to reach 40
km/h speed and the value of the corresponding optimal gear ratio. While the program is
running, the actual values can be monitored in real-time in four windows (Figure 12).

Figure 12. MATLAB windows for monitoring the parameter values in real-time. The first window
(a) shows the current value of the gear ratio, the second one (b), the calculated times for the previ-
ously analyzed gear ratios, the third one (c), the smallest time vs. the number of iterations, and the
fourth one (d), the optimal value of the gear ratio at which the time is minimum. At the end of the
run, the optimal value is displayed in the MATLAB Command Window.

In the following, we apply simulated annealing for the optimization of two design
variables of the same car. These variables are the gear ratio and the position of the center
of mass of the car. Currently, in the case of the above-mentioned car, we can vary only
these parameters easily, and they have a significant effect on the dynamic characteristics
of the car. Thus, we decided to optimize the above parameters for the following two ob-
jectives:

clear all
% Loading data for simulations:
GENERAL_model_data
% Open Simulink model:
open('GENERAL.slx');

% Initial ratio tip:
i_init=3.5;
% Lower limit:
i_l=3;
% Upper limit:
i_u=5;

% Running parameters (continuous plotting of partial results):
options = saoptimset('PlotFcns',{@saplotbestx,@saplotbestf,@saplotx,@saplotf});

% Run an optimization:
[i_opt,fval,exitFlag,output] = simulannealbnd(@GENERAL_func_vel40_i12_eng,i_init,i_l,i_u,options);

% Print results:
fprintf('Number of iterations : %d\n', output.iterations);
fprintf('Optimal ratio : %d\n', i_opt);
fprintf('Best function value (shortest time) : %g\n', fval);

Figure 12. MATLAB windows for monitoring the parameter values in real-time. The first window
(a) shows the current value of the gear ratio, the second one (b), the calculated times for the previously
analyzed gear ratios, the third one (c), the smallest time vs. the number of iterations, and the fourth
one (d), the optimal value of the gear ratio at which the time is minimum. At the end of the run, the
optimal value is displayed in the MATLAB Command Window.

Regarding the first objective, good acceleration in the 0–40 km/h speed range is an
important factor for driving on a racetrack with many sharp turns. (The top speed of the
car is between 60 and 80 km/h, depending on the settings of the technical data.) To realize
the optimization, regarding the first objective, first, it is necessary to create a MATLAB
function that calculates the time required to reach 40 km/h speed at different gear ratios

Appl. Sci. 2023, 13, 8897 12 of 20

(i12) and the position of the centre of mass (lb) pairs. The program code that was developed
for this is shown in Figure 13.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 20

• Reaching 40 km/h speed in the shortest possible time;
• Covering a distance of 100 m from a standing position in the shortest possible time

(drag race).
Regarding the first objective, good acceleration in the 0–40 km/h speed range is an

important factor for driving on a racetrack with many sharp turns. (The top speed of the
car is between 60 and 80 km/h, depending on the settings of the technical data.) To realize
the optimization, regarding the first objective, first, it is necessary to create a MATLAB
function that calculates the time required to reach 40 km/h speed at different gear ratios
(𝑖) and the position of the centre of mass (𝑙) pairs. The program code that was developed
for this is shown in Figure 13.

After that, the optimization program code is created (Figure 14), applying simulated
annealing, using the MATLAB function presented in Figure 13.

The optimization program code determines the minimum time required to reach 40
km/h speed and the values of the corresponding optimal gear ratio and center-of-gravity
position. While the program is running, the actual values can be monitored in real-time in
four windows (Figure 15).

Figure 13. The MATLAB code that was developed to calculate the time required to reach 40 km/h
speed at different gear ratios (𝑖12) and the position of the centre of gravity (𝑙𝑏) pairs.

Figure 14. The developed program code for the optimization applying simulated annealing in the
case of objective 1.

function [t_out] = GENERAL_func_vel40_i12_lb_eng(params)
%[t_out] = GENERAL_func_vel40_i12_lh(params)

assignin('base', 'i12', params(1)); % Change the value of i12 in the Workspace to the
% value of params(1) obtained in the parameter

assignin('base', 'lb', params(2)); % Change the value of lb in the Workspace to the
% value of params(2) obtained in the parameter

sim('GENERAL.slx'); % Run the simulation

ind_v=1;
while speed(ind_v,2)<40 % Search for an index to reach a speed of 40 km/h

ind_v=ind_v+1;
end

t_out=speed(ind_v,1);

end

% Opening the Simulink model:
open('GENERAL.slx');

% Initial input value tip:
x_init=[3.5 0.5];
% Lower limit:
x_l=[3 0.4];
% Upper limit:
x_u=[5 1.0];

% Run parameters (continuous plotting of partial results):
options = saoptimset('PlotFcns',{@saplotbestx,@saplotbestf,@saplotx,@saplotf});

% Run optimization:
[x_opt,fval,exitFlag,output] = simulannealbnd(@GENERAL_func_vel40_i12_lb_eng,x_init,x_l,x_u,options);

% Print results:
fprintf('Number of iterations : %d\n', output.iterations);
fprintf('Optimal ratio : %d\n', x_opt(1));
fprintf('Optimal centre of gravity position : %d\n', x_opt(2));
fprintf('Best function value (shortest time) : %g\n', fval);

Figure 13. The MATLAB code that was developed to calculate the time required to reach 40 km/h
speed at different gear ratios (i12) and the position of the centre of gravity (lb) pairs.

