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Abstract: The construction industry has witnessed a substantial increase in the demand for eco-
friendly and sustainable materials. Eco-friendly concrete containing Ground Granulated Blast Fur-
nace Slag (GGBFS) and Recycled Coarse Aggregate (RCA) is such a material, which can contribute to
a reduction in waste and promote environmental sustainability. Compressive strength is a crucial
parameter in evaluating the performance of concrete. However, predicting the compressive strength
of concrete containing GGBFS and RCA can be challenging. This study presents a novel XGBoost
(eXtreme Gradient Boosting) prediction model for the compressive strength of eco-friendly concrete
containing GGBFS and RCA, optimized using Bayesian optimization (BO). The model was trained
on a comprehensive dataset consisting of several mix design parameters. The performance of the
optimized XGBoost model was assessed using multiple evaluation metrics, including Root Mean
Squared Error (RMSE), Mean Absolute Error (MAE), and coefficient of determination (R2). These
metrics were calculated for both training and testing datasets to evaluate the model’s accuracy and
generalization capabilities. The results demonstrated that the optimized XGBoost model outper-
formed other state-of-the-art machine learning models, such as Support Vector Regression (SVR),
and K-nearest neighbors algorithm (KNN), in predicting the compressive strength of eco-friendly
concrete containing GGBFS and RCA. An analysis using Partial Dependence Plots (PDP) was carried
out to discern the influence of distinct input features on the compressive strength prediction. This
PDP analysis highlighted the water-to-binder ratio, the age of the concrete, and the percentage of
GGBFS used, as significant factors impacting the compressive strength of the eco-friendly concrete.

Keywords: machine learning; eco-friendly concrete; compressive strength; XGBoost; Bayesian optimization

1. Introduction

Nowadays, concrete is widely utilized in construction due to its durability, strength,
and low maintenance cost. However, its production process consumes significant amounts
of energy and relies heavily on non-sustainable raw material extraction, leading to con-
siderable CO2 emissions and depleting our natural resources. In addition, the disposal of
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construction and demolition waste presents a significant challenge, contributing to landfills
and often leading to improper disposal. In this perspective, the utilization of Ground
Granulated Blast Furnace Slag (GGBFS), a byproduct of the iron and steel industry, and
Recycled Coarse Aggregate (RCA), derived from constructing and demolition wastes, can
be reused. Not only does this approach promote recycling, it also helps minimize the waste
disposal crisis and reduces the demand for virgin materials.

Some researchers have found that RCA concrete does not perform as well mechani-
cally or in terms of durability compared to Natural Aggregate Concrete (NAC) [1]. This
is because RCA concrete tends to possess weaker properties, often due to the presence of
residual mortar and a weaker Interfacial Transition Zone (ITZ) between the aggregate and
the cement paste [2]. However, these weaknesses can be addressed by using supplementary
cement-based materials. These materials can improve the properties of the RCA concrete,
thereby enhancing the performance of the RCA concrete and making it more comparable to
the performance of NAC. GGBFS is a valuable by-product of the iron and steel industry, no-
table for its latent hydraulic properties. These characteristics, when activated by hydration
in the presence of lime, contribute significantly to the strength and hardened properties of
concrete, making it more durable and resistant to various environmental conditions [3].

Extensive research underscores the beneficial impacts of incorporating GGBFS into
RCA concrete. Those studies show the potential of waste materials in enhancing the
environmental sustainability of concrete production while significantly reducing cement
consumption. One study [4] found that using RCA in concrete decreased strength; however,
strength can be improved when partially replaced with 30% Pulverized Fuel Ash (PFA)
and 65% GGBFS. This composition also improved resistance to chloride ion permeabil-
ity and reduced steel corrosion rates. A separate study [5] showed that incorporation of
GGBFS in RCA concrete decreases the compressive strength but significantly enhances
the durability, making it a valuable additive for long-term resilience of concrete structures.
Additional research by Çakır [6] showed that GGBFS improves tensile splitting strength
and bond strength in RCA concrete, particularly when used at a 60% replacement level.
However, it contributes to lower density and increased water absorption. An investigation
by Majhi et al. [7] showed that concrete made with 50% RCA and 40% GGBFS improves
workability, conserves materials, and achieves comparable performance to conventional
concrete, making it a sustainable choice. Another study [8] revealed enhanced structural
performance in reinforced concrete beams with high volumes of GGBFS, RCA, lime, and
superplasticizer. These elements significantly improve compressive and shear strength,
shifting failure modes from brittle to ductile, and enhancing sustainability in the con-
struction industry. Lastly, Response Surface Methodology (RSM) was demonstrated to
accurately forecast the durability and compressive strength of RCA concrete enhanced
with GGBFS and Silica Fume (SF) [9]. Two optimized concrete mix designs were achieved:
one maximizing mechanical strength and durability, the other prioritizing environmental
sustainability through maximal use of GGBFS, SF, and RCA.

In this work, we introduce a novel approach that combines powerful machine learning
techniques to investigate the compressive strength—a critical characteristic—of eco-friendly
concrete containing GGBFS and RCA. The XGBoost algorithm was employed and further
enhanced to increase its predictive accuracy by implementing a unique hyperparameter
tuning procedure, the Bayesian Optimization. The applied innovative methodology is
motivated by the goal of improving the design and utilization of sustainable concrete
materials, thereby contributing significantly towards a more environmentally conscious
construction industry.

