
Citation: Wang, Y.; Zhou, Y.; Wei, L.;

Li, R. Design of a Four-Axis Robot

Arm System Based on Machine

Vision. Appl. Sci. 2023, 13, 8836.

https://doi.org/10.3390/

app13158836

Academic Editors: Thierry Floquet

and Karlo Griparić

Received: 24 June 2023

Revised: 18 July 2023

Accepted: 25 July 2023

Published: 31 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Design of a Four-Axis Robot Arm System Based on
Machine Vision
Yijie Wang 1,†, Yushan Zhou 2,†, Lai Wei 3 and Ruiya Li 4,*

1 School of International Education, Wuhan University of Technology, Wuhan 430070, China;
324245@whut.edu.cn

2 School of Automation, Wuhan University of Technology, Wuhan 430070, China; 310601@whut.edu.cn
3 School of Information, Wuhan University of Technology, Wuhan 430070, China; laiwei@whut.edu.cn
4 School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
* Correspondence: liruiya@whut.edu.cn
† These authors contributed equally to this work.

Abstract: With the concept of industrial automation gradually being put forward, the four-axis
robotic arm is gradually being applied in industrial production environments due to its advantages
such as a stable structure, easy maintenance, and expandability. However, it is difficult to diversify
and improve the traditional four-axis robotic arm system due to the high software and hardware
coupling and the single system design, which results in high production costs. At the same time,
its low intelligence and high-power consumption limit its wide application. The paper proposes an
embedded design of a four-axis manipulator system based on vision guidance. Based on the robot
kinematics theory and geometric principles, the dynamics simulation of the manipulator model is
carried out. Through the forward and reverse analysis of the manipulator model and the trajectory
planning of the manipulator, the YOLOV7 target detection algorithm is introduced and deployed
on the embedded device, which greatly reduces the manufacturing cost of the manipulator while
meeting the control and power consumption requirements. It has been verified by experiments that
the robot arm in this paper can achieve an end accuracy of 0.05 mm under the condition of a load of
1 kg using the ISO 9283 international standard, and the recognition algorithm adopted can achieve a
recognition accuracy of 95.2% at a frame rate of 29. The overall power consumption is also lower
than that of traditional robotic arms.

Keywords: robotic arm system; path planning; vision guidance; depth detection; motion control
system

1. Introduction

With the development of industrial automation, robotic arms have been widely used
in production life instead of humans to perform high-risk and high-repetition work [1–3].
Compared with traditional robotic arms, four-axis robotic arms are gradually being used in
industrial production scenarios due to their structural stability, convenience of maintenance,
and scalability. In the past few years, research has mainly focused on the path planning
algorithms for improving the intelligence of robotic arms [4,5], on the innovation of the
robotic arm software and hardware system to reduce the cost and power consumption,
and on the complete exploitation of the robotic arm system for improving the application
scenario of the system, which has resulted in the development of robotic arm systems
being improved [6]. However, as robotic arms are gradually being used in various indus-
tries, industrial automation has put forward higher requirements in terms of robotic arm
intelligence and transplantation flexibility [7,8].

Cabre et al. proposed a case study of project-based learning developed at the Univer-
sity of Leyda in Spain [9]. This article combines the knowledge of computer vision and
robot control to complete automation project tasks. The article develops a computer vision

Appl. Sci. 2023, 13, 8836. https://doi.org/10.3390/app13158836 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13158836
https://doi.org/10.3390/app13158836
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4134-7604
https://doi.org/10.3390/app13158836
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13158836?type=check_update&version=1

Appl. Sci. 2023, 13, 8836 2 of 20

system that must detect small objects randomly placed on a target surface and control an
educational robotic arm to pick them up and move them to a predefined destination. The
robotic arm system comprehensively uses computer vision and robotic arm control theory,
but its automation level is low, and it cannot complete precise grasping autonomously.
Sepulveda et al. proposed a dual-arm robot system [10] which combines the image segmen-
tation algorithm with the dynamic programming algorithm and the occlusion algorithm to
improve the picking success rate of the harvester. Image segmentation algorithms (based
on an SVM pixel classifier, watershed transformation, and point cloud registration) are
responsible for the detection and localization of eggplants. Experimental results show that
the robotic arm can harvest 91.67% of the total number of eggplants under the proposed
common scenario. Since the system uses computer image processing algorithms instead of
deep learning algorithms to detect targets, the accuracy rate is low. Yang et al. introduced
the development of a shared control system for intelligent manipulators [11]. The target
object is detected by the vision system and then displayed to the user in a video, and
through the analysis of the invoked EEG signal, a brain–computer interface is developed
to infer the exact object the user needs. These results are then transmitted to a shared
control system that enables precise object manipulation through visual servoing technology.
Through the coordination of task motion and ego-motion (CTS) method, the robot has an
autonomous obstacle avoidance function, which improves the intelligence of the shared
control system. In this system, the basic color separation algorithm is used for the target
detection algorithm, and it cannot recognize complex color objects independently.