After that, the optimization program code is created (Figure 14), applying simulated
annealing, using the MATLAB function presented in Figure 13.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 20

• Reaching 40 km/h speed in the shortest possible time;
• Covering a distance of 100 m from a standing position in the shortest possible time

(drag race).
Regarding the first objective, good acceleration in the 0–40 km/h speed range is an

important factor for driving on a racetrack with many sharp turns. (The top speed of the
car is between 60 and 80 km/h, depending on the settings of the technical data.) To realize
the optimization, regarding the first objective, first, it is necessary to create a MATLAB
function that calculates the time required to reach 40 km/h speed at different gear ratios
(𝑖) and the position of the centre of mass (𝑙) pairs. The program code that was developed
for this is shown in Figure 13.

After that, the optimization program code is created (Figure 14), applying simulated
annealing, using the MATLAB function presented in Figure 13.

The optimization program code determines the minimum time required to reach 40
km/h speed and the values of the corresponding optimal gear ratio and center-of-gravity
position. While the program is running, the actual values can be monitored in real-time in
four windows (Figure 15).

Figure 13. The MATLAB code that was developed to calculate the time required to reach 40 km/h
speed at different gear ratios (𝑖12) and the position of the centre of gravity (𝑙𝑏) pairs.

Figure 14. The developed program code for the optimization applying simulated annealing in the
case of objective 1.

function [t_out] = GENERAL_func_vel40_i12_lb_eng(params)
%[t_out] = GENERAL_func_vel40_i12_lh(params)

assignin('base', 'i12', params(1)); % Change the value of i12 in the Workspace to the
% value of params(1) obtained in the parameter

assignin('base', 'lb', params(2)); % Change the value of lb in the Workspace to the
% value of params(2) obtained in the parameter

sim('GENERAL.slx'); % Run the simulation

ind_v=1;
while speed(ind_v,2)<40 % Search for an index to reach a speed of 40 km/h

ind_v=ind_v+1;
end

t_out=speed(ind_v,1);

end

% Opening the Simulink model:
open('GENERAL.slx');

% Initial input value tip:
x_init=[3.5 0.5];
% Lower limit:
x_l=[3 0.4];
% Upper limit:
x_u=[5 1.0];

% Run parameters (continuous plotting of partial results):
options = saoptimset('PlotFcns',{@saplotbestx,@saplotbestf,@saplotx,@saplotf});

% Run optimization:
[x_opt,fval,exitFlag,output] = simulannealbnd(@GENERAL_func_vel40_i12_lb_eng,x_init,x_l,x_u,options);

% Print results:
fprintf('Number of iterations : %d\n', output.iterations);
fprintf('Optimal ratio : %d\n', x_opt(1));
fprintf('Optimal centre of gravity position : %d\n', x_opt(2));
fprintf('Best function value (shortest time) : %g\n', fval);

Figure 14. The developed program code for the optimization applying simulated annealing in the
case of objective 1.

The optimization program code determines the minimum time required to reach
40 km/h speed and the values of the corresponding optimal gear ratio and center-of-
gravity position. While the program is running, the actual values can be monitored in
real-time in four windows (Figure 15).

Appl. Sci. 2023, 13, 8897 13 of 20Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 20

Figure 15. MATLAB windows for monitoring the parameter values in real-time. The first window
(a) shows the current values of the gear ratio and center-of-gravity position, the second one (b), the
calculated times for the previously analyzed gear ratio and center-of-gravity pairs, the third one (c),
the smallest time vs. the number of iterations, and the fourth one (d), the optimal values of the gear
ratio and center-of-gravity position at which the time is minimum. At the end of the run, the optimal
values are displayed in the MATLAB Command Window. In the case of the analyzed race car, the
optimal values of the gear ratio and the center-of-mass position are 4.036 and 0.407 m, respectively.

Regarding the second objective (drag race), for the optimization, first, it is necessary
to create a MATLAB function, which calculates the time required for the car to travel 100
m at different gear ratio (𝑖) and the position of the center-of-gravity (𝑙) pairs. The pro-
gram code developed for this is shown in Figure 16.

Figure 16. The MATLAB function that was developed to calculate the time required for the car to
travel 100 m at different gear ratio (𝑖12) and the position of the center-of-gravity (𝑙𝑏) pairs.

After that, the optimization program code is created (Figure 17), applying simulated
annealing, using the MATLAB function presented in Figure 16.

function [t_out] = GENERAL_func_dist100_i12_lb_eng(params)
%[t_out] = GENERAL_func_dist100_i12_lb(params)

assignin('base', 'i12', params(1)); % Change the value of i12 in the Workspace to the
% value of params(1) obtained in the parameter

assignin('base', 'lb', params(2)); % Change the value of lb in the Workspace to the
% value of params(2) obtained in the parameter

sim('GENERAL.slx'); % Run the simulation

ind_s=1;
while displacement(ind_s,2)<100 % Search for an index to reach a covered distance of 100 m

ind_s=ind_s+1;
end

t_out=displacement(ind_s,1);

end

Figure 15. MATLAB windows for monitoring the parameter values in real-time. The first window
(a) shows the current values of the gear ratio and center-of-gravity position, the second one (b), the
calculated times for the previously analyzed gear ratio and center-of-gravity pairs, the third one (c),
the smallest time vs. the number of iterations, and the fourth one (d), the optimal values of the gear
ratio and center-of-gravity position at which the time is minimum. At the end of the run, the optimal
values are displayed in the MATLAB Command Window. In the case of the analyzed race car, the
optimal values of the gear ratio and the center-of-mass position are 4.036 and 0.407 m, respectively.

Regarding the second objective (drag race), for the optimization, first, it is necessary
to create a MATLAB function, which calculates the time required for the car to travel 100 m
at different gear ratio (i12) and the position of the center-of-gravity (lb) pairs. The program
code developed for this is shown in Figure 16.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 20

Figure 15. MATLAB windows for monitoring the parameter values in real-time. The first window
(a) shows the current values of the gear ratio and center-of-gravity position, the second one (b), the
calculated times for the previously analyzed gear ratio and center-of-gravity pairs, the third one (c),
the smallest time vs. the number of iterations, and the fourth one (d), the optimal values of the gear
ratio and center-of-gravity position at which the time is minimum. At the end of the run, the optimal
values are displayed in the MATLAB Command Window. In the case of the analyzed race car, the
optimal values of the gear ratio and the center-of-mass position are 4.036 and 0.407 m, respectively.