2. Related Works

In the exploration and application of machine learning methods in concrete science
and technology, researchers have developed innovative strategies for optimizing and im-
proving RCA concrete. One study utilized machine learning models to predict and optimize
RCA concrete compressive strength, using a large experimental dataset. Gradient Boosting
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Regression Trees (GBRT) and Deep Learning had superior predictive performance. GBRT,
coupled with Particle Swarm Optimization (PSO), proposed economically and environmen-
tally optimized mixture designs [10]. Another study used Gene Expression Programming
(GEP) and Artificial Neural Network (ANN)-supervised machine learning to predict the
compressive strength of RCA concrete. GEP showed better performance than ANN [11].
One study used hybrid machine learning algorithms to predict the compressive strength of
RCA concrete. The interval type-2 fuzzy inference system (IT2FIS) outperformed type-1,
with concrete age, natural fine aggregate ratio, and superplasticizer-to-binder ratio im-
pacting positively on strength [12]. Also, a study employed ensemble machine learning
methods to predict sulfate resistance in RCA concrete. Extreme gradient boosting per-
formed the best, indicating that RCA concrete sulfate resistance is most affected by dry-state
environmental conditions. A graphical user interface was also developed for practical
applications [13]. Furthermore, a Back Propagation Neural Network (BPNN) model demon-
strated superior performance in predicting rubber-modified recycled aggregate concrete’s
properties, achieving correlation coefficients of 0.9721 for compressive strength and 0.9441
for peak strain [14]. Another study utilized machine learning techniques to predict 28-day
concrete compressive strength in self-compacting concrete (SCC) using recycled aggregates.
The best-performing models, based on R2 values and Mean Squared Error (MSE), are
Category Boosting, K-Nearest Neighbors, and Extra Trees [15]. Last but not least, an inter-
esting study used machine learning to explore the relationship between recycled aggregate
properties, mix proportion, and compressive strength of recycled aggregate concrete. Two
optimized hybrid models (PSO-SVR and GWO-SVR) outperformed standard algorithms
(ANN and SVR), but GWO-SVR risked overfitting. Cement content, water content, natural
fine aggregates, and water absorption were identified as significant influencing factors [16].

In recent research efforts to predict the compressive strength of concrete made with
GGBFS, machine learning has been a fundamental tool. One study used a range of machine
learning techniques and a substantial dataset made up of 625 experimental outcomes [17].
The accuracy of these models was thoroughly assessed using performance indicators and
sensitivity analyses. The end result of this thorough analysis was the formulation of
equations intended to assist in estimating easily the strength. Other research successfully
predicted the compressive strength of environmentally friendly alkaline-activated slag
concrete (AASC) using ANN, with the most accurate model having an R2 of 0.9817 [18].
This promotes sustainability and stimulates the usage of AASC in the construction indus-
try. In a separate investigation, the predictive capabilities of a regularized multivariate
polynomial regression (MPR) model was harnessed to estimate the compressive strength
of GGBFS–metakaolin-based geopolymer pastes [19]. Providing robust estimations, the
model exhibited commendable performance with R2 values of 0.946 and 0.927 for the 7-day
and 28-day strengths, respectively, thereby confirming its reliability in this specific context.
Lastly, the Random Forest (RF) model was highly accurate in predicting the compressive
strength of concrete with GGBFS, with a correlation coefficient of 0.9729, a Root Mean
Squared Error (RMSE) of 4.9585, and a Mean Absolute Error (MAE) of 3.9423 on the testing
dataset [20].

Existing research exploring the combined effect of using GGBFS and RCA on the
primary properties of concrete is limited. To begin with, one study used machine learning
to accurately predict concrete’s compressive strength utilizing a dataset of 125 different
materials, including waste by-products for eco-friendly concrete. The most efficient en-
semble models were LRF and CNN-LSTM [21]. Building on this, another study aimed to
develop a Multivariate Polynomial Regression (MPR) model for predicting the compressive
strength of eco-friendly concrete containing RCA and GGBFS. The MPR outperformed
linear regression and SVM models in accuracy [22]. Continuing this trend of advancement,
a subsequent study created a Multivariate Adaptive Regression Splines (MARS) machine
learning model to predict the compressive strength of eco-friendly concrete, which outper-
formed SVM and RF models according to R2 and RMSE metrics [23]. Further enhancing the
field, a GBRT model integrated with grid search cross-validation was utilized to precisely
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predict the compressive strength of eco-friendly concrete. Remarkably, this Grid Search
Cross-Validation GBRT (GSC-GBRT) model surpassed the default GBRT model, providing
improved accuracy metrics [24]. More recently, a study developed an ANN model to
predict the mechanical and durability properties of concrete incorporating waste materials.
Experimental results showed that while increased recycled aggregate deteriorates concrete
properties, adding GGBFS can counteract these negative effects, improving both mechanical
characteristics and long-term durability [25].

3. Research Significance

This study focuses on enhancing sustainable construction by accurately predicting the
compressive strength of eco-friendly concrete. To achieve this, it employs machine learning
algorithms, specifically eXtreme Gradient Boosting (XGBoost), known for its superior
performance in regression and classification tasks [26–31]. It utilizes multiple decision
trees to uncover complex non-linear relationships within the data, thereby making accurate
strength predictions.

A significant aspect of machine learning is the configuration of hyperparameters,
which greatly affects the model’s performance and the precision of predictions. Hence, op-
timizing these parameters is crucial. Traditional methods of hyperparameter optimization
such as brute force search or random search are often inefficient and may lead to suboptimal
results. Conversely, Bayesian optimization (BO) offers a structured and efficient approach,
using probability to direct the search towards optimal hyperparameters. This ensures not
only enhanced predictive capabilities but also a more proficient optimization process.

Additionally, the study emphasizes the importance of comparing the performance
of XGBoost with other machine learning models, like K-Nearest Neighbors (KNN) and
Support Vector Machine (SVM). Such a comparative analysis provides insights into the
strengths and weaknesses of each model, assisting in choosing the best model for the task.

Ultimately, by using advanced machine learning techniques and robust optimization
methods, the research aims to improve the field of sustainable construction through the
accurate prediction of the compressive strength of eco-friendly concrete, leading to cost-
efficient and effective sustainable building practices.