For mobile robots to complete complex tasks such as explosive disposal using two
dexterous hands [12], Sun et al. developed the impedance control approach with slippage
detection by considering slippage tendency and slippage intensity to produce a stable
in-hand manipulation. Furthermore, the Faster R-CNN is employed to determine the
grasping region for robot manipulation through object detection and learning. Finally, the
explosive disposal scene is designed to justify the effectiveness and good performance
of the proposed methods. This robotic arm has a good motion effect, but it is difficult to
promote it on a large scale because it is not very portable.

Du et al. proposed an offline–merge–online robot teaching method (OMORTM).
Specifically [13], a virtual real fusion interactive interface (VRFII) was first developed by
projecting a virtual robot into the real scene with an augmented-reality (AR) device, aiming
to implement offline teaching. Second, a visual-aid algorithm (VAA) was proposed to
improve offline teaching accuracy. Third, a gesture and speech teaching fusion algorithm
(GSTA) with fingertip tactile force feedback was developed to obtain the natural teaching
pattern and improve the interactive accuracy of teaching the real or virtual robot. This kind
of robot combines vision algorithm and basic control of the robot, but research has not been
conducted on the upper computer system, so it is difficult to popularize.

Luo et al. proposed a service-oriented multiagent system (SoMAS) for the control
and analysis of the cyber-physical system (CPS) in manufacturing automation utilizing an
on-contact dynamic obstacle avoidance, seven-DoF robot arm [14]. The interfaces of the
services which the robot arm subsystem should provide to fully exploit its capability are
identified. Specifically, the services of moving, object recognition, object fetching, and safety
of human–robot interaction are considered the fundamental functionalities that the robot
arm should provide. The way to evaluate the quality of services (QoS) for the robot arm
subsystem is also explained. To build such a robot arm subsystem, the system architecture
is proposed. Also, implementation for the subsystem, which includes 3D model-based
object recognition, grasp database for object fetching, and online noncontact obstacle
avoidance for the safety of human–robot interaction, is provided. The experimental results
demonstrate that the capabilities of 3D model-based object recognition, object fetching, and
dynamic collision avoidance are successfully implemented. This robot can realize object
recognition and human–computer interaction, but it is not developed with an embedded
system, so its power consumption is high and it is difficult for secondary development

Appl. Sci. 2023, 13, 8836 3 of 20

To solve the above problems, a vision-guided intelligent robotic arm control system is
proposed in this paper, including the overall mechanical structure of the arm and control
system design, related algorithms, and upper computer software implementation, as shown
in Figure 1. Firstly, simulations are conducted according to the kinematic theory of the
robotic arm, the modeling and forward and reverse kinematic analysis of the robotic arm
are completed, and the working space of the four-axis robotic arm used in this paper is
determined. At the same time, the joint space and Cartesian space trajectory planning are
compared to determine the algorithm used for the path planning of the robotic arm, which
provides a theoretical basis for the construction of the robotic arm’s motion control. In
addition, the mechanical structure design and the control system design are implemented
to verify the proposed kinematic theory and to lay the foundation for the subsequent
performance experiments. Furthermore, the system introduces improved target detection
and YOLOV7 visual recognition algorithm to improve the recognition speed and accuracy
of the algorithm deployed on embedded devices. It is experimentally verified that the
proposed robotic arm system achieves an accuracy of 95.2% when reaching a 29FPS frame
rate, which is better than traditional target detection algorithms such as Faster-RCNN, SSD,
and YOLOV5. Based on the realization of the basic motion, an upper computer based on
Python language and QT is built into the embedded device Jetson Nano, which includes
motion control, target recognition, and serial communication.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 3 of 21

an embedded system, so its power consumption is high and it is difficult for secondary
development

