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Abstract: As one of the most crucial topics in the recommendation system field, point-of-interest
(PQOI) recommendation aims to recommending potential interesting POIs to users. Recently, graph
neural networks have been successfully used to model interaction and spatio-temporal information
in POI recommendations, but the data sparsity of POI recommendations affects the training of
GNNSs. Although some existing GNN-based POI recommendation approaches try to use social
relationships or user attributes to alleviate the data sparsity problem, such auxiliary information is
not always available for privacy reasons. Self-supervised learning provides a new idea to alleviate
the data sparsity problem, but most existing self-supervised recommendation methods are designed
for bi-partite graphs or social graphs, and cannot be directly used in the spatio-temporal graph of
POI recommendations. In this paper, we propose a new method named SSTGL to combine self-
supervised learning and GNN-based POI recommendation for the first time. SSTGL is empowered
with spatio-temporal-aware strategies in the data augmentation and pre-text task stages, respectively,
so that it can provide high-quality supervision information by incorporating spatio-temporal prior
knowledge. By combining self-supervised learning objective with recommendation objectives, SSTGL
can improve the performance of GNN-based POI recommendations. Extensive experiments on three
POI recommendation datasets demonstrate the effectiveness of SSTGL, which performed better than
existing mainstream methods.

Keywords: POI recommendation; graph neural network; self-supervised learning

1. Introduction

With the development of wireless communication and satellite positioning technolo-
gies, location-based services (LBSs) have become widely available in people’s daily lives.
LBSs can access the geographic coordinates of users through mobile devices and integrate
them with other information (e.g., time and user preference) for services. Point-of-interest
(POI) recommendation is a representative task in LBSs. Unlike typical recommendations
that only consider the historical interaction between users and items, POI recommenda-
tions also need to consider the impact of spatio-temporal information [1] (e.g., the location
coordinates of the POI, and the time of interaction between them).

Over the last decade, POI recommendation algorithms have evolved from early spatio-
temporal-aware matrix factorization techniques [2-5] to recent approaches based on spatio-
temporal graph representation learning [6-11]. As the most advanced graph representation
learning technique, graph neural networks (GNNs), especially spatio-temporal graph neu-
ral networks (STGNNSs), have been successfully applied to POI recommendations [9-11].
For example, as the first work applying a GNN to a POI recommendation, GPR [9] con-
structed additional POI-POI graphs based on the proximity of interaction times and uses
a separate module to learn the representation of physical distances. As with other rec-
ommendation scenarios, POI recommendations also suffer from severe data sparsity [10].

Appl. Sci. 2023, 13, 8885. https:/ /doi.org/10.3390/app13158885

https://www.mdpi.com/journal/applsci


https://doi.org/10.3390/app13158885
https://doi.org/10.3390/app13158885
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-2437-0455
https://orcid.org/0009-0007-1527-621X
https://doi.org/10.3390/app13158885
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13158885?type=check_update&version=1

Appl. Sci. 2023,13, 8885

2 of 14

Since GNN-based models usually rely on topology for message passing, the sparsity of
interactions means that many nodes (especially long-tail nodes) cannot learn high-quality
representations and are susceptible to interaction noise. To mitigate the impact of data
sparsity on GNNs, some works have introduced various auxiliary information, including
social relations [10] and user attributes [11]. However, as user privacy is taken more seri-
ously these days, such auxiliary information is not always available. Therefore, there is an
urgent need to explore new methods to reduce the impact of data sparsity problems on
GNN-based approaches.

The recent emergence of self-supervised learning techniques offers a new direction
to this problem. Through data augmentation and design pretext tasks, self-supervised
learning can provide additional supervision signals to improve the performance of rec-
ommendation algorithms. In fact, some recent works have attempted to combine self-
supervised learning with GNNs for other recommendation tasks (e.g., product recom-
mendation [12,13], social recommendation [14], and session-based recommendation [15]).
For example, SGL [12] designed three graph structure-based data augmentation methods,
and NCL [13] designed graph structure-based and semantic prototype-based pretext tasks.
However, these methods are specialized for bi-partite graphs, social graphs, or session-
based hypergraphs, and do not consider spatio-temporal information. Thus, there is still
a gap to adopt self-supervised learning for POI recommendation algorithms based on
spatio-temporal graphs.