4. Materials and Methods
4.1. XGBoost Algorithm

Chen and Guestrin [32] introduced XGBoost, a robust machine learning framework
that leverages tree boosting. Its scalability has found diverse applications across numer-
ous engineering domains, delivering superior performance. This can be attributed to its
capacity for efficient tree pruning, regularization, and the ability to process tasks in parallel.
Gradient boosting, serving as the foundational model for XGBoost, iteratively amalgamates
the estimations of several “weak” learners to create a singular “strong” learner. XGBoost
employs a unique method to optimize the loss function by leveraging residuals for calibrat-
ing the previous prediction at each iteration [33,34]. This calibration process is an integral
part of enhancing the accuracy of the model. Moreover, to curtail the risk of overfitting—a
common pitfall in machine learning models—XGBoost ingeniously integrates regulariza-
tion directly into its objective function, which can be described by Equation (1). This
inclusion of regularization serves as a penalty term, mitigating model complexity, thereby
enhancing the generalizability and robustness of the model.

J(Θ) = L(Θ) + Ω(Θ) (1)

In Equation (1), Θ signifies the parameters that the model learns from the provided
dataset. ‘Ω’ is the regularization term, a strategy that helps to control the model’s com-
plexity to prevent it from overfitting to the training data. ‘L’ symbolizes the training loss
functions, including square loss and logistic loss, which serve to assess the fit of the model
to the training data. Equation (2) serves as the model’s predictive function; according to
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decision tree theory, the model’s output ŷi is derived from either a voting system or the
average from a set ‘F’ consisting of ‘k’ trees.

ŷi =
k

∑
i=1

fk(xi), f k ∈ F (2)

The objective function at the t-th iteration can be detailed using a more particular
mathematical formulation, as expressed by:

J(t) =
n

∑
i=1

L(yi, ŷi) +
t

∑
k=1

Ω( fk) (3)

In this case, n signifies the quantity of predictions, and ŷ(t)i can be characterized as:

ŷ(t) i =
t

∑
k=1

fk(xi) = ŷi
(t−1) + ft(xi) (4)

Chen and Guestrin [32] demonstrated that the regularization term Ω( fk) for the
decision tree is expressed as follows:

Ω( fk) = γT + 0.5λ
T

∑
j=1

ω2
j (5)

‘λ’ modulates the penalty factor, while ‘T’ denotes the number of leaf nodes in the
Decision Tree (DT). The complexity of each of these leaf nodes is symbolized by ‘γ’, and ‘ω’
serves as a vector housing the scores of each leaf node. The Loss Function (LOF) in XGBoost
then implements a second-order Taylor expansion, diverging from the typical first-order
approach used in general gradient boosting, as discussed by Chen and Guestrin [32] and
Xia et al. [35]. If we assume the MSE to be the LOF, the objective function can be derived
through the equation provided below:

J(t) ≈
n

∑
i=1

[
giωq(xξ )

+
1
2

(
hiω

2
q(xi)

)]
+ γT +

1
2

λ
T

∑
j=1

ω2
j (6)

In Equation (6), gi and hi stand for the first and second derivatives of the MSE loss
function, respectively. Meanwhile, the function q is responsible for mapping each data
point to its corresponding leaf.

Evidently, the LOF represented by Equation (7) is the aggregate of loss values for
each individual data sample. Given that each data sample aligns with a single leaf node,
the sum of the loss values across all leaf nodes can likewise express the LOF. This can be
denoted as follows:

J(t) ≈ γT +
T

∑
j=1

∑
i∈ij

gi

ωj + 0.5

∑
i∈ij

hi + λ

ω2
j

 (7)

Accordingly, Gj and Hj are defined as:

Gj = ∑
i∈ij

gi, Hj = ∑
i∈ij

hi (8)

In essence, the process of optimizing the objective function can be portrayed as the
act of seeking the lowest point in a quadratic function. Essentially, the objective function
evaluates the alteration in the model’s performance after a specific node in the DT is split.
If this split enhances the model’s performance compared to its previous state, it will be
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employed; otherwise, the split will be discontinued. Furthermore, regularization plays a
significant role in warding off overfitting.

4.2. Bayesian Optimization

Bayesian Optimization (BO) is a strategy utilized in machine learning for hyperpa-
rameter tuning. It outperforms random search techniques with fewer iterations by finding
the minimum value of an objective function. This is accomplished by creating a surrogate
function, a less computationally intensive probabilistic model derived from past evalua-
tions of the objective function. The surrogate guides the selection of the next input values
to evaluate, optimizing overall performance.

The Gaussian Process (GP), grounded in the Bayesian approach, optimizes its oper-
ation by leveraging existing data, exhibiting robust resilience in handling diverse data
scenarios. The algorithm primarily relies on input (known information) and output data
(predicted information). It aims to fit the posterior distribution of the objective function,
continually refined using an increasing number of data points. A significant part of GP’s
operation involves optimizing model hyperparameters, which are predetermined before
the learning process and have a profound impact on the outcome. The process begins with
an initial ‘prior’ distribution, which is updated each time a new sample point is evaluated
on the target function. In the final phase, the algorithm analyzes the global posterior
distribution to determine the most probable output value. The simplicity of calculating
the estimated distribution of the target underpins the widespread usage of GP in Bayesian
probabilistic models.

When a GP is employed as the foundational model, the objective function f(θ) is
defined as GP(m(x), k(x, x′)). In this formulation, m(x) and k(x, x′) correspond to the
mean and covariance functions, respectively. The covariance function, k(x, x′), plays a
pivotal role in determining the intrinsic characteristics of the objective function f(θ). These
characteristics may include elements such as smoothness, the presence of additive noise,
and amplitude. The covariance function’s output, interestingly, is the covariance of f(θ) and
f(θ′). The probabilistic nature of the GP model implies that each feature’s probability must
be estimated independently before their incorporation into the overarching Gaussian model.
This step is crucial in accurately representing the complex interplay of features within the
model. Another critical step in developing the GP model involves the establishment of a
covariance matrix. The probability values associated with all eigenvectors are employed
within this matrix, contributing to the structure of the multivariate Gaussian probability
model. To fully appreciate the mechanics of the GP model, one can visualize it as follows:

P(x) =
1

(2π)
n
2 |cov| 12

exp
(
−1

2
(x− µ)Tcov(x− µ)−1

)
(9)