To solve the above problems, a vision-guided intelligent robotic arm control system
is proposed in this paper, including the overall mechanical structure of the arm and con-
trol system design, related algorithms, and upper computer software implementation, as
shown in Figure 1. Firstly, simulations are conducted according to the kinematic theory
of the robotic arm, the modeling and forward and reverse kinematic analysis of the robotic
arm are completed, and the working space of the four-axis robotic arm used in this paper
is determined. At the same time, the joint space and Cartesian space trajectory planning
are compared to determine the algorithm used for the path planning of the robotic arm,
which provides a theoretical basis for the construction of the robotic arm’s motion control.
In addition, the mechanical structure design and the control system design are imple-
mented to verify the proposed kinematic theory and to lay the foundation for the subse-
quent performance experiments. Furthermore, the system introduces improved target de-
tection and YOLOV7 visual recognition algorithm to improve the recognition speed and
accuracy of the algorithm deployed on embedded devices. It is experimentally verified
that the proposed robotic arm system achieves an accuracy of 95.2% when reaching a
29FPS frame rate, which is better than traditional target detection algorithms such as
Faster-RCNN, SSD, and YOLOV5. Based on the realization of the basic motion, an upper
computer based on Python language and QT is built into the embedded device Jetson
Nano, which includes motion control, target recognition, and serial communication.

Figure 1. The system architecture of the robotic arm system.

Aiming at the problems of high cost, low recognition accuracy, and difficult design
of traditional manipulators, this paper designs and improves a lightweight four-degree-
of-freedom manipulator. The manipulator is based on the YOLOv7 target recognition al-
gorithm and depth perception algorithm. The arm adds visual guidance. The paper
mainly has the following innovations:

(i). Introducing embedded devices into the robotic arm system and building a deep
learning algorithm on top of it improves the intelligence of the robotic arm and
greatly reduces the cost of the robotic arm.

(ii). Combining the deep learning algorithm with the depth camera, the system can
quickly obtain the multi-dimensional information of the target.

(iii). Based on the QT platform, a robotic arm control host computer is built, which makes
the system portable and highly expandable.

Figure 1. The system architecture of the robotic arm system.

Aiming at the problems of high cost, low recognition accuracy, and difficult design
of traditional manipulators, this paper designs and improves a lightweight four-degree-
of-freedom manipulator. The manipulator is based on the YOLOv7 target recognition
algorithm and depth perception algorithm. The arm adds visual guidance. The paper
mainly has the following innovations:

(i). Introducing embedded devices into the robotic arm system and building a deep
learning algorithm on top of it improves the intelligence of the robotic arm and greatly
reduces the cost of the robotic arm.

(ii). Combining the deep learning algorithm with the depth camera, the system can quickly
obtain the multi-dimensional information of the target.

(iii). Based on the QT platform, a robotic arm control host computer is built, which makes
the system portable and highly expandable.

A comparison between our robotic arm system and some recent robotic arm designs
is given in Table 1. It can be seen from Table 1 that the intelligent robotic arm system

Appl. Sci. 2023, 13, 8836 4 of 20

designed in this paper is complete compared to the four robotic arm systems. In addition,
the detection accuracy of our design is also better than the other designs. Compared with
the traditional industrialized system design, the robotic arm has low power consumption
and high portability due to the use of the embedded system.

Table 1. Comparison of the proposed robotic arm system and related designs.

Ref. Robotic Arm Simulation Vision System Target Recognition Algorithm Upper Computer Embedded Systems Detection Accuracy

[9] Yes Yes No Yes No No
[10] Yes Yes Yes No No 91.67%
[11] Yes Yes No Yes No No
[12] Yes Yes Yes No No 63%
[13] Yes Yes Yes No No No
[14] Yes Yes Yes Yes No No
This
work Yes Yes Yes Yes Yes 95.2%

The motion algorithm of the robotic arm body includes the basic motion algorithm
and the trajectory planning algorithm. After the control algorithm is determined, the
hardware of the robotic arm control system is designed, including the construction of the
control system platform and the corresponding driver code implementation, along with the
production of the physical robotic arm using 3D printing and related technologies. Once
the robotic arm hardware platform is perfected, the target recognition and visual guidance
algorithms, as well as the upper computer visualization software, need to be built.