Regarding the second objective (drag race), for the optimization, first, it is necessary
to create a MATLAB function, which calculates the time required for the car to travel 100
m at different gear ratio (𝑖) and the position of the center-of-gravity (𝑙) pairs. The pro-
gram code developed for this is shown in Figure 16.

Figure 16. The MATLAB function that was developed to calculate the time required for the car to
travel 100 m at different gear ratio (𝑖12) and the position of the center-of-gravity (𝑙𝑏) pairs.

After that, the optimization program code is created (Figure 17), applying simulated
annealing, using the MATLAB function presented in Figure 16.

function [t_out] = GENERAL_func_dist100_i12_lb_eng(params)
%[t_out] = GENERAL_func_dist100_i12_lb(params)

assignin('base', 'i12', params(1)); % Change the value of i12 in the Workspace to the
% value of params(1) obtained in the parameter

assignin('base', 'lb', params(2)); % Change the value of lb in the Workspace to the
% value of params(2) obtained in the parameter

sim('GENERAL.slx'); % Run the simulation

ind_s=1;
while displacement(ind_s,2)<100 % Search for an index to reach a covered distance of 100 m

ind_s=ind_s+1;
end

t_out=displacement(ind_s,1);

end

Figure 16. The MATLAB function that was developed to calculate the time required for the car to
travel 100 m at different gear ratio (i12) and the position of the center-of-gravity (lb) pairs.

After that, the optimization program code is created (Figure 17), applying simulated
annealing, using the MATLAB function presented in Figure 16.

Appl. Sci. 2023, 13, 8897 14 of 20Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 20

Figure 17. The developed program code for the optimization applying simulated annealing in the
case of objective 2.

While the program is running, the actual values can be monitored in real-time, simi-
larly to the previous case. At the end of the run, the optimal values are also displayed in a
MATLAB Command Window. In the case of the analyzed race car, the minimum time is
9.74 s, and the optimal values of the gear ratio and the center-of-gravity position are 3.871
and 0.423 m, respectively.

After that, the simulation program was run on the [0;9.74] s time interval with the
optimal gear ratio and center-of-gravity position pairs obtained at objective 2 (3.871 and
0.423 m, respectively), as well as with two other, non-ideal variable pairs (3 and 0.423 m,
5 and 0.423 m). Figure 18 shows the covered distance–time functions of the vehicle apply-
ing the above input parameters.

Figure 18. The covered distance–time functions obtained by simulation applying the optimal (3.871)
and two other gear ratios (𝑙𝑏 = 0.423 m in each case).

Based on the figure above, it can be concluded that, when applying the optimal gear
ratio (3.871), the vehicle travels approximately 2.5 m more in 9.74 s than when applying
the other two gear ratios (3 and 5). From a different point of view, this means that using

% Opening the Simulink model:
open('GENERAL.slx');

% Initial input value tip:
x_init=[3.5 0.5];
% Lower limit:
x_l=[3 0.4];
% Upper limit:
x_u=[5 1.0];

% Run parameters (continuous plotting of partial results):
options = saoptimset('PlotFcns',{@saplotbestx,@saplotbestf,@saplotx,@saplotf});

% Run optimization:
[x_opt,fval,exitFlag,output] = simulannealbnd(@GENERAL_func_dist100_i12_lb_eng,x_init,x_l,x_u,options);

% Print results:
fprintf('Number of iterations : %d\n', output.iterations);
fprintf('Optimal ratio : : %d\n', x_opt(1));
fprintf('Optimal centre of gravity position : %d\n', x_opt(2));
fprintf('Best function value (shortest time) : %g\n', fval);

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9

co
ve

re
d

di
st

an
ce

 [m
]

time [s]

i=3

i=3.871

i=5

Figure 17. The developed program code for the optimization applying simulated annealing in the
case of objective 2.

While the program is running, the actual values can be monitored in real-time, similarly
to the previous case. At the end of the run, the optimal values are also displayed in a
MATLAB Command Window. In the case of the analyzed race car, the minimum time is
9.74 s, and the optimal values of the gear ratio and the center-of-gravity position are 3.871
and 0.423 m, respectively.

After that, the simulation program was run on the [0; 9.74] s time interval with the
optimal gear ratio and center-of-gravity position pairs obtained at objective 2 (3.871 and
0.423 m, respectively), as well as with two other, non-ideal variable pairs (3 and 0.423 m, 5
and 0.423 m). Figure 18 shows the covered distance–time functions of the vehicle applying
the above input parameters.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 20

Figure 17. The developed program code for the optimization applying simulated annealing in the
case of objective 2.

While the program is running, the actual values can be monitored in real-time, simi-
larly to the previous case. At the end of the run, the optimal values are also displayed in a
MATLAB Command Window. In the case of the analyzed race car, the minimum time is
9.74 s, and the optimal values of the gear ratio and the center-of-gravity position are 3.871
and 0.423 m, respectively.

After that, the simulation program was run on the [0;9.74] s time interval with the
optimal gear ratio and center-of-gravity position pairs obtained at objective 2 (3.871 and
0.423 m, respectively), as well as with two other, non-ideal variable pairs (3 and 0.423 m,
5 and 0.423 m). Figure 18 shows the covered distance–time functions of the vehicle apply-
ing the above input parameters.

Figure 18. The covered distance–time functions obtained by simulation applying the optimal (3.871)
and two other gear ratios (𝑙𝑏 = 0.423 m in each case).