Here, µ signifies the average value, while cov designates the covariance.
Acquisition functions hold a critical role within BO, as they are tasked with suggesting

potential locations for sampling within the expansive search space. This complex process
involves initially drawing a random assortment of candidate samples from the entire do-
main. Following this step, each of these candidate samples undergoes evaluation through
the application of the acquisition function. The next stage of this process involves maximiz-
ing the acquisition function or, alternatively, selecting the candidate sample that emerges
with the highest score from the evaluation. It is important to note that there is a variety
of probabilistic acquisition functions available for use, each presenting its own unique
balance between exploitative and explorative tendencies. To break down these tendencies,
exploitation typically involves the act of sampling in specific areas where the surrogate
model predicts a high target. On the other hand, exploration refers to the act of sampling
within regions that are characterized by a significant level of prediction uncertainty. Both
of these strategies are aligned with the pursuit of high acquisition values. The overarching
objective of this approach is to enhance the acquisition breadth in order to optimally select
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the next sample point. In a typical scenario, the objective function, represented as f (x), will
be sampled in accordance with the following equation:

xx = arg maxx (x | D1:t−1) (10)

in which µ is the acquisition function and D1:t−1 = {(x1, y1), . . . , (xt−1, yt−1)} are the t − 1
samples drawn from f (x).

The process of BO can be summarized as such. Firstly, the next sampling point, xt , is deter-
mined by optimizing the acquisition function based on the GP): xt = arg maxx µ(x | D1:t−1).
Next, calculate a sample, yt = f (xt) + ξt, which could potentially contain noise, using the
objective function f (x).

In this research, the acquisition function is defined by the Expected Improvement (EI),
which is outlined as follows:

EI(x) = Emax
(

f (x)− f
(
x+
)
, 0
)

(11)

in which f (x+) is the value of the best sample and x+ refers to the location of the sample.
For example, x+ = argmaxxi∈x1:t f (xi). The expected improvement can be evaluated
analytically under the GP model:

EI(x) =

{
(µ(x)− f (x+)− ζ)ϕ(Z) + σ(x)φ(Z) if σ(x) > 0
0 if σ(x) = 0

(12)

Z =


µ(x)− f (x+)−ζ

σ(x) if σ(x) > 0

0 if σ(x) = 0
(13)

in which ζ determines the amount of exploration during optimization and higher value
results in more exploration.

4.3. The Suggested BO-XGBoost Algorithm for Smart Prediction of Compressive Strength

In this ongoing research, the aim was to merge XGBoost and BO into a unified BO-
XGBoost model. This hybrid model is designed to predict the compressive strength of
environmentally friendly concrete. XGBoost is the core predictive component within this
model, formulating a function that estimates the compressive strength based on several
parameters. As justified in Section 5, these include the superplasticizer content (in kg),
water/binder ratio (W/B), GGBFS material percentage from total binder used in the mixture
(GGBFS%), the recycled aggregate percentage from total aggregate in the mixture (RA%),
and the curing time (Age). However, it is important to note that the performance of the
XGBoost algorithm is contingent upon the choice of these parameters. This is where BO
is used to identify the optimal set of these parameters. Once identified, these optimal
parameters are integrated into the XGBoost model, which is then used for training. This
optimized model subsequently delivers more precise and reliable predictions.

Figure 1 provides a comprehensive visualization of the workflow for the BO-
XGBoost model. This process is broken down into three crucial phases: preprocessing
of data, optimizing parameters, and making the final prediction. During the first stage,
preprocessing, a unique dataset has been compiled for a new type of concrete that
incorporates both RCA and GGBFS materials, in addition to other standard concrete
components. This dataset was created via a thorough literature review conducted over
the period from 2010 to 2023. Also in this stage, the complete dataset is divided into
two distinct subsets: a training set and a testing set. The training set is employed for
model training and parameter optimization, while the testing set is reserved exclusively
for evaluating the performance of the already trained models. During the parameter
optimization phase in the BO-XGBoost model, BO must find the optimal XGBoost
parameters. This requires a way to assess the efficacy of parameter sets, achieved by
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formulating an objective or cost function using RMSE and k-fold cross-validation. The
training data is divided into ‘k’ equally sized subsets or ‘folds’. For each parameter
set, the corresponding XGBoost model undergoes a training-testing cycle ‘k’ times,
each time with different subsets. The model trains on data from ‘k − 1’ folds and
validates against the remaining fold. The Cost Function (CF), calculated as the average
RMSE from all validation rounds (see Equation (14)) gives a quantifiable performance
measure of each parameter set, enabling BO to locate the most optimal parameters

CF =
1
k ∑k

i=1 RMSEi (14)

RMSEi represents the validation RMSE linked with the ith fold, where the training set
is comprised of the remaining folds:

RMSEi =

√√√√∑j∈Si

(
YA,j −YP,j

)2

|Si|
(15)

In this context, Si signifies the index set connected to the ith fold. The symbol |.| is
used to indicate the cardinality, or the number of elements, of a given set. YA,j refers to the
actual outcome for the jth data set, while YP,j represents the corresponding estimated or
predicted result.

The BO stops its search once the cost function ceases to show improvement (decrease)
after a specific number of iterations or when the predetermined maximum number of
iterations is met. Once the optimal parameter set is identified, the corresponding XGBoost
model is then utilized in the final stage of prediction. Subsequently, the forecasted values
of compressive strength can be gathered and recorded.

4.4. Performance Metrics

Evaluating the performance of a machine learning model is a crucial aspect of the
overall machine learning modeling procedure. This critical step provides a precise depiction
of the model’s effectiveness and efficiency in making accurate predictions. For the purpose
of this research, three distinct statistical measures were employed to carry out this task:
RMSE (Equation (15), MAE (Equation (16)), and R2 (Equation (17)) [36]. These measures
were calculated using their respective mathematical expressions, providing quantitative
assessments of the model’s predictive capability and accuracy.