In this paper, we explore for the first time how self-supervised learning can be ap-
plied to GNN-based POI recommendations and design a general framework named self-
supervised spatio-temporal graph learning (SSTGL). Specifically, SSTGL combines spatio-
temporal prior knowledge in two ways, i.e., via data augmentation and the pre-text task.
We first define the temporal and spatial similarity of POIs based on the interaction time
between POls and users as well as the geographical location of POls. Then, considering that
users may be interested in POISs that are similar to the interacted POIs, SSTGL adds some
implicit edges to users and POls based on the similarity function between POIs, which
implements spatial or temporal-based data augmentation. Finally, SSTGL randomly drops
some edges with a certain ratio to alleviate the data sparsity problem. For pre-text tasks,
SSTGL uses spatio-temporal similarity to guide the consistency between node representa-
tions. Finally, we optimize the pre-text task, together with the recommendation ranking
task, to improve the performance of the POI recommendation.

Experiments on three datasets show that our proposed model outperformed existing
GNN-based POI recommendation algorithms. The relative improvements of Recall@50
were 6.32%, 13.27%, and 9.68%. In addition, ablation experiments and hyper-parameter
experiments further demonstrated the robustness of our model.

The contributions of this paper are summarized as follows:

¢ To the best of our knowledge, this is the first attempt to design a self-supervised
learning-based framework to improve GNN-based POI recommendation algorithms.

*  We propose data augmentation strategies and pre-text tasks of the proposed frame-
work, which model spatial or temporal prior knowledge from different perspectives.

*  We conducted experiments on three POI recommendation datasets and verified that
our model could improve GNN-based POI recommendations and outperform existing
state-of-the-art methods.

2. Related Works

In this section, we review two related fields: point-of-interest (POI) recommendation
and self-supervised learning (SSL).

2.1. Point-of-Interest Recommendation

Most of the traditional POI recommendation models are based on matrix factoriza-
tion [2-5]. LRT [2] focused on the impact of temporal information on POI recommendation,
while IRenMF [4] exploited geographic location information to model each location’s neigh-
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bors at both geographic location and geographic region levels. In addition, LGLMF [3] used
local geographic information to obtain popular locations within the user’s primary activity
area. STACP [5] considered both geographic and temporal information, and they studied
the behavior of users at different periods. Recently, some methods based on graph neural
networks have been proposed [9-11]. For example, GPR [9] built the POI-POI graph by
connecting adjacent POls in the interaction sequence of users and POlIs, and they used
an exponential function to measure the physical distance between POlIs to learn POI rep-
resentations. HGMAP [10] additionally constructed a user-user graph based on social
relationships, as well as a POI-POI graph based on geographic location, and combined
the embedding of multiple graphs to obtain multiple user preference scores. GEAPR [11]
learned user representations with the help of several factors, including user attributes,
and used attention mechanisms to achieve interpretable recommendations. Data sparsity
poses a great challenge to GNN-based recommendation [12]. Although social information
and node attributes can alleviate the data sparsity problem to some extent, this auxiliary
information is often not available due to the need to protect user privacy.

2.2. Self-Supervised Learning

Recently, as an effective way to alleviate the data sparsity problem, self-supervised learn-
ing (SSL) has been widely used in computer vision [16], natural language processing [17] and
graph-based tasks, including various GNN-based recommendation tasks [12-15]. For product
recommendation, SGL [12] applies SSL in recommendation tasks by changing the graph
structure through a dropout and random walk strategy, as well as by maximizing the mutual
information (MI) between multiple embeddings of the same node while minimizing the
MI between the embeddings of different nodes. NCL [13] proposed structure-based and
prototype-based contrastive learning objectives, which were used to improve graph collab-
orative filtering methods. For social recommendation, MHCN [14] designed a hypergraph
convolutional network based on social relations and used hierarchical mutual information
maximization to recover connectivity information in the hypergraph convolutional network.
For session-based recommendation, S>DHCN [15] proposed a two-channel hypergraph
convolutional network and maximized the mutual information between the learned session
representations of both channels. However, these methods are not designed for POI recom-
mendation, and they lack the use of spatio-temporal information, thus making them not
applicable to spatio-temporal graphs.

3. Methodology

In this section, we first give the problem definition for the POI recommendation,
and then introduce our proposed model SSTGL. As illustrated in Figure 1, our method
consists of three main components, namely, the graph neural network backbone, the spatio-
temporal-aware data augmentation, and the spatio-temporal-aware pre-text task.