The research purposes of this article are as follows:

• Carry out simulation experiments based on the kinematics theory of the manipulator,
complete the modeling of the manipulator and the forward and reverse kinematics
analysis, and determine the working space of the four-axis manipulator used, laying
the foundation for trajectory planning and motion control;

• Using joint space and Cartesian space trajectory planning, determine the algorithm
used by the robot arm for path planning, which provides a theoretical basis for the
construction of robot arm motion control;

• Carry out mechanical structure design and control system design for the robotic
arm, and complete the physical design and realization of the robotic arm, thereby
verifying the proposed kinematics theory and laying the foundation for subsequent
performance experiments;

• Adopt the improved target detection and YOLOV7 visual recognition algorithm
to improve the recognition speed and accuracy of the algorithm deployed on the
embedded device, effectively improve the performance of the robotic arm, make
the system portable and highly expandable, and achieve the goal of the project’s
expected requirements.

The research content of this article includes:

1. Carrying out kinematics analysis and design, mainly including modeling the whole
machine, performing forward and reverse kinematics analysis, and introducing im-
proved target detection and the YOLOV7 visual recognition algorithm;

2. Structural analysis and design of the manipulator, design, and manufacture of the
physical model of the manipulator, the use of 3D printing and related technologies to
make the real manipulator, and conducting forward and inverse kinematics analysis;

3. Designing the control system of the manipulator and constructing the upper computer
of the control system based on Python language and QT in the embedded device
Jetson Nano;

4. Deploying the target detection algorithm, mainly including repeated experiments to
collect relevant data and make a dataset, training the robot arm through the algorithm,
and analyzing, optimizing, and improve it.

Appl. Sci. 2023, 13, 8836 5 of 20

5. Carrying out the software design of the upper computer, mainly including the de-
sign of the basic interface used by the user and embedding the relevant control
algorithms involved.

2. Kinematic Analysis and Design of Robotic Arms

As the basis for the motion control of the robotic arm, the kinematic analysis of the
robotic arm is the study of the relationship between the motion of the robotic arm in each
coordinate system [15,16]. Before carrying out the kinematic analysis of the robotic arm, the
arm is first modeled in Matlab using the D-H model with the following basic parameters:
theta is the joint angle, d is the linkage offset [17,18], a is the linkage length, and alpha is
the linkage torsion angle.

The basic joint model can be found in Figure 2. Once the model has been established,
the workspace of the joint model can be determined by the Monte Carlo method [19,20]. In
this section, the Monte Carlo method is used to solve the workspace as follows [21]: firstly,
random variables are generated for each joint, and a random set of joint space vectors
are generated for the robotic arm, which is calculated by using 10,000 points. Secondly,
the kinematic positive solution is calculated and mapped from the joint space to the end
workspace (Cartesian coordinate system), and finally, the result is plotted in Figure 3. It
can be seen from Figure 3 that the result of the arm motion contains any coordinate in the
3D space, which shows that the designed robotic arm can reach any specified point in the
actual work. After the arm has been modeled, a kinematic analysis of the arm is carried
out, including both positive and negative kinematics.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 21

3. Designing the control system of the manipulator and constructing the upper com-
puter of the control system based on Python language and QT in the embedded de-
vice Jetson Nano;

4. Deploying the target detection algorithm, mainly including repeated experiments to
collect relevant data and make a dataset, training the robot arm through the algo-
rithm, and analyzing, optimizing, and improve it.

5. Carrying out the software design of the upper computer, mainly including the design
of the basic interface used by the user and embedding the relevant control algorithms
involved.

2. Kinematic Analysis and Design of Robotic Arms
As the basis for the motion control of the robotic arm, the kinematic analysis of the

robotic arm is the study of the relationship between the motion of the robotic arm in each
coordinate system [15,16]. Before carrying out the kinematic analysis of the robotic arm,
the arm is first modeled in Matlab using the D-H model with the following basic param-
eters: theta is the joint angle, d is the linkage offset [17,18], a is the linkage length, and
alpha is the linkage torsion angle.

The basic joint model can be found in Figure 2. Once the model has been established,
the workspace of the joint model can be determined by the Monte Carlo method [19,20].
In this section, the Monte Carlo method is used to solve the workspace as follows [21]:
firstly, random variables are generated for each joint, and a random set of joint space vec-
tors are generated for the robotic arm, which is calculated by using 10,000 points. Sec-
ondly, the kinematic positive solution is calculated and mapped from the joint space to
the end workspace (Cartesian coordinate system), and finally, the result is plotted in Fig-
ure 3. It can be seen from Figure 3 that the result of the arm motion contains any coordinate
in the 3D space, which shows that the designed robotic arm can reach any specified point
in the actual work. After the arm has been modeled, a kinematic analysis of the arm is
carried out, including both positive and negative kinematics.