Based on the figure above, it can be concluded that, when applying the optimal gear
ratio (3.871), the vehicle travels approximately 2.5 m more in 9.74 s than when applying
the other two gear ratios (3 and 5). From a different point of view, this means that using

% Opening the Simulink model:
open('GENERAL.slx');

% Initial input value tip:
x_init=[3.5 0.5];
% Lower limit:
x_l=[3 0.4];
% Upper limit:
x_u=[5 1.0];

% Run parameters (continuous plotting of partial results):
options = saoptimset('PlotFcns',{@saplotbestx,@saplotbestf,@saplotx,@saplotf});

% Run optimization:
[x_opt,fval,exitFlag,output] = simulannealbnd(@GENERAL_func_dist100_i12_lb_eng,x_init,x_l,x_u,options);

% Print results:
fprintf('Number of iterations : %d\n', output.iterations);
fprintf('Optimal ratio : : %d\n', x_opt(1));
fprintf('Optimal centre of gravity position : %d\n', x_opt(2));
fprintf('Best function value (shortest time) : %g\n', fval);

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9

co
ve

re
d

di
st

an
ce

 [m
]

time [s]

i=3

i=3.871

i=5

Figure 18. The covered distance–time functions obtained by simulation applying the optimal (3.871)
and two other gear ratios (lb = 0.423 m in each case).

Based on the figure above, it can be concluded that, when applying the optimal gear
ratio (3.871), the vehicle travels approximately 2.5 m more in 9.74 s than when applying the
other two gear ratios (3 and 5). From a different point of view, this means that using the

Appl. Sci. 2023, 13, 8897 15 of 20

optimal gear ratio, the distance of 100 m can be covered 0.3 s faster than using the other
two gear ratios.

Figure 19 shows the velocity–time functions of the vehicle applying the same input
parameters as in the case of Figure 18.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 20

the optimal gear ratio, the distance of 100 m can be covered 0.3 s faster than using the
other two gear ratios.

Figure 19 shows the velocity–time functions of the vehicle applying the same input
parameters as in the case of Figure 18.

Figure 19. The velocity–time functions obtained by simulation applying the optimal (3.871) and two
other gear ratios (𝑙𝑏 = 0.423 m in each case).

Despite the fact, that after 9.74 s the highest speed can be reached using gear ratio 𝑖
= 3, this will not be optimal for covering the 100 m distance in the shortest time.

Figure 20 shows the energy consumption of the race car as a function of time, apply-
ing the same gear ratios as in the case of Figures 18 and 19.

Figure 20. Energy-consumption–time functions obtained by simulation applying the optimal (3.871)
and two other gear ratios (𝑙𝑏 = 0.423 m in each case).

The energy consumed by the car was calculated as the definite integral from 0 to t of
the product of the battery�s terminal voltage and the intensity of the electric current flow-
ing through it.

Despite the fact, that in the first 9.74 s, the lowest energy consumption can be reached
using gear ratio 𝑖 = 5, this will not be optimal for covering the 100 m distance in the
shortest time.

0

2

4

6

8

10

12

14

16

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9

ve
lo

cit
y

[m
/s

]

ve
lo

cit
y

[k
m

/h
]

time [s]

i=3

i=3.871

i=5

0

20,000

40,000

60,000

80,000

100,000

120,000

0 1 2 3 4 5 6 7 8 9

co
ns

um
pt

io
n

[J]

time [s]

i=3

i=3.871

i=5

Figure 19. The velocity–time functions obtained by simulation applying the optimal (3.871) and two
other gear ratios (lb = 0.423 m in each case).

Despite the fact, that after 9.74 s the highest speed can be reached using gear ratio
i12 = 3, this will not be optimal for covering the 100 m distance in the shortest time.

Figure 20 shows the energy consumption of the race car as a function of time, applying
the same gear ratios as in the case of Figures 18 and 19.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 20

the optimal gear ratio, the distance of 100 m can be covered 0.3 s faster than using the
other two gear ratios.

Figure 19 shows the velocity–time functions of the vehicle applying the same input
parameters as in the case of Figure 18.

Figure 19. The velocity–time functions obtained by simulation applying the optimal (3.871) and two
other gear ratios (𝑙𝑏 = 0.423 m in each case).

Despite the fact, that after 9.74 s the highest speed can be reached using gear ratio 𝑖
= 3, this will not be optimal for covering the 100 m distance in the shortest time.

Figure 20 shows the energy consumption of the race car as a function of time, apply-
ing the same gear ratios as in the case of Figures 18 and 19.

Figure 20. Energy-consumption–time functions obtained by simulation applying the optimal (3.871)
and two other gear ratios (𝑙𝑏 = 0.423 m in each case).

The energy consumed by the car was calculated as the definite integral from 0 to t of
the product of the battery�s terminal voltage and the intensity of the electric current flow-
ing through it.

Despite the fact, that in the first 9.74 s, the lowest energy consumption can be reached
using gear ratio 𝑖 = 5, this will not be optimal for covering the 100 m distance in the
shortest time.

0

2

4

6

8

10

12

14

16

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9

ve
lo

cit
y

[m
/s

]

ve
lo

cit
y

[k
m

/h
]

time [s]

i=3

i=3.871

i=5

0

20,000

40,000

60,000

80,000

100,000

120,000

0 1 2 3 4 5 6 7 8 9

co
ns

um
pt

io
n

[J]

time [s]

i=3

i=3.871

i=5

Figure 20. Energy-consumption–time functions obtained by simulation applying the optimal (3.871)
and two other gear ratios (lb = 0.423 m in each case).

The energy consumed by the car was calculated as the definite integral from 0 to t of
the product of the battery’s terminal voltage and the intensity of the electric current flowing
through it.