In detail, the role of the graph neural network backbone is to learn the node representa-
tions from the user-POI graph G and use them for the recommendation loss L,,,;, and the
generation of the final recommendation list Pj;. Spatio-temporal aware data augmentation
aims to generate multiple augmented graphs (i.e., G’ and G") based on spatio-temporal
prior knowledge, and these augmented graphs are also fed into the GNN backbone to
generate multiple enhanced node representations. Spatio-temporal-aware pre-text tasks
use spatio-temporal similarity to design optimization objectives L for self-supervised
learning, thus providing effective self-supervised information.
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Figure 1. The proposed model SSTGL, which contains three main components. (a) Graph neural

network backbone. (b) Spatial-temporal-aware data augmentation. (c) Spatial-temporal-aware
pre-text task.

3.1. Problem Definition and GNN Backbone

In this paper, we modeled the POI recommendation as a link prediction problem on a
bi-partite graph G = (V, £), where users U, POIs P, nodes V, and historical interactions R
are between them as edges £. Our goal was to find potential edges based on the observed
edges and spatio-temporal information.

The GNN backbone module aims to generate the nodes” embeddings Z;; and Zp
by training a GNN function f(-|Xy;, Xp) in a point-wise or pair-wise loss L,,,;,, where
Xy and Xp are the nodes’ features. Then, this module calculates the similarity score Yup
between their embeddings and uses the top-K POIs with the highest similarity scores as
the recommendation list P;;.

In detail, graph neural networks usually use the message-passing mechanism to
generate node representations. It consists of two specific steps. Firstly, given the bi-partite
graph G, the (I 4 1)-th layer representations of the nodes are updated by aggregating the
I-th layer representations of their neighbor nodes:

Z(l+1) - faggregute("z(l)/ g)/ (1)

where Z(0) = X is a parameterized ID embedding lookup table.
Then, the representations of all the L layers are fused to generate the final representations:

Z= freadout('lz(l)/l = [Or' e 'L])' ()

Although any fieeregate and freqq0ut can be used as a GNN backbone, for the sake of fair
comparison in subsequent experiments, SSTGL uses the same functions faggrggm(~ |z1 — 22)
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and freadout (|21 — z2) as the self-supervised learning baselines [12,13] of the backbone,
which can be defined as follows:

YpeN, T——721,71 = zand zp = 27V,
PENE TN | Z) - 3)
+

ZMEN 1 z1,z21 =2z, and zp =z ’
P/ INp | INu| ' b

faggregate("zl — z) =

)

1 L (N
— — 797 Li—0Z1,%21 = 2, ’and zp = zy,
freudout('|zl Zz) = { + ’ ,

1 L 1
m Zl:ozl 7 Zl = z;)al’ld Zy = ZPI

Finally, the similarity scores Yi;p of the representations of users and POIs are calculated
using the inner product and are used to calculate the supervision loss £,,;i,:

Yup = Z,Zp, ®)
ﬁmain = Z *log 0’(}?1‘]‘ - yAik)r (6)
(i,jk)eO

where 0(+) is the sigmoid function, O = {(i,],k)|(i,j) € OF,(i,k) € O~} is the training
data, O is positive pairs with interaction, and O~ is negative pairs without interaction.

3.2. Spatio-Temporal-Aware Data Augmentation

Some straightforward data augmentation operators have been proposed in the former
work [12], including the node dropout, edge dropout, and random walk. However, these
operators ignore the effect of spatio-temporal information, thus resulting in some low-
quality graph structures, which in turn reduce the performance of POI recommendations.
To take spatio-temporal information into account during data augmentation, in this section,
we first defined the POI's temporal and spatial similarity matrices separately. Based on these
similarity matrices, we defined the spatial-aware edge perturbation and temporal-aware
edge perturbation operations. SSTGL uses these edge perturbation methods randomly at
each epoch of training to generate new augmented graphs.

In detail, based on Equation (1), the aggregation operation based on the data augmen-
tation can be expressed as follows:

Zglﬂ) - faggregate(' |Z§l)r 51 (g))/

(7)
28 = fuggregate (123, 52(G)),

where s1(-) and sy(-) are data augmentation operators. Note that, although the data
augmentation can generate any number of views, SSTGL uses only two data augmentation
operations to reduce the model complexity:

e  Spatial similarity matrix Mg € {0,1}/PI*/P|: when the distance between two POIs is
less than a certain threshold Kg, then the similarity of these two POlIs is 1; otherwise,
itis 0.

e Temporal similarity matrix My € {0,1}/P1*|P|: when two POIs have interacted with
the same user in a period Kr, then the similarity of these two POls is 1; otherwise, it is 0.