Figure 2. Robotic arm joint model.
Figure 2. Robotic arm joint model.

Appl. Sci. 2023, 13, 8836 6 of 20

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 21

Figure 3. Robotic arm workspace.

Figure 4 reflects the movement space that the manipulator can reach in different co-
ordinate systems

Figure 4. The movement space of the robotic arm.

2.1. Positive Kinematic Analysis of the Robotic Arm
Positive kinematic analysis of the robotic arm refers to obtaining the position of the

end of the robotic arm relative to the reference coordinate system based on these angles
and information about the connecting rod [22], given that the rotation angles of the motor
at each joint between the robotic arms are known. The structure of the four-axis robotic
arm in this paper is shown in Figure 5 where Joint0 is the base coordinate system of the
robotic arm, Joint1, Joint2, and Joint3 are all rotational joints, and Joint4 is the wrist joint.

Figure 3. Robotic arm workspace.

Figure 4 reflects the movement space that the manipulator can reach in different
coordinate systems

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 21

Figure 3. Robotic arm workspace.

Figure 4 reflects the movement space that the manipulator can reach in different co-
ordinate systems

Figure 4. The movement space of the robotic arm.

2.1. Positive Kinematic Analysis of the Robotic Arm
Positive kinematic analysis of the robotic arm refers to obtaining the position of the

end of the robotic arm relative to the reference coordinate system based on these angles
and information about the connecting rod [22], given that the rotation angles of the motor
at each joint between the robotic arms are known. The structure of the four-axis robotic
arm in this paper is shown in Figure 5 where Joint0 is the base coordinate system of the
robotic arm, Joint1, Joint2, and Joint3 are all rotational joints, and Joint4 is the wrist joint.

Figure 4. The movement space of the robotic arm.

2.1. Positive Kinematic Analysis of the Robotic Arm

Positive kinematic analysis of the robotic arm refers to obtaining the position of the
end of the robotic arm relative to the reference coordinate system based on these angles
and information about the connecting rod [22], given that the rotation angles of the motor
at each joint between the robotic arms are known. The structure of the four-axis robotic
arm in this paper is shown in Figure 5 where Joint0 is the base coordinate system of the
robotic arm, Joint1, Joint2, and Joint3 are all rotational joints, and Joint4 is the wrist joint.

Appl. Sci. 2023, 13, 8836 7 of 20

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 21

Figure 5. The schematic diagram for positive kinematic analysis of the robotic arm.

The following equation for the positive kinematics of a 4-degree-of-freedom robotic
arm is derived. Firstly, according to the transformation matrix, the linkage can be defined
as:

𝑇 = 𝑅 (𝛾) = () ()
() ()

cos sin 0 0
sin cos 0 0

0 0 0 0
0 0 0 1

γ γ
γ γ

 (1)

𝑇 = 𝑅 (90°) ∗ 𝑅 (𝛼) = () ()

() ()

0 0cos sin
1 00 0
0 0sin cos
0 10 0

α α

α α

−

− −
 (2)

𝑇 = 𝐷 (𝑙) ∗ 𝑅 (𝛽) = () ()
() ()

2cos sin 0
sin cos 0 0

0 0 0 0
0 0 0 1

β β
β β

−

l

 (3)

𝑇 = 𝐷 (𝑙) = 𝑇 = 𝐷 (𝑙) ∗ 𝑅 (𝛽) = 31 0 0
0 0 0 0
0 0 0 0
0 0 0 1

l

 (4)

Based on the already defined linkage coordinate system and the corresponding link-
age parameters, the transformation matrix of the tool coordinate system with respect to
the base coordinate system can be derived from the following equation:

Figure 5. The schematic diagram for positive kinematic analysis of the robotic arm.

The following equation for the positive kinematics of a 4-degree-of-freedom robotic
arm is derived. Firstly, according to the transformation matrix, the linkage can be defined as:

1
0T = RZ(γ) =

cos(γ) sin(γ) 0 0
sin(γ) cos(γ) 0 0

0 0 0 0
0 0 0 1

 (1)

1
2T = Rx(90◦) ∗ RZ(α) =

cos(α) − sin(α) 0 0

0 0 1 0
− sin(α) − cos(α) 0 0

0 0 0 1

 (2)

2
3T = Dx(l2) ∗ RZ(β) =

cos(β) − sin(β) 0 l2
sin(β) cos(β) 0 0

0 0 0 0
0 0 0 1

 (3)