Despite the fact, that in the first 9.74 s, the lowest energy consumption can be reached
using gear ratio i12 = 5, this will not be optimal for covering the 100 m distance in the
shortest time.

Depending on the type of competition (i.e., what the specific competition task is), the
optimal value for a given technical data may be different. As we have seen, depending on
whether the goal is the lowest possible energy consumption, the maximum speed achieved

Appl. Sci. 2023, 13, 8897 16 of 20

in a given time, or covering a given distance in the shortest time, the value of the optimal
gear ratio is different.

Finally, let us cite two examples. The first one is the “acceleration” race of the world-
famous Formula Student race, where the task for the car is to complete the 75 m track in the
shortest possible time from a standstill. The second is the international Shell-ECO Marathon
competition, where the task is to complete the given race distance with the lowest energy
consumption, under the condition that the average speed for the entire race distance must
be at least 25 km/h. Applying our method, we can find the optimal values of technical data
at which the best performance can be achieved regarding the above competition tasks.

5. Conclusions

In this publication, we have presented novel procedures for optimizing the technical
parameters of prototype race cars for specific competition tasks, using our vehicle dynamics
simulation program. Two types of optimization procedures were presented.

The first one is a graphical method, which can be used in case of one or two design
variables. Due to its simplicity, this method can be used effectively, and its accuracy,
in most cases, is adequate from an engineering point of view. Therefore, applying our
simulation program, and having at the maximum, two variables, the application of a
complex optimization procedure is usually not justified.

In this publication the graphical method was applied to an existing prototype race car
to optimize one and two of its parameters to a given competition tasks. These parameters
were the gear ratio in the chain drive and the horizontal distance of the center of gravity
from the back shaft.

The second procedure is an application of simulated annealing to optimize the same
parameters of the car for two different competition tasks. One of these tasks was the same
as the one in the graphical method. Applying simulated annealing, the optimal values
can be calculated directly, and it can be also applied for three or more variables, or when
greater accuracy is required.

If we want to achieve the same accuracy with the graphical method and the simulated
annealing, then in the case of the graphical method we have to run our simulation program
many more times than in the case of the simulated annealing. As a result, simulated
annealing is a more efficient method.

In case of adaptive simulated annealing—which is used by MATLAB—the algorithm
parameters, that control temperature scheduling and random step selection, are adjusted au-
tomatically by the program. Additionally, the convergence of the algorithm is theoretically
guaranteed starting from any initial parameter values. Thus, this is a robust optimization
algorithm. With the graphical method, from the point of view of robustness, it can be a
problem if we cannot read the exact location of the optimum after running the program
once, so the program must be run again with a smaller step size.

The obtained optimal values for the analyzed two parameters were the same, with a
good approximation when applying the graphical method and simulated annealing. The
simulation results showed, that using the optimal gear ratio (3.871), the distance of 100 m
can be covered 0.3 s faster than using other non-ideal gear ratios (3 and 5).

In general, it can be concluded that our vehicle dynamics simulation program, supple-
mented with the described optimization procedures, can be effectively used to optimize
the technical data of an existing or designed prototype race car for various racing tasks.
Knowing the optimal technical parameters significantly increases the possibility that a
given prototype race car successfully competes in domestic or international competitions.
Additionally, there is no need to manufacture many unnecessary machine parts and test
them under real conditions. This saves us a lot of time and significantly reduces our costs.

In the future, in the case of race cars produced at the Faculty of Engineering of the
University of Debrecen, the dynamic modelling, simulation, and determination of the
optimal technical parameters of a given vehicle concept will be a natural part of the design

Appl. Sci. 2023, 13, 8897 17 of 20

process. We hope that this will greatly contribute to competing successfully, and thus to the
success of the Faculty of Engineering of the University of Debrecen.

Author Contributions: Conceptualization, S.H. and G.Á.S.; Methodology, A.S., S.H. and G.Á.S.;
Software, A.S. and S.H.; Investigation, G.Á.S.; Data curation, A.S.; Writing—original draft, A.S. and
G.Á.S.; Writing—review & editing, S.H.; Visualization, A.S.; Supervision, G.Á.S. All authors have
read and agreed to the published version of the manuscript.

Funding: Funding is provided by the University of Debrecen.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: Supported by the ÚNKP-23-4 New National Excellence Program of the Min-
istry for Culture and Innovation from the source of the National Research, Development and
Innovation Fund.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

Input parameters and characteristics of the simulation program
Notation Description
Mbrake f , Mbrakeb(Nm) Braking torques on the front and rear (back) wheels.
η Efficiency of the chain drive.
z1, z2 Number of teeth on the driver and driven sprockets.
C Drag coefficient of the vehicle.
A Maximum normal surface area of the vehicle.
l (m) Distance between the front and rear (back) shafts in the tangential direction.
l f , lb(m) Distance of the center of mass of the vehicle from the front and rear (back) shaft in the tangential direction.
w (m) Distance of the center of mass of the vehicle from the front and rear (back) shafts in the normal direction.
m0 (kg) Mass of the vehicle body including the driver
m f , mb(kg) Mass of the front and rear (back) wheels with the rotating machine parts connected to them.
J f , Jb

(
kg·m2) Moment of inertia of the front and rear (back) wheels with the rotating machine parts connected to them.

µroll f , µrollb Coefficients of rolling resistance for the front and rear (back) wheels.
R (m) Effective wheel radius.
Rbatt (Ω) Internal electric resistance of the battery.
Vbatt(V) Electromotive force of the battery.
Rwire (Ω) Resultant electric resistance of the wires connecting the battery to the motor.
Rs, Rr (Ω) Electric resistances of the rotor and stator windings.
I (A) Intensity of the current flowing through the motor.
Ls (H) Self-dynamic inductance of the stator winding.
Lr (H] Self-dynamic inductance of the rotor winding.
Lsr (H) Mutual dynamic inductance.
Jr
(
kg·m2) Moment of inertia of the rotor of the motor.