In practice, we set K7 to 2 h in following the former work [18], which discovered
that users tended to visit the same POI consecutively within 2 h. In addition, we used the
Geohash algorithm to transform the geographic coordinates of the POIs into region IDs
and then determined whether the IDs were the same as a threshold condition of Kg.

Based on the spatial and temporal similarity matrices, we defined the following data
augmentation operators:
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*  Spatial-aware edge perturbation (SEP): It adds multiple implicit edges based on the
spatial similarity to the original user-POI edges:

Enps || =€+ Ms, ®
s1(9) = (V, ®l(gimp5r5))/ $2(9) = (V, ®2(gimp5r5))/ )

where ©1(a,b), and ©,(a,b) are perturbation vectors that pick elements from a in
some ratio rg and add it to b.

e  Temporal-aware edge perturbation (TEP): It adds multiple implicit edges based on
temporal similarity to the original user-POI edges:

Si‘f;jr',j‘” =& My, (10)
s1(9) = (V, @)l(gimpj-rg>)/ s2(9) = (V, ®2(gimprr€)>' (11)

In following [12], we used the above data augmentation approaches at each epoch to
generate multiple views and used the same ratio rg on ®; and ©,. We leave it as future
work to use more than two data augmentation operators s(-) simultaneously and to use
different perturbation ratios ry for different operators.

3.3. Spatio-Temporal-Aware Pre-Text Task

For contrastive self-supervised learning, the pre-text tasks Lq are defined based
on positive and negative pairs. Existing methods usually treat representations of the
same node with different augmentation methods [12] or with different GNN layers [13]
as positive pairs, as well as different nodes using different augmentation methods [12] or
different GNN layers [13] as negative pairs; neither of these approaches takes into account
the spatio-temporal information. In this section, we propose spatial-aware and temporal-
aware pre-text tasks, which are further used to define spatial-aware and temporal-aware
contrastive learning objectives.

In detail, we believe the spatio-temporal prior knowledge gives some clues to selecting
positive and negative samples. For example, POIs with similar spatio-temporal properties
are more suitable for positive samples than negative samples. Due to data sparsity, these
similar POIs may not have interacted with the same user and could easily be mistaken as
negative pairs, thus reducing the recommendation performance. Therefore, we designed
spatial-aware and temporal-aware pre-text tasks, which are defined as follows:

*  Spatial-aware pre-text task (SPT): We took Qg nodes with the highest spatial similarity
in M to the target node as positive examples and p(%) nodes with the lowest spatial
similarity as negative examples.

e  Temporal-aware pre-text task (TPT): We took Qt nodes with the highest temporal
similarity in M7 to the target node as positive examples and p(%) nodes with the
lowest temporal similarity as negative examples.

Based on the above definitions, we proposed the spatial-aware and temporal-aware
contrastive learning objectives:

*  Spatial-aware contrastive learning (SCL): Maximizes the MI between spatial-aware
positive POI pairs and minimizes the MI between spatial-aware negative POI pairs:

Lr=Yy -1 Ljeas exp (3(22) /7)
fd —_ Og 7
5 Lke(1Plp5) P (s(2},2) /)

(12)

where s(-) is a similarity measure function, which is set as a dot product; 7 is the
temperature in softmax; and (-)! and (-)? represent different embeddings obtained
from data augmentation.
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¢  Temporal-aware contrastive learning (TCL): Maximizes the MI between temporal-
aware positive POI pairs and minimizes the MI between temporal-aware negative
POI pairs.

b 2 “log YjcQr €XP (s (zl.l,zjz) /T) a3

1,2 :
iep Lke(|Pl-or) P (s(2i, 25) /T)
In practice, we set Qs and Qr to 1; that is, SSTGL only used the target node as a
positive example. We leave larger scales or different Qg and Qr values to future work. In
addition, since SSTGL did not define a user-based spatio-temporal similarity matrix, it
used a spatio-temporal independent contrastive learning objective for users as in [12]:

1,2
U ) exp(s(zy,25)/7) ‘ ”
L o (s(zh 22)/T) 14)

Using POl-based and user-based self-supervised objective functions, we defined the
final self-supervised optimization objective as follows:

Log =LY +aLl, (15)
where a is a hyper-parameter used to balance two losses, and £ € {£L, £F}.