3
4T = Dx(l3) = 2

3T = Dx(l2) ∗ RZ(β) =

1 0 0 l3
0 0 0 0
0 0 0 0
0 0 0 1

 (4)

Based on the already defined linkage coordinate system and the corresponding linkage
parameters, the transformation matrix of the tool coordinate system with respect to the
base coordinate system can be derived from the following equation:

0
4T = 0

1T ∗ 1
2T ∗ 2

3T ∗ 3
4T (5)

Transforming the above equation yields the following equation:

0
4T = RZ(γ) ∗ Rx(90◦) ∗ RZ(α) ∗ Dx(l2) ∗ Dx(l2) ∗ RZ(β) ∗ Dx(l3) (6)

Appl. Sci. 2023, 13, 8836 8 of 20

Expanding the above equation yields:

0
4T =

c1 ∗ c23 −c1 ∗ s23 0 c1 ∗ (l3 ∗ c23 + l2 ∗ c2)
s1 ∗ c23 −s1 ∗ s23 c1 s1 ∗ (l3 ∗ c23 + l2 ∗ c2)

s23 c23 0 l3 ∗ s23 + l2 ∗ s2
0 0 0 1

 (7)

where c1, c2 is shorthand for cos(θ1), cos(θ2)
s1, s2 is shorthand for sin(θ1), sin(θ2),
c23 is shorthand for cos(θ2 + θ3),
and s23 is shorthand for sin(θ2 + θ3).

From the fourth column of the 0
4T matrix, the position of the wrist joint at the base of

the robotic arm Joint0 can be obtained:

x = cos(γ) ∗ (l2 ∗ cos(α)) + l3 ∗ cos(α + β) (8)

y = sin(γ) ∗ (l2 ∗ cos(α)) + l3 ∗ cos(α + β) (9)

z = −l2 ∗ sin(α) + l3 ∗ cos(α + β) (10)

According to the above equation, the three-dimensional coordinates of the end of the
robotic arm in space can be calculated once the rotation angle α, β and the length of each
joint of the robotic arm are known.

2.2. Robotic Arm Inverse Kinematics Analysis

In contrast to the positive kinematic analysis of the arm, the inverse kinematic analysis
of the arm uses calculations to solve for the angle of rotation at each joint when the relevant
parameters of the connecting rod and the position of the end of the arm concerning the
reference coordinate system have been obtained [23]. Geometric analysis based on the
structure of the robotic arm: for the robotic arm involved in this paper, it is necessary to
find the angle of rotation at each joint when the end of the robotic arm is moved from O to
O′, i.e., to find γ, α, and β, according to the inverse kinematics requirements.

Firstly, the geometric relationship between the rotation angle of the base and the
coordinates of the end of the arm is analyzed, i.e., γ.

Assuming that the base coordinate system is O, the end coordinate system is O′, the
coordinates are (x, y, z), and the arm length is H. When the rotation angle of the base of the
arm is γ, the following equation can be obtained according to the Pythagorean theorem:

L =
√

x2 + y2 (11)

where L is the projection in the xoy plane of the coordinate system O′ at the end of the
robotic arm concerning the base coordinate system O. The following equation is obtained
from the sine theorem:

γ = sin−1
(x

L

)
(12)

where γ is the angle at which the base of the arm needs to be rotated relative to the base
coordinate system when the end of the arm moves to O′.

Next, we will discuss α. There are two cases for α, as shown in Figure 6.

Appl. Sci. 2023, 13, 8836 9 of 20

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 21

Next, we will discuss α. There are two cases for α, as shown in Figure 6.

Figure 6. Angle diagram of the robotic arm: (a) z > 0, (b) z < 0.

When z > 0, according to the Pythagorean theorem, we can obtain: 𝐿′ = 𝐿 + 𝑧 (13)

Since the lengths of the two arms OA and O′A of the robotic arm are the same and
known, the following equation can be driven according to trigonometric relationship: 𝜃 = 2 ∗ cos (𝐿′2 ∗ 𝐻) (14)

And: 𝜔 = (𝜋2 − 𝜃2) (15)

𝜆 = cos (𝐿𝐿′) (16)

where ω is the angle formed by the robotic arm OA and L′ in space and λ is the angle
formed by L and L′ in space. Therefore, it can be obtained that, at z > 0, when the end of
the robotic arm moves to O′, the angle α that the robotic arm polar coordinates need to be
rotated is 𝛼 = (𝜋2 − λ − 𝜔) (17)