RMSE =

√√√√( 1
n

n

∑
i=1

(ŷi − yi)
2

)
(16)

MAE =
1
n

n

∑
i=1
|ŷi − yi| (17)

R2 = 1− ∑i (ŷi − yi)
2

∑i (yi − yi)
2 (18)

In the context of the discussed model: y is the true value or the actual output from the
dataset, ŷi represents the predicted result yielded by the machine learning model, yi is the
mean or average value of all the correct output values present in the dataset, and n signifies
the total number of data points or observations included within the training dataset used
for developing the model.
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5. Dataset Used

This research study draws its data from eleven separate previous investigations [5,7,37–45].
The primary focus is on building machine learning models, and the predictive variables
taken into consideration for the construction of these models encompass several aspects.
These aspects include the proportion of Recycled Aggregate (RA) employed as a substitute
for Natural Aggregate (NA) in the mixture (expressed as a percentage of RA—RA%), the
proportion of GGBFS from the total binder used in the mix and expressed as a percentage of
GGBFS (GGBFS%), the amount of superplasticizer in kilograms (Sp (kg)), the ratio of water
to binder (W/B), and the age of the concrete (in days). The response variable, in this case,
is the Compressive Strength (CS) of what we refer to as ‘eco-friendly concrete’. A concerted
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effort was made to consolidate the results. The data were selectively gathered from studies
that examined the effect of both GGBFS and RCA on the concrete CS. Additionally, while
collating this data, the selection was limited to specimens that were strictly cube-shaped
and measured either 100 mm or 150 mm in length. To standardize the CS across varying
cube sizes, the proposed expressions from [46] were used. These expressions enable the
conversion of the CS from a 100 mm cube mold to its equivalent in a 150 mm cube mold.
Within the gathered data, it was noted that five of the records did not include either RA or
GGBFS in their mixture proportions, which suggests these were standard concrete mixtures.
Figure 2 showcases histograms of input and output variables that were used in the creation
of the predictive models for CS. Table 1, on the other hand, presents descriptive data for
all variables involved in the construction of the model. This table also outlines the typical
mixing proportions used in the production of eco-friendly concrete, which incorporates
both RA and GGBFS. As revealed in Table 1, the CS of concrete varies significantly, ranging
from 9 MPa to 68 MPa, and corresponds to 7-day and 90-day specimens, respectively. Given
that a regression tree forms the fundamental learning component of XGBoost, it eliminates
the need for normalizing data samples [47]. This implies that the prediction outcome will
remain unaffected even when features originate from diverse units.
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Figure 2. A visual representation of the output and input parameters. 
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Table 1. Input and output key parameters for the dataset.

Data Category Statistics Standard
Deviation Mean Median Maximum Minimum Kurtosis

Training data W/B 0.13 0.46 0.50 0.75 0.20 0.06

RA% 38.19 65.23 75.00 100.00 0.00 −1.35
GGBFS% 31.72 38.36 40.00 100.00 0.00 −0.76
Sp (kg) 2.01 1.70 1.15 7.80 0.00 2.23

Age (days) 29.37 32.13 28.00 90.00 7.00 0.00
CS (MPa) 13.49 35.38 34.37 68.00 9.00 −0.71

Testing data W/B 0.12 0.45 0.50 0.75 0.20 0.34

RA% 39.68 68.56 100.00 100.00 0.00 −1.03
GGBFS% 31.39 33.89 40.00 100.00 0.00 −0.80
Sp (kg) 1.81 1.34 0.76 7.80 0.00 5.65

Age (days) 31.77 42.36 28.00 90.00 7.00 −1.21
CS (MPa) 13.13 36.97 35.00 68.00 17.60 −0.36

The factors presented in Table 1 are employed to create eco-friendly concrete. To
ensure thorough understanding, a succinct explanation of each parameter is offered below.
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The W/B ratio played a critical role in determining concrete strength. Study [25]
suggested that higher W/B ratios and lower binder concentrations can lessen the adverse
effects of RCA on the CS of concrete. However, study [48] indicated a decrease in compres-
sive strength with increasing W/B ratios across all tested mixes. Notably, in a 30% RCA mix,
compressive strength dropped significantly over 28 days as the W/B ratio increased from
0.3 to 0.4 and 0.5. Moreover, research [49] has shown negative impacts of increasing W/B
ratio on the compressive strength of geopolymeric recycled aggregate concrete (GRAC).
It was found that static compressive strength fell by 17%, 16%, and 28% when the W/B
ratio increased from 0.3 to 0.4 in GRAC mixes with 0%, 50%, and 100% RCA, respectively.
Therefore, appropriate selection of the W/B ratio is crucial to maintain the CS of various
concrete mixes.

Studies also revealed distinct differences in the properties of RAC with 100% RA and
NAC, with the former displaying significant property loss. However, RAC composed of
75% NA and 25% RA showed negligible changes [50]. Research also suggested that a low
W/B ratio can negatively impact the strength of RCA, indicating that the concrete strength
is dependent on both the RCA and the W/B ratio [51]. As such, RCA is considered an
essential element in our dataset due to its impact on concrete strength.

The application of a superplasticizer enhances the quality of RCA, making it more
suitable for structural usage. An increase in the dosage of the superplasticizer leads to a
corresponding rise in the CS of the concrete. In particular, when standard superplasticizer
was incorporated into concrete made with Fine Recycled Aggregates Concrete (FRCA),
there was a significant improvement in CS: an increase of 47% was noted after seven days,
35% after 28 days, and 43% after 56 days, as per the findings of study [52].

The longevity and durability of concrete are intrinsically linked to its aging process. As
the quantities of GGBFS and RCA increase, there is a marked decline in both the short-term
and long-term CS of the concrete [53]. Yet, intriguingly, the rate at which strength develops
with age amplifies when both GGBFS and RCA are heightened. This escalation in the
strength growth rate can be attributed to the latent hydraulic activity of GGBFS and the
amplified hydration of unhydrated cement particles present in RCA [53].