3.4. Model Training

To use self-supervised signals to improve the performance of the POI recommenda-
tions, SSTGL uses a multi-task training strategy to optimize the ranking loss and contrastive
learning loss jointly:

L= ‘Cmuin + )‘1‘6551 + )\2”(1)”51 (16)

where A; and A, are hyper-parameters used to control the strengths of the SSL and regular-
ization term, and @ denotes the set of GNN parameters.

3.5. Complexity Analyses of SSTGL

We show the algorithm in Algorithm 1. Since SSTGL introduces no trainable pa-
rameters, its and space complexity remain the same as the GNN backbone. In addition,
without any change to the neural network structure, its inference time complexity also
remains the same as the GNN backbone. Therefore, the main extra time complexity comes
from computing the self-supervised loss. Let |E| and |V| be the number of edges and nodes
in the user—item graph, respectively, s denote the number of epochs, B denote the batch
size, and d denote the embedding size. The time complexity of the whole training phase is
O(|E|d(2+ |V|s)), which is the same as an existing self-supervised GNN model [12].

Algorithm 1 The framework of SSTGL

Require: Given the original user-POI graph G = (V, &), the layer L of GNN model.
Ensure: The similarity scores Y{;p.
1: Initialize all node embeddings Z(®) and compute similarity scores by Equation (7);
2: while not converge do
3: foreachlayer/in|0,..., L—1] do
4: Aggregate neighbor information to update node embeddings Z(*1) by
Equation (3);
end for
Compute final node embeddings Z using readout strategy by Equation (4);
Compute similarity scores Yi;p by Equation (5);
Compute recommendation loss £,,,;;, by Equation (6);
Compute self-supervised loss L by Equation (15);
10:  Backpropagate based on overall loss £ computed by Equation (16).
11: end while
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4. Experiments

To verify the validity of SSTGL and explore the reasons behind it, in this section, we
conducted extensive experiments to answer the following research questions (RQs):

* RQ1: How does the proposed SSTGL method perform when compared with the
start-of-the-art baselines?

e  RQ2: How does each component of the SSTGL contribute to the overall performance?

*  RQ3: How do different hyper-parameters influence the performance of SSTGL?

4.1. Experimental Setup
4.1.1. Datasets

We conduct experiments on three benchmark datasets: Foursquare, Gowalla, and
Meituan. The statistics of the datasets are shown in Table 1.

*  Foursquare [19]: The Foursquare dataset consists of check-in data generated on
Foursquare from April 2012 to September 2013. Following [19], we removed users with
less than 10 interactions and POlIs with less than 10 interactions. After preprocessing,
it contained 1,196,248 check-ins between 24,941 users and 28,593 POls.

*  Gowalla [19]: The Gowalla dataset consists of check-in data generated on Gowalla
from February 2009 to October 2010. As was done in [19], we removed users with less
than 15 interactions and POIs with less than 10 interactions. After preprocessing, it
contained 1,278,274 check-ins between 18,737 users and 32,510 POls.

*  Meituan “https:/ /www.biendata.xyz/competition/smp2021_1/ (accessed on 28 July
2023)”: The Meituan dataset consists of check-in data generated on the Meituan
APP from 1st March 2021 to 28th March 2021. We removed users with less than 10
interactions and POls without location information. After preprocessing, it contained
602,331 check-ins between 38,904 users and 3182 POls.

Table 1. Dataset statistics.

Dataset #Check-Ins  #POI #User  Sparsity Time Span
Foursquare 1,196,248 28,593 24,941 99.90% April 2012-September 2013

Gowalla 1,278,274 32,510 18,737 99.87% February 2009-October 2010

Meituan 602,331 3182 38,904 99.51% 1st March 2021-28th March 2021

For each dataset, we chose the oldest 70% of interactions of each user as the training
data and the newest 20% of interactions as the test data. The remaining 10% were used as
validation data.