The final formula for calculating the alpha angle is

𝛼 = (cos (𝑥 + 𝑦 + 𝑧2 ∗ 𝐻) − cos (𝑥 + 𝑦𝑥 + 𝑦 + 𝑧) (18)

When z < 0, according to the Pythagorean theorem and Equations (5) and (6): 𝛼 = (𝜋2 + λ − 𝜔) (19)

The formula for calculating the α angle is obtained as:

𝛼 = (cos (𝑥 + 𝑦 + 𝑧2 ∗ 𝐻) + cos (𝑥 + 𝑦𝑥 + 𝑦 + 𝑧) (20)

The final beta angle is easily obtained as: 𝛽 = 𝜋 + 𝛼 − 𝜃 (21)

Figure 6. Angle diagram of the robotic arm: (a) z > 0, (b) z < 0.

When z > 0, according to the Pythagorean theorem, we can obtain:

L′ =
√

L2 + z2 (13)

Since the lengths of the two arms OA and O′A of the robotic arm are the same and
known, the following equation can be driven according to trigonometric relationship:

θ = 2 ∗ cos−1
(

L′

2 ∗ H

)
(14)

And:

ω =

(
π

2
− θ

2

)
(15)

λ = cos−1
(

L
L′

)
(16)

where ω is the angle formed by the robotic arm OA and L′ in space and λ is the angle
formed by L and L′ in space. Therefore, it can be obtained that, at z > 0, when the end of
the robotic arm moves to O′, the angle α that the robotic arm polar coordinates need to be
rotated is

α =
(π

2
− λ−ω

)
(17)

The final formula for calculating the alpha angle is

α =

(
cos−1

(√
x2 + y2 + z2

2 ∗ H

)
− cos−1

(√
x2 + y2√

x2 + y2 + z2

)
(18)

When z < 0, according to the Pythagorean theorem and Equations (5) and (6):

α =
(π

2
+ λ−ω

)
(19)

The formula for calculating the α angle is obtained as:

α =

(
cos−1

(√
x2 + y2 + z2

2 ∗ H

)
+ cos−1

(√
x2 + y2√

x2 + y2 + z2

)
(20)

The final beta angle is easily obtained as:

β = π + α− θ (21)

Appl. Sci. 2023, 13, 8836 10 of 20

The above is the process of finding the inverse motion of the robotic arm based on
the geometric method. The conversion from spatial coordinates to the rotation angle of
the robotic arm motor can be completed by converting the above formula into code and
embedding it in the lower computer.

2.3. Robotic Arm Path Planning Analysis

After analyzing the forward and reverse kinematics of the robotic arm, to ensure that
the trajectory of the robotic arm can meet the design requirements of fast response, low
motion inertia, and easy control when working, the joint space trajectory planning and
Cartesian space trajectory planning for the model are carried out for a robotic arm reaching
the one point from another point in space using two algorithms, respectively, as shown in
Figures 7 and 8.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 21

The above is the process of finding the inverse motion of the robotic arm based on
the geometric method. The conversion from spatial coordinates to the rotation angle of
the robotic arm motor can be completed by converting the above formula into code and
embedding it in the lower computer.

2.3. Robotic Arm Path Planning Analysis
After analyzing the forward and reverse kinematics of the robotic arm, to ensure that

the trajectory of the robotic arm can meet the design requirements of fast response, low
motion inertia, and easy control when working, the joint space trajectory planning and
Cartesian space trajectory planning for the model are carried out for a robotic arm reach-
ing the one point from another point in space using two algorithms, respectively, as shown
in Figures 7 and 8.

Figure 7. Cartesian trajectory planning for robotic arms.

Figure 8. Spatial trajectory planning of robotic arm joints.

Figure 7. Cartesian trajectory planning for robotic arms.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 21

The above is the process of finding the inverse motion of the robotic arm based on
the geometric method. The conversion from spatial coordinates to the rotation angle of
the robotic arm motor can be completed by converting the above formula into code and
embedding it in the lower computer.

2.3. Robotic Arm Path Planning Analysis
After analyzing the forward and reverse kinematics of the robotic arm, to ensure that

the trajectory of the robotic arm can meet the design requirements of fast response, low
motion inertia, and easy control when working, the joint space trajectory planning and
Cartesian space trajectory planning for the model are carried out for a robotic arm reach-
ing the one point from another point in space using two algorithms, respectively, as shown
in Figures 7 and 8.