Mres (Nm) Sum of the bearing and brush friction torques on the rotor of the motor.
Output vehicle dynamic functions generated by the simulation program
Notation Description
as(t), vs(t), s(t) Acceleration, velocity and covered distance of the vehicle.
ω f (t), ωb(t), ε f (t), εb(t) Angular velocity and acceleration of the front and rear (back) wheels.
Ft f (t), Ftb(t), Fn f (t), Fnb(t) Forces that the road exerts on the front and rear (back) tires in the tangential and normal direction.
Tf (t), Tb(t), N f (t), Nb(t) Front and rear (back) shafts’ loading in the tangential and normal direction.
Mroll f (t), Mrollb(t) Rolling resistance torques.
slip(t) Tire slip.
Fair(t) Air-resistance force.
I(t) Intensity of the current flowing through the motor.
Mmotor(t), ωmotor(t) Torque and angular speed of the motor.
Econs(t) Vehicle energy consumption.

Appl. Sci. 2023, 13, 8897 18 of 20

Other notations
Notation Description
Mwheel (Nm) Magnitude of the torque exerted by the chain drive on the back shaft.
Mmotor (Nm) Magnitude of the torque exerted by the stator of the motor on its rotor.
Mroll f , Mrollb (Nm) Magnitude of the rolling resistance torque on the front and rear (back) wheels.
Fair (N) Resultant of air resistance force.
Ft f , Ftb (N) Magnitude of the force exerted by the road on the front and rear (back) wheels in the tangential direction.
Fn f , Fnb [N] Magnitude of the force exerted by the road on the front and rear (back) wheels in the normal direction.
T f , Tb (N) Load on the front and rear (back) shaft in the tangential direction.
N f , Nb (N) Load on the front and rear (back) shaft in the normal direction.
S f , Sb, S (m) Center of gravity of the front and rear (back) wheels and the whole vehicle.
i12 Gear ratio in the chain drive.
Mload(Nm) Loading torque on the rotor of the motor.

References
1. Gy, J. A Pneumobil Versenyek és az Oktatás—A Felkészülés Tanári Szemmel, Debreceni Műszaki Közlemények; University of Debrecen:

Debrecen, Hungary, 2011; Volume 10, pp. 35–40.
2. Gábora, A.; Sziki, G.Á.; Szántó, A.; Varga, T.A.; Magyari, A.; Balázs, D. Prototype battery electric car development for Shell-ECO-

Marathon® competition. In Proceedings of the XXII International Conference of Young Engineers, Kolozsvár, Romania, 23 March
2017; pp. 167–170.

3. Szántó, A.; Hajdu, S.; Sziki, G. Dynamic Simulation of a Prototype Race Car Driven by Series Wound DC Motor in Matlab-
Simulink. Acta Polytech. Hung. 2020, 17, 103–122. [CrossRef]

4. Pálinkás, S. Influence of Speed to Rolling Resistance Factor in Case of Autobus. In Vehicle and Automotive Engineering 4: Select
Proceedings of the 4th VAE2022, Miskolc, Hungary; Springer International Publishing: Cham, Switzerland, 2011; pp. 157–164.

5. Pálinkás, S.; Tóth, Á. Development of a measurement method to determine rolling resistance. IOP Conf. Series Mater. Sci. Eng.
2022, 1237, 012013. [CrossRef]

6. Szíki, G.; Szántó, A.; Mankovits, T. Dynamic modelling and simulation of a prototype race car in MATLAB/Simulink applying
different types of electric motors. Int. Rev. Appl. Sci. Eng. 2021, 12, 57–63. [CrossRef]

7. Szántó, A.; Szántó, A.; Sziki, G.Á. Review of the modelling methods of series wound DC motors. Műszaki Tudományos Közlemények
2020, 13, 166–169. [CrossRef]

8. Sziki, G.; Sarvajcz, K.; Kiss, J.; Gál, T.; Szántó, A.; Gábora, A.; Husi, G. Experimental investigation of a series wound DC motor for
modeling purpose in electric vehicles and mechatronics systems. Measurement 2017, 109, 111–118. [CrossRef]

9. Szántó, A.; Kiss, J.; Mankovits, T.; Szíki, G. Dynamic Test Measurements and Simulation on a Series Wound DC Motor. Appl. Sci.
2021, 11, 4542. [CrossRef]

10. Szántó, A.; Ádámkó, É.; Juhász, G.; Sziki, G.Á. Simultaneous measurement of the moment of inertia and braking torque of electric
motors applying additional inertia. Measurement 2022, 204, 112135. [CrossRef]

11. Sziki, G.; Szántó, A.; Kiss, J.; Juhász, G.; Ádámkó, É. Measurement System for the Experimental Study and Testing of Electric
Motors at the Faculty of Engineering, University of Debrecen. Appl. Sci. 2022, 12, 10095. [CrossRef]

12. Rao, S.S. Engineering Optimization Theory and Practice; John Wiley & Sons Inc.: London, UK, 2019; pp. 694–702.
13. Kirkpatrick, S.; Gelatt, C.D., Jr.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680.
14. Kirkpatrick, S. Optimization by simulated annealing: Quantitative studies. J. Stat. Phys. 1984, 34, 975–986. [CrossRef]
15. Faber, R.; Jockenhövel, T.; Tsatsaronis, G. Dynamic optimization with simulated annealing. Comput. Chem. Eng. 2005, 29, 273–290.