4.1.2. Baselines

We compared SSTGL with the following ten models, which can be classified according
to Table 2:

e NeuMF [20]: NeuMF is a classical MF-based model that combines matrix factorization
and multi-layer perceptron to learn both low-dimensional and high-dimensional
embeddings.

e NGCF [21]: NGCF is a GNN-based model capturing high-order information through
message passing and aggregation.

e DGCEF [22]: DGCF is a GNN-based model, which models different relationships and
separates user intents in the representation.

e LightGCN [23]: LightGCN is a GNN-based recommendation model, which simplifies
the aggregation step by deleting the weight matrix and activation function.

e SGL [12]: SGL is a graph-based self-supervised method that proposes three data
augmentation strategies based on the graph structure.

e NCL [13]: NCL is a graph-based contrastive learning method that improves neural
graph collaborative filtering by considering structural and semantic neighbors.
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e  LGLMF [3]: LGLMF is an MF-based POI recommendation model, which combines
logistic matrix factorization with a region-based geographical model.

e STACP [5]: STACP is also an MF-based POI recommendation model, which combines
matrix factorization with a spatio-temporal activity-centers algorithm.

*  GPR[9]: GPRis a GNN-based model designed for POI recommendation that uses an
extra POI-POI graph to learn item embeddings and improve performance.

e  MPGRec [24]: MPGRec is the newest GNN-based POI recommendation model, which
uses a dynamic memory module to store global information for spatial consistency.

Table 2. Category of baselines and SSTGL.

MF-Based GNN-Based GNN and SSL-Based
ST-unaware NeuMF [20] NGCEF [21], DGCF [22], LightGCN [23] SGL [12], NCL [13]
ST-aware LGLMF [3], STACP [5] GPR [9], MPGRec [24] SSTGL(Ours)

For all these baselines, we followed the default hyper-parameter settings as stated in
their papers. Note that, since our datasets do not have auxiliary information such as social
relationships or user attributes, we did not use the methods from [10,11,25,26] that utilize
the aforementioned auxiliary information as baselines. In addition, since we focused on
the classical POI recommendation task, we did not choose GNN models for the next POI
recommendation [27,28] or tour the recommendations [29] as baselines.

4.1.3. Evaluation Metrics

To evaluate the model’s performance, we adopted two general metrics, Recall@N and
mean average precision (MAP@N), where N means the top-N POIs recommended by the
model. In our experiments, N was set to 5, 10, 20, and 50 for a comprehensive comparison.

4.1.4. Implementation Details

We implemented SSTGL based on Recbole [30], which is a PyTorch-based open-
source framework to develop recommendation algorithms. As for the model training,
we employed the Adam [31] optimizer to minimize the overall loss £, where we set the
learning rate to Ir = 0.005 for the Foursquare and Gowalla datasets and to [r = 0.05 for the
Meituan dataset. For SSTGL and all the baselines, we adopted an early-stopping strategy
with a patience of 10 epochs to prevent overfitting, where Recall@5 was the indicator. We set
the balance hyper-parameters toa = 1, A; = 0.05, and A, = 0.00005. We tuned the hyper-
parameters to T € [0.1,0.2,0.5,1], ry € [0.1,0.3,0.5,0.7,0.9], and p € [0.01,0.05,0.1,0.2].

4.2. Performance Comparison (RQ1)

The experimental results on the three datasets are shown in Table 3, Table 4 and Table 5,
respectively. Note that there were four different variants of SSTGL depending on the data
augmentation and the choice of the pre-text task:

e SSTGL(SEP): uses spatial-aware edge perturbation and non-spatio-temporal pre-

text tasks.

¢ SSTGL(TEP): uses temporal-aware edge perturbation and non-spatio-temporal pre-
text task.

e  SSTGL(SCL): uses spatial-aware contrastive learning and non-spatio-temporal data aug-
mentation.

e SSTGL(TCL): use temporal-aware contrastive learning and non-spatio-temporal data
augmentation.
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Table 3. Overall performance of SSTGL and all baselines for Foursquare dataset, where the best

results for each column are shown in bold font, and the second-place results are underlined.