For the creation of an accurate model, it is vital to take into account the variables that
have a significant influence on the desired output. Identifying the parameters with the
greatest and least impact on the output requires determining the correlation among these
parameters. Various types of correlations have been proposed over time, such as Intra-class
and Rank correlations. However, the Pearson method has become a popular choice among
researchers (as stated by [54,55]). The Pearson Correlation Coefficient (PCC) is essentially
defined as the quotient obtained when the covariance of two parameters, cov(X,Y), is
divided by the product of their standard deviations, as given in the equation below:

ρX,Y =
cov(X, Y)

σXσY
=

∑(xi − x̄)(yi − ȳ)√
∑(xi − x̄)2

√
∑(yi − ȳ)2

(19)

In this context, x̄ and ȳ denote the averages of the X and Y datasets, respectively. The
PCC, symbolized as ρX,Y, falls within the range of −1 to 1. A correlation coefficient of
ρX,Y = 1 indicates a strong correlation between the variables, while a value of ρX,Y = 0
suggests that X and Y are linearly independent. However, it is essential to understand
that a correlation coefficient of zero does not necessarily imply a complete lack of corre-
lation. The variables might still be related, but in a non-linear manner, as pointed out
by Kotu and Deshpande in [56]. Furthermore, as Berman highlighted in [57], a negative
correlation coefficient indicates an inverse relationship between the two variables, meaning
that as one variable increases, the other decreases, and vice versa. Figure 3 provides a
matrix of the PCCs for the input and output variables as a heatmap. As per the data in
Figure 3, the variables W/B ratio, Age of concrete, and superplasticizer Sp (in kg) display
the strongest correlation with CS, underscoring their substantial impact on the concrete
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strength. Conversely, among all the input variables, the GGBFS% and RA% have the
lowest correlation.
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6. Model Results
6.1. Hyperparameter Optimization: BayesSearchCV

This paper’s forecasting model employs the Scikit-Learn library, the preeminent ma-
chine learning library for Python, utilized specifically on the Python 3.7 platform. In this
research, the XGBoost algorithm was utilized to create a predictive model for cubic CS
resulting from machine measurements. By utilizing the BayesSearchCV method from the
Skopt package for the parameter search, it was feasible to identify the parameters that best
fit the predictive model attributes. Locating parameters that yield the highest model predic-
tion accuracy becomes more streamlined with the Python BayesSearchCV function [58]. The
perfect blend of XGBoost hyperparameters was derived by setting the values and ranges of
the XGBoost prediction model hyperparameter and employing the BayesSearchCV func-
tion. The effectiveness of different hyperparameters in XGBoost can vary depending on
the specific dataset and problem at hand. However, some hyperparameters are generally
considered more crucial to optimize. Here are a few:

• n_estimators and learning_rate: These parameters control the number of sequential
trees to be modeled (n_estimators) and the contribution of each tree to the final
outcome (learning_rate). They can have a significant effect on the model’s performance
and are often tuned together.

• max_depth: This parameter sets the maximum depth of a tree and can help control
overfitting, as it makes the model more specific to the training data. Generally, a
smaller max_depth is preferred to prevent the model from learning relations which
might be highly specific to the particular sample selected for a tree.

• subsample: This is the fraction of observations to be randomly sampled for each tree.
Lower values make the algorithm more conservative and prevent overfitting but too
small values might lead to under-fitting.

• colsample_bytree: This is the subsample ratio of columns when constructing each tree.
Subsampling occurs once for every tree constructed.

Table 2 provides a view of the search parameters’ range and the most suitable hyper-
parameters identified for the XGBoost model.
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Table 2. Hyperparameters for the BO-XGBoost model.

Tunning Hyperparameter Values and Ranges Optimal Hyperparameters

n Estimators (1, 2, 3, . . ., 100) 732
Learning Rate (0.000, 0.1, . . ., 1) 0.06

Max Depth (1, 2, 3, . . ., 10) 5
Subsample (0.0, 0.1, . . ., 1) 0.55

colsample_bytree (0.0, 0.1, . . ., 1) 1

Figure 4 illustrates the Bayesian search procedure applied to the model’s parameters.
The parameter associated with the least mean square error was chosen as the model’s
hyperparameter. In the figure, the coordinate axes depict the search span of various pa-
rameters. The black dot in the graph signifies a particular combination of hyperparameters
that were evaluated during the search process, while the red star on the graph denotes the
combination of hyperparameters that gave the best result from search process.

6.2. Results from Single 8–2 Validation Tests

To begin with, the results from a single 8–2 split are presented, in which the dataset is divided
such that 80% serves as the training set and the remaining 20% as the testing set. Figure 5 shows
the relationship between the values predicted by the model and the actual tested values for both
the testing and training datasets. It is evident that there is a linear correlation between the tested
and predicted values. When the model’s predictions are compared to the actual values for the
training set, they are very close, demonstrating a high level of accuracy. The scatter points align
closely with the ideal black lines shown in the figures, signifying a high level of prediction accuracy.
On the other hand, there is a somewhat slight level of dispersion for the testing set.
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The evaluation results of the model are summarized in Table 3, presenting the three
chosen metrics for both the training and testing sets. The model exhibits outstanding
performance in forecasting CS values. In the case of the training data set, an R2 value
of 0.9993 signifies an almost perfect alignment with the actual values. Furthermore, the
model achieves a MAE of just 0.3544 MPa and a RMSE of 0.4991, reinforcing the model’s
exceptional learning and predictive capabilities. When evaluated on the testing data, the
model maintains a robust performance with an R2 value of 0.9756, which is remarkably
close to 1. The MAE is slightly higher at 1.7737, yet this increase remains within acceptable
limits from an engineering practice perspective. Overall, the BO-XGBoost model accurately
predicts the CS, demonstrating its high efficacy.

Table 3. Evaluation of performance based on the results from 8–2 experiments.