[CrossRef]
16. Ingber, L. Adaptive simulated annealing (ASA): Lessons learned. Control. Cybern. 1996, 25, 33–54.
17. Kapusi, T.P.; Erdei, T.I.; Husi, G.; Hajdu, A. Application of Deep Learning in the Deployment of an Industrial SCARA Machine for

Real-Time Object Detection. Robotics 2022, 11, 69. [CrossRef]
18. Erdei, T.I.; Krakó, R.; Husi, G. Design of a Digital Twin Training Centre for an Industrial Robot Arm. Appl. Sci. 2022, 12, 8862.

[CrossRef]
19. Erdei, T.I.; Husi, G. Singularity measurement in the Cyber-physical and intelligent robot systems laboratory. Int. Rev. Appl. Sci.

Eng. 2020, 11, 82–87. [CrossRef]
20. Erdei, T.; Molnár, Z.; Obinna, N.C.; Husi, G. A Novel Design of an Augmented Reality Based Navigation System & its Industrial

Applications. Acta IMEKO 2018, 7, 57–62. [CrossRef]
21. Adamko, E.; Szemes, P.T.; Niitsuma, M. Investigation on the heating system of the mechatronics research center building using

olap technology. Environ. Eng. Manag. J. 2014, 13, 2733–2742. [CrossRef]
22. Ádámkó, É.; Szemes, P.T. Evaluation of consumer Behavior in the building mechatronics research centre. Recent Innov. Mechatron.

Recent Innov. Mechatron. (RIiM) Int. J. Mechatron. Sci. 2014, 1–5.
23. Li, P.; Löwe, K.; Arellano-Garcia, H.; Wozny, G. Integration of simulated annealing to a simulation tool for dynamic optimization

of chemical processes. Chem. Eng. Process. 2000, 39, 357–363. [CrossRef]

https://doi.org/10.12700/APH.17.4.2020.4.6
https://doi.org/10.1088/1757-899x/1237/1/012013
https://doi.org/10.1556/1848.2020.00145
https://doi.org/10.33894/mtk-2020.13.31
https://doi.org/10.1016/j.measurement.2017.05.055
https://doi.org/10.3390/app11104542
https://doi.org/10.1016/j.measurement.2022.112135
https://doi.org/10.3390/app121910095
https://doi.org/10.1007/BF01009452
https://doi.org/10.1016/j.compchemeng.2004.08.020
https://doi.org/10.3390/robotics11040069
https://doi.org/10.3390/app12178862
https://doi.org/10.1556/1848.2020.20001
https://doi.org/10.21014/acta_imeko.v7i1.528
https://doi.org/10.30638/eemj.2014.304
https://doi.org/10.1016/S0255-2701(99)00100-2

Appl. Sci. 2023, 13, 8897 19 of 20

24. Beltran, A.; Rumbo, J.; Azcaray, H.; Santiago, K.; Calixto, M.; Sarmiento, E. Simulation and control of the speed and electromagnetic
torque of a three-phase induction motor: An electric vehicles approach. Iberoam. Mag. Auto-Matic Ind. Inform. 2019, 16, 308–320.

25. Nguyen, T.T.V.; Vo, T.M.N. Centrifugal pump design: An optimization. Eurasia Proc. Sci. Technol. Eng. Math. 2022, 17, 136–151.
[CrossRef]

26. Huynh, N.-T.; Nguyen, T.V.T.; Tam, N.T.; Nguyen, Q.-M. Optimizing Magnification Ratio for the Flexible Hinge Displacement
Amplifier Mechanism Design. In Proceedings of the 2nd Annual International Conference on Material, Machines and Methods
for Sustainable Development (MMMS2020), Nha Trang, Vietnam, 12–15 November 2020; pp. 769–778. [CrossRef]

27. Wang, C.-N.; Yang, F.-C.; Vo, N.T.M.; Nguyen, V.T.T. Enhancing Lithium-Ion Battery Manufacturing Efficiency: A Comparative
Analysis Using DEA Malmquist and Epsilon-Based Measures. Batteries 2023, 9, 317. [CrossRef]

28. Zadeh, L.A. Fuzzy logic. Computer 1988, 21, 83–93. [CrossRef]
29. Adeli, H.; Sarma, K.C. Cost Optimization of Structures: Fuzzy Logic, Genetic Algorithms, and Parallel Computing; John Wiley & Sons:

Hoboken, NJ, USA, 2006.
30. Kim, J.; Kasabov, N. HyFIS: Adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems. Neural

Netw. 1999, 12, 1301–1319. [CrossRef] [PubMed]
31. Elbaz, K.; Shen, S.-L.; Zhou, A.; Yuan, D.-J.; Xu, Y.-S. Optimization of EPB Shield Performance with Adaptive Neuro-Fuzzy

Inference System and Genetic Algorithm. Appl. Sci. 2019, 9, 780. [CrossRef]
32. Karna, S.K.; Sahai, R. An overview on Taguchi method. Int. J. Eng. Math. Sci. 2012, 1, 11–18.
33. Krishankant, J.T.; Bector, M.; Kumar, R. Application of Taguchi method for optimizing turning process by the effects of machining

parameters. Int. J. Eng. Adv. Technol. 2012, 2, 263–274.
34. Julong, D. Introduction to grey system theory. J. Grey Syst. 1989, 1, 1–24.
35. Li, Y.X.; Yang, J.G.; Gelvis, T. Optimization of measuring points for machine tool thermal error based on grey system theory. Int. J.