Model Recall@5 Recall@10 Recall@20 Recall@50 MAP@5 MAP@10 MAP@20 MAP@50
NeuMF 0.0368 0.0610 0.0981 0.1727 0.0235 0.0241 0.0271 0.0310
NGCF 0.0390 0.0627 0.0980 0.1688 0.0249 0.0250 0.0278 0.0314
DGCF 0.0435 0.0669 0.1028 0.1764 0.0291 0.0288 0.0316 0.0354
LightGCN 0.0469 0.0721 0.1076 0.1796 0.0317 0.0312 0.0341 0.0378
SGL 0.0452 0.0707 0.1080 0.1852 0.0300 0.0299 0.0330 0.0371
NCL 0.0463 0.0723 0.1083 0.1839 0.0313 0.0310 0.0338 0.0378
STACP 0.0274 0.0450 0.0700 0.1275 0.0187 0.0186 0.0206 0.0235
LGLMEF 0.0284 0.0459 0.0729 0.1284 0.0192 0.0190 0.0212 0.0242
GPR 0.0316 0.0502 0.0763 0.1272 0.0183 0.0205 0.0224 0.0243
MPGRec 0.0592 0.0848 0.1200 0.1915 0.0366 0.0398 0.0425 0.0452
SSTGL (Ours) 0.0577 0.0851 0.1244 0.2036 0.0338 0.0374 0.0401 0.0427

Table 4. Overall performance of SSTGL and all baselines for Gowalla dataset, where the best results
for each column are shown in bold font, and the second-place results are underlined.

Model Recall@5 Recall@l0 Recall@20 Recall@50 Map@5 Map@10 Map@20 Map@50
NeuMF 0.0302 0.0497 0.0808 0.1478 0.0227 0.0211 0.0231 0.0267
NGCF 0.0308 0.0500 0.0810 0.1458 0.0235 0.0216 0.0234 0.0268
DGCF 0.0332 0.0530 0.0834 0.1477 0.0266 0.0239 0.0254 0.0288
LightGCN 0.0352 0.0564 0.0897 0.1593 0.0271 0.0247 0.0267 0.0305
SGL 0.0338 0.0557 0.0911 0.1657 0.0259 0.0240 0.0262 0.0305
NCL 0.0344 0.0561 0.0902 0.1631 0.0267 0.0244 0.0264 0.0305
STACP 0.0176 0.0302 0.0509 0.0964 0.0142 0.0131 0.0143 0.0168
LGLMEF 0.0241 0.0398 0.0646 0.1156 0.0209 0.0188 0.0201 0.0230
GPR 0.0302 0.0483 0.0766 0.1310 0.0183 0.0196 0.0216 0.0238
MPGRec 0.0471 0.0706 0.1050 0.1718 0.0308 0.0325 0.0349 0.0377
SSTGL (Ours) 0.0511 0.0786 0.1175 0.1946 0.0292 0.0329 0.0357 0.0383

In detail, we used dropedge [12] as the non-spatial-temporal data augmentation,

and we defined the non-spatio-temporal pre-text task of the POI in a similar way to
Equation (14). We present the best results among these variants with respect to the perfor-
mance of SSTGL in the tables. The differences in performance between the variants are
analyzed in the next section.

Based on the experimental results, we have the following observations:

SSTGL outperformed all baseline methods in most cases. In particular, the relative im-
provements from the strongest baselines were 6.32% (Foursquare), 13.27% (Gowalla),
and 9.68% (Meituan) using the Recall@50 metric. Note that SSTGL not only worked
better than the existing POI recommendation methods, but also better than the ex-
isting self-supervised graph learning methods. This demonstrates the ability of our
model to use self-supervised learning to alleviate the data sparsity problem in the POI
recommendation task. Although MPGRec performed better in some cases, it relies on
a dynamic memory module, which requires a large memory overhead.

For the baseline models, the GNN models did not always outperform the MF models,
which was related to the datasets and model architectures. For example, we found
that the NeuMF model performed better than some GNN-based methods for the
Meituan dataset. This may be due to the low sparsity of the Meituan dataset and
the more personalized interests of the users in the take-out scenario, so aggregating
higher-order neighborhood information would instead reduce the performance.
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Table 5. Overall performance of SSTGL and all baselines for Meituan dataset, where the best results

for each column are shown in bold font, and the second-place results are underlined.