Sets RMSE (MPa) R2 MAE (MPa)

Training 0.4991 0.9993 0.3544

Testing 2.3525 0.9756 1.7737

6.3. Five-Fold Cross-Validation Results

In an BO-XGBoost model, the five-fold cross-validation technique is commonly used
to estimate the level of bias associated with the model’s performance on the training data
set. It does this by first dividing the dataset into five subsets, and then uses four subsets
for training the model and the remaining subset for validation. This process is repeated
five times, each time with a different subset used for validation. The final performance
metric is the average accuracy of the five times the validation process was conducted.
Consequently, the five-fold cross-validation method provides a more reliable estimate of
the model performance, as it reduces the effect of random variations in the data [59].

Figure 6 visually presents the performance measures for each iteration within the
five-fold cross-validation process. It reveals minor variations across the five iterations.
However, the model consistently exhibits high precision. For instance, the lowest detected
R2 value stands at 0.9598, while the highest peaks at 0.9819. The smallest recorded MAE
is 1.4167, and the highest reaches 2.0709. Table 4 systematically offers a detailed account
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of the results from each iteration. The average R2 value over all iterations is 0.9705, with
a standard deviation (SD) of 0.0097, yielding a very small coefficient of variation (COV)
of 1.00%. The average RMSE is 2.2158 MPa, which is quite modest when compared to the
mean CS value of 35.70 MPa.
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Table 4. Results derived from a five-fold cross-validation.

Folds
Performance Measures

RMSE (MPa) R2 MAE (MPa)

Fold 1 2.1534 0.9724 1.6802
Fold 2 2.1328 0.9772 1.7275
Fold 3 2.9256 0.9598 2.0709
Fold 4 2.0121 0.9614 1.4167
Fold 5 1.8548 0.9819 1.4967

Average 2.2158 0.9705 1.6802
SD 0.4142 0.0097 0.254

6.4. Comparing with Other Machine Learning Models

In order to fully demonstrate the capabilities of the BO-XGBoost algorithm, a well-
known ensemble learning technique, this study also incorporates two widely used individ-
ual learning methods, namely KNN and Support Vector Regression (SVR). The procedure
for establishing the model parameters is analogous to the one applied for BO-XGBoost.
This involves setting preliminary values for these parameters, followed by the utilization
of BayesSearchCV to identify the best possible values. SVRs are a type of machine learning
model used for both classification and regression tasks. They work by finding the hyper-
plane (a subspace of one dimension less than the ambient space) that best separates the
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classes of data, maximizing the margin between the closest points (the “support vectors”)
of different classes. The best hyperparameters to optimize in SVR are the regularization
parameter “C”, the kernel type, the gamma value if using the ‘rbf’ or ‘poly’ kernel, the
degree of the polynomial for the ‘poly’ kernel, and the epsilon parameter. The penalty
coefficient, often referred to as “C” in machine learning, especially in algorithms like SVM
and SVR, is a regularization parameter that controls the trade-off between achieving a low
training error and a low testing error, that is, the ability to generalize the model to unseen
data. In the context of Support Vector Machines (SVM) and SVR, the kernel type refers to
the function used to transform the input data into a higher-dimensional space, making it
easier to classify or fit a regression line to the data. This process is known as the kernel
trick. In the context of the Radial Basis Function (RBF) kernel and the Polynomial kernel,
gamma defines how far the influence of a single training example reaches, which in turn
affects the flexibility of the decision boundary.

On other hand, KNN is a type of instance-based learning, or lazy learning, where the
function is only approximated locally and all computation is deferred until prediction. The
KNN works by finding a predefined number of training samples closest in distance to a
new point and predicting the label from these. The label assigned to the new instance is
computed using the mean of the labels of its nearest neighbors.

Here are the most important parameters to tune in KNeighborsRegressor:

• n_neighbors: The number of neighbors to use for prediction. This is typically the ‘k’ in
KNN. A small value of ‘k’ means that noise will have a higher influence on the result
and a large value will make it computationally expensive.

• weights: The weight function used in prediction. It can take the values of ‘uniform’,
‘distance’ or any other user-defined function. ‘Uniform’ means all points in each
neighborhood are weighted equally, whereas ‘distance’ means points are weighted by
the inverse of their distance.

• algorithm: The algorithm used to compute the nearest neighbors. It can be ‘ball_tree’,
‘kd_tree’, ‘brute’ or ‘auto’. If ‘auto’ is chosen, the algorithm tries to decide the most
appropriate algorithm based on the values passed to the fit method.

• leaf_size: Leaf size passed to BallTree or KDTree. This can affect the speed and memory
usage of the construction and query, as well as the memory required to store the tree.

• p: Power parameter for the Minkowski metric. When p = 1, this is equivalent to using
manhattan_distance, and euclidean_distance for p = 2.

The choice of KNN and SVM as benchmarks is based on the principle of diversity
in model comparison. KNN and SVM are indeed examples of single-learner algorithms,
where a single hypothesis is learned from the training data and used for predictions.
By comparing XGBoost with these single-learner models, we aim to demonstrate the
advantages of using an ensemble method. Ensemble methods like XGBoost are known for
their superior performance in terms of accuracy and robustness because they aggregate the
predictions of multiple models to minimize the variance and bias. This comparison will
highlight these benefits of XGBoost over single-learner algorithms.

Figure 7 provides a summary of the three metrics used to evaluate the predictions on
the test sets for the three models. R2, RMSE, and MAE are measures of the prediction error
among the three models: BO-XGBoost, BO-SVR, and BO-KNN. BO-XGBoost demonstrated
the least prediction error, followed by BO-SVR, then BO-KNN. Specifically, BO-XGBoost
yielded an RMSE of 2.3525 and an MAE of 1.7737, signifying it has the smallest prediction
error. The BO-SVR model’s prediction error was less than that of the BO-KNN model.
Considering R2, which gauges how well the models fit the independent variables, the
models ranked as follows: BO-XGBoost performed the best, followed by BO-SVR, and then
BO-KNN. In particular, BO-XGBoost achieved an R2 of 0.9756, implying the best fit. Overall,
based on the aforementioned prediction metrics, BO-XGBoost provides the most accurate
predictions for CS of eco-friendly concrete. The reason may be that both SVR and KNN are
individual learning algorithms, while XGBoost is an ensemble learning method. In essence,
XGBoost constructs multiple weak learners (in this case, decision trees) and combines their
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output to create a single, more accurate prediction. This methodology allows it to correct
its errors with each iteration, progressively enhancing the model’s performance.
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Furthermore, a Taylor plot was applied to compare the realistic characteristics of the
three models by measuring the distance between each model and the point marked “actual”
(see Figure 8). It can be seen that the BO-XGboost model was situated closest to the “actual”
point with a comparatively higher correlation coefficient and lower RMSE value, indicating
that this model performed better in predicting CS values of eco-friendly concrete. As for
the other two models, KNN lay farthest from the “actual” point due to a larger RMSE and
standard deviation as well as lower correlation coefficient, suggesting poorer predictive
performance of this model.