Adv. Manuf. Technol. 2006, 35, 745–750. [CrossRef]
36. Rao, R.V.; Savsani, V.J.; Vakharia, D.P. Teaching–learning-based optimization: A novel method for constrained mechanical design

optimization problems. Comput. Aided Des. 2011, 43, 303–315. [CrossRef]
37. Rao, R.V. Teaching-Learning-Based Optimization Algorithm; Springer International Publishing: Berlin/Heidelberg, Germany, 2016;

pp. 9–39.
38. Sivanandam, S.; Deepa, S. Genetic Algorithm Optimization Problems. In Introduction to Genetic Algorithms; Springer:

Berlin/Heidelberg, Germany, 2007; pp. 165–209. [CrossRef]
39. Wang, D.; Tan, D.; Liu, L. Particle swarm optimization algorithm: An overview. Soft Comput. 2018, 22, 387–408. [CrossRef]
40. Glover, F.; Kelly, J.P.; Laguna, M. Genetic algorithms and tabu search: Hybrids for optimization. Comput. Oper. Res. 1995, 22,

111–134. [CrossRef]
41. Miranda, M.H.; Silva, F.L.; Lourenço, M.A.; Eckert, J.J.; Silva, L.C. Vehicle drivetrain and fuzzy controller opti-mization using a

planar dynamics simulation based on a real-world driving cycle. Energy 2022, 257, 124769. [CrossRef]
42. Eckert, J.J.; Santiciolli, F.M.; Silva, L.C.; Dedini, F.G. Vehicle drivetrain design multi-objective optimization. Mech. Mach. Theory

2021, 156, 104123. [CrossRef]
43. Eckert, J.J.; Silva, L.C.; Costa, E.S.; Santiciolli, F.M.; Dedini, F.G.; Corrêa, F.C. Electric vehicle drivetrain opti-misation. IET Electr.

Syst. Transp. 2017, 7, 32–40.
44. Salvan, L.; Brüll, M.; Hollstein, A.; Medina, R.; Wilkins, S.; Avramis, N. Electric Drivetrain Optimization for 48V Urban Vehicles.

In Proceedings of the 35th Electric Vehicle Symposium (EVS35), Sacramento, CA, USA, 11–14 June 2022; pp. 1–13.
45. Desai, C. Design and Optimization of Hybrid Electric Vehicle Drivetrain and Control Strategy Parameters Using Evolutionary

Algorithms. Ph.D. Thesis, Concordia University, Mequon, WI, USA, 2010.
46. Lu, M.; Domingues-Olavarría, G.; Márquez-Fernández, F.J.; Fyhr, P.; Alaküla, M. Electric Drivetrain Optimization for a Commercial

Fleet with Different Degrees of Electrical Machine Commonality. Energies 2021, 14, 2989. [CrossRef]
47. Tran, M.-K.; Akinsanya, M.; Panchal, S.; Fraser, R.; Fowler, M. Design of a Hybrid Electric Vehicle Powertrain for Performance

Optimization Considering Various Powertrain Components and Configurations. Vehicles 2020, 3, 20–32. [CrossRef]
48. Zhang, P.; Chen, Y.; Lin, M.; Ma, B. Optimum Matching of Electric Vehicle Powertrain. Energy Procedia 2016, 88, 894–900.

[CrossRef]
49. Li, C.; Cong, Z.; Zhang, B.; Jing, H. A Simulated Annealing algorithm based optimization for vehicle Powertrain Mounting

System. In Proceedings of the 2015 5th International Conference on Information Science and Technology (ICIST), Changsha,
China, 24–26 April 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 10–13. [CrossRef]

50. Genc, M.O.; Kaya, N. Vibration Damping Optimization using Simulated Annealing Algorithm for Vehicle Powertrain System.
Eng. Technol. Appl. Sci. Res. 2020, 10, 5164–5167. [CrossRef]

51. Ahssan, M.R.; Ektesabi, M.; Gorji, S. Evaluation of a Three-Parameter Gearshift Strategy for a Two-Speed Transmission System in
Electric Vehicles. Energies 2023, 16, 2496.

52. Dokeroglu, T.; Sevinc, E.; Kucukyilmaz, T.; Cosar, A. A survey on new generation metaheuristic algorithms. Comput. Ind. Eng.
2019, 137, 106040. [CrossRef]

https://doi.org/10.55549/epstem.1176074
https://doi.org/10.1007/978-3-030-69610-8_102
https://doi.org/10.3390/batteries9060317
https://doi.org/10.1109/2.53
https://doi.org/10.1016/s0893-6080(99)00067-2
https://www.ncbi.nlm.nih.gov/pubmed/12662634
https://doi.org/10.3390/app9040780
https://doi.org/10.1007/s00170-006-0751-8
https://doi.org/10.1016/j.cad.2010.12.015
https://doi.org/10.1007/978-3-540-73190-0_7
https://doi.org/10.1007/s00500-016-2474-6
https://doi.org/10.1016/0305-0548(93)E0023-M
https://doi.org/10.1016/j.energy.2022.124769
https://doi.org/10.1016/j.mechmachtheory.2020.104123
https://doi.org/10.3390/en14112989
https://doi.org/10.3390/vehicles3010002
https://doi.org/10.1016/j.egypro.2016.06.107
https://doi.org/10.1109/icist.2015.7288911
https://doi.org/10.48084/etasr.3242
https://doi.org/10.1016/j.cie.2019.106040

Appl. Sci. 2023, 13, 8897 20 of 20

53. Feehery, W.F. Dynamic Optimization with Path Constraints. Ph.D. Thesis, Masachusetts Institute of Technology, Cambridge, MA,
USA, 1998.

54. Corana, A.; Marchesi, M.; Martini, C.; Ridella, S. Minimizing multimodal functions of continuous variables with the “simulated
annealing” algorithm. ACM Trans. Math. Softw. 1987, 13, 262–280. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1145/29380.29864

	Introduction
	Literature Review
	Brief Description of the Simulation Program
	Description of the Optimization Methods
	Approximation of the Optimal Technical Data Using a “Graphical Method”
	Determination of the Optimal Technical Data Using Simulated Annealing

	Conclusions
	References