Model Recall@5 Recall@10 Recall@20 Recall@50 MAP@5 MAP@10 MAP@20 MAP@50
NeuMF 0.3540 0.4315 0.4631 0.5063 0.2339 0.2517 0.2562 0.2588
NGCF 0.3198 0.3952 0.4499 0.5177 0.2123 0.228 0.2349 0.2392
DGCF 0.3285 0.4046 0.4612 0.5335 0.2194 0.2353 0.2427 0.2472
LightGCN 0.3456 0.4221 0.4705 0.5315 0.2250 0.2417 0.2482 0.252
SGL 0.3373 0.4123 0.4674 0.5311 0.2432 0.2591 0.2664 0.2705
NCL 0.3466 0.4236 0.4667 0.5187 0.2222 0.2391 0.2451 0.2484
STACP 0.0054 0.0094 0.0203 0.0421 0.0022 0.0026 0.0034 0.0041
LGLMF 0.0005 0.0010 0.0030 0.0087 0.0002 0.0002 0.0004 0.0005
GPR 0.2984 0.3758 0.4573 0.5669 0.2066 0.2185 0.2253 0.2297
MPGRec 0.3930 0.4316 0.4655 0.5147 0.3170 0.3240 0.3272 0.3294
SSTGL (Ours) 0.3865 0.4388 0.4917 0.5645 0.3073 0.3146 0.3185 0.3209

4.3. Ablation Study (RQ2)

To explore the effects of different data augmentation and pre-text tasks on the model

performance, we show the results of four model variants in Figure 2. Based on the results,
we have the following observations:

0.03

In the strategies we designed, the temporal-based approaches (i.e., TEP and TCL)
worked better on the Foursquare and Gowalla datasets, and the spatial-aware ap-
proaches (i.e., SEP and SCL) performed better on the Meituan dataset. This may
indicate that the spatial factor has a greater influence on the Meituan dataset com-
pared with other datasets.

Although both consider spatio-temporal information, the data augmentation-based
approach outperformed the pre-text-task-based approach. This may be due to the
direct modification of the graph structure using the self-supervised method of data
augmentation, which allows the node representation of the GNN output to make
better use of spatio-temporal prior knowledge.
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Figure 2. Ablation study on Foursquare, Gowalla, and Meituan datasets.

4.4. Influence of Hyper-Parameters (RQ3)

Our model contained three main hyper-parameters (i.e., the drop ratio ry, the sample

ratio p, and the temperature 7). In Figure 3, we show the performance of the model
for the Foursquare dataset with different values of hyper-parameters. We have the
following observations:

Overall, the different drop ratio rg and sample ratio p had little effect on the model
results, which indicates the robustness of the model.

Too large or too small SSL temperature T values reduced the performance. This
observation is consistent with the previous work [12]. The possible reason behind
this is that, if the temperature is large, it is more difficult to distinguish negative
examples. If the temperature is small, only a small number of negative cases affect
the optimization.
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Figure 3. Hyper-parameter experiments for Foursquare dataset.

4.5. Discussion

Based on our experiments, we found that existing self-supervised learning strategies
did not always improve the GNN models. For example, the SGL performed worse than the
LightGCN in most cases. This indicates that data augmentation approaches that do not take
into account the spatio-temporal information may not help POI recommendations to allevi-
ate the data sparsity problem. In contrast, our model took spatio-temporal information into
account when designing the self-supervised method, so the performance was improved.

In addition, we were surprised to find that the spatio-temporal approaches did not
always outperform the non-spatio-temporal models. In particular, the STACP and LGLMF
performed extremely poorly on the Meituan dataset, which may be due to the fact that
these two methods rely on the geographic coordinates of the POI, while the Meituan dataset
only has the region ID of the POL. Since POI recommendation algorithms are often not
compared with non-spatio-temporal recommendation algorithms, many works ignore that
recommendation algorithms based on bi-partite graphs can also be very strong baselines.
In practical application, this also inspires us to fuse the spatio-temporal information for the
POI recommendation based on the existing non-spatio-temporal GNNs (e.g., Light GCN),
which may be more effective and efficient than designing completely new spatio-temporal
GNN:ss (e.g., GPR).

5. Conclusions

In this paper, we proposed a novel self-supervised spatio-temporal graph learning
model (SSTGL) to improve the GNN's potential for use in POI recommendations. In par-
ticular, we designed a model-agnostic self-supervised learning framework that took into
account spatio-temporal prior knowledge. Based on the framework, we defined spatio-
temporal aware data augmentation and pre-text tasks. Extensive experiments showed that
SSTGL outperformed existing methods for the POI recommendation task.

In future work, we will extend more views and more flexible data augmentation
strategies under the self-supervised learning framework, and we will try to apply graph-
based self-supervised learning to more complex tasks, including next POI recommendation
and tour recommendation.
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