6.5. Partial Dependence Analysis

A Partial Dependence Plot (PDP) is a data visualization tool that illustrates the
marginal effect of a feature on the predicted outcome of a machine learning model. It
essentially displays the variation in prediction of the model, on average, as a specific
feature changes, while keeping other features constant. The concept of “partial” is derived
from the process in which the plot averages the predictions of the model across all instances
in the dataset, thereby “partially” factoring in the impact of other variables. The plot is
constructed by calculating the model’s prediction for several fixed values of a selected
feature, while maintaining constant values for other features. These predictions are then
averaged over all instances and plotted as a function of the fixed values of the chosen
feature. PDPs offer insights into the interaction between features and the target variable
and can indicate whether these relationships are linear, monotonic, or more complex in
nature. The slope of the PDP can be interpreted to understand the influence of the feature
on the prediction: a steep slope indicates strong influence, while a flat slope suggests
little impact.
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Looking at the data of PDP plot in Figure 9, the CS seems to peak around a W/B ratio
of 0.25, and then begins to decline. This might be because, at lower W/B ratios, there is
insufficient water for the hydration process, which would limit the CS. At a W/B ratio
of 0.25, there may be an optimal balance of water and binder for the hydration process,
which maximizes the CS. As the W/B ratio increases beyond this point, the excess in water
could create larger capillary pores as it evaporates, which would weaken the structure
and reduce the CS. There is a slight increase in CS again around the W/B ratio of 0.38–0.4,
which may be due to specific properties of the mixture used, such as the presence of
certain additives or the particle-size distribution. However, the general trend is that the
CS decreases with increasing W/B ratio. This is consistent with the known behavior of
cement-based materials, where a higher W/B ratio typically leads to a lower CS due to the
increased porosity [60].

As the age at testing increases, so does the CS. This is in line with the understood
property of concrete that it gains strength over time due to the ongoing hydration process
of the cement, which progressively forms more crystalline hydrate products responsible
for concrete’s strength. Looking at the model’s predictions, at 7 days, the early stage of
concrete curing, the average CS is approximately 28.07 MPa. At 28 days, a common industry
benchmark, the average CS increases to about 37.20 MPa, reflecting the designed strength of
standard concrete mixes. The average CS rises to about 38.99 MPa at 56 days and 44.10 MPa
at 90 days, showing that the concrete continues to cure and gain strength, albeit at a slower
pace. These numbers align with the known behavior of concrete, which strengthens over
time due to the continued hydration process. However, the exact rates and values can differ
based on factors such as the specific concrete mix used and the curing conditions.
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When interpreting these numbers, it is evident that at 0% GGBFS, where only regular
cement is used, the average predicted CS is approximately 39.29 MPa. As the percentage
of GGBFS increases to 25%, replacing regular cement, there is a slight decrease in the
predicted average CS to around 35.80 MPa. This trend of decreasing CS continues as the
GGBFS percentage increases. At 100% GGBFS, the lowest average predicted CS of about
27.52 MPa is observed. These findings suggest that increasing the GGBFS proportion in
the binder results in a decrease in the immediate average predicted CS of concrete, as per
the model’s predictions. This could be attributed to the slower reaction rate of GGBFS
compared to regular cement, leading to slower immediate strength gains. However, the
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usage of GGBFS can contribute to long-term strength gains, improved durability, and
environmental sustainability.

Finally, a Partial Dependence Plot (PDP) indicating an only slight impact of RCA
on concrete compressive strength allows engineers to judiciously use RCA without ma-
jorly affecting structural integrity. This adaptability provides cost-efficient, eco-friendly
alternatives, supporting sustainable construction practices.

7. Conclusions

This study concludes with robust findings that significantly advance our understand-
ing of the compressive strength (CS) of eco-friendly concrete. The hyperparameter optimiza-
tion process, executed via the Bayesian search, demonstrated its efficiency in fine-tuning
the model’s parameters, leading to the selection of the most optimal hyperparameters that
resulted in the minimum mean square error.

The proposed BO-XGBoost model showed exceptional learning and predictive capabil-
ities, evidenced by its almost perfect alignment with actual values in the training set. This
high efficacy was further corroborated when evaluated on the test data, where it showed a
robust performance, implying that the proposed model is accurate and reliable.

In addition, the five-fold cross-validation reinforced the model’s consistency and
precision, with minor variations across the iterations. The coefficient of variation remained
very small, suggesting a strong stability of the model. These findings indicate that the
proposed model is not only precise but also reliable across different data subsets.

Further comparisons with other machine learning models, namely BO-SVR and BO-
KNN, revealed the superiority of the BO-XGBoost model. It consistently demonstrated the
least prediction error and the best fit, making it the most accurate model for predicting the
CS of eco-friendly concrete among the models tested.

The PDP analysis elucidated the relationships between various input features and
the CS. The findings suggested that the CS peaks at an optimal W/B ratio, affirming the
critical role of water content in the hydration process. Furthermore, it was found that the
CS increased with the age of the concrete, reinforcing the known property of cement-based
materials that harden and strengthen over time. Interestingly, an increase in the GGBFS
percentage in the binder led to an immediate decrease in the CS, presumably due to its
slower reaction rate compared to regular cement.
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