Figure 7. Cartesian trajectory planning for robotic arms.

Figure 8. Spatial trajectory planning of robotic arm joints. Figure 8. Spatial trajectory planning of robotic arm joints.

From comparing the joint time variation in Figures 6 and 7 we can obtain that joint
space trajectory planning takes less time than Cartesian trajectory planning with the same
starting point, and its end is circular, which makes it more suitable for places with strict

Appl. Sci. 2023, 13, 8836 11 of 20

time response requirements. So, the joint space trajectory planning algorithm is used in
the proposed system due to the system being based on an embedded device and requiring
real-time control.

3. Vision-Guided Design of the Four-Axis Robotic Arm System

When designing the mechanical structure of a robotic arm, the economy of produc-
tion and processing, as well as the practicality in the use of scenarios, should first be
considered [24]. It is often necessary to design the corresponding robotic arm structure for
different tasks in a specific scenario. Firstly, the 3D model was constructed and assembled
using Autodesk Inventor software, and engineering drawings were carried out. The main
structure of the robotic arm consists of three main axes and joints: the base, the arm, and
the end-effector. The end-effector was selected as the gripper type. A four-bar mechanism
is used to build the arm body. And the main transmission method of the arm is the belt
drive, with the idler pulley above the stepper motor connected to the gears by belts at the
three joints, and each joint is controlled by an independent motor.

The main structure was printed out using 3D printing technology, after which the
main components were assembled and commissioned. The robotic arm mainly uses pulleys
and idler pulleys instead of the generation of gears, which greatly improves the stability
of the system. The design of the limit switch mounting holes and the corresponding wire
collation module was carried out so that the signal wires do not interfere with the normal
movement of the motor. The base is fixed using bearings and M6 screws + bearings to
ensure the stability of the base. After testing, the robotic arm can complete the basic
movement requirements, i.e., zeroing and moving to the corresponding position. The final
result is shown in Figure 9. After the body of the arm has been installed and assembled, the
camera mounting platform and the controller mounting platform are designed and printed
out to complete the total assembly.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 21

From comparing the joint time variation in Figures 6 and 7, we can obtain that joint
space trajectory planning takes less time than Cartesian trajectory planning with the same
starting point, and its end is circular, which makes it more suitable for places with strict
time response requirements. So, the joint space trajectory planning algorithm is used in
the proposed system due to the system being based on an embedded device and requiring
real-time control.

3. Vision-Guided Design of the Four-Axis Robotic Arm System
When designing the mechanical structure of a robotic arm, the economy of produc-

tion and processing, as well as the practicality in the use of scenarios, should first be con-
sidered [24]. It is often necessary to design the corresponding robotic arm structure for
different tasks in a specific scenario. Firstly, the 3D model was constructed and assembled
using Autodesk Inventor software, and engineering drawings were carried out. The main
structure of the robotic arm consists of three main axes and joints: the base, the arm, and
the end-effector. The end-effector was selected as the gripper type. A four-bar mechanism
is used to build the arm body. And the main transmission method of the arm is the belt
drive, with the idler pulley above the stepper motor connected to the gears by belts at the
three joints, and each joint is controlled by an independent motor.

The main structure was printed out using 3D printing technology, after which the
main components were assembled and commissioned. The robotic arm mainly uses pul-
leys and idler pulleys instead of the generation of gears, which greatly improves the sta-
bility of the system. The design of the limit switch mounting holes and the corresponding
wire collation module was carried out so that the signal wires do not interfere with the
normal movement of the motor. The base is fixed using bearings and M6 screws + bearings
to ensure the stability of the base. After testing, the robotic arm can complete the basic
movement requirements, i.e., zeroing and moving to the corresponding position. The final
result is shown in Figure 9. After the body of the arm has been installed and assembled,
the camera mounting platform and the controller mounting platform are designed and
printed out to complete the total assembly.

Figure 9. The physical picture of the robotic arm.

3.1. Robotic Arm Control System Design
3.1.1. Upper Computer Implementation

Due to the need to use the deep learning algorithm Yolov7, the Jetson Nano is chosen
as the host controller for this paper after comprehensively considering the computing
power and code running effect. The upper controller is externally connected to the camera
and the robotic arm, and the software algorithm is embedded internally to implement the
image recognition function and the robotic arm control function. Furthermore, because of
the depth data of the target in the image being used, the depth camera RealSense D435i

Figure 9. The physical picture of the robotic arm.

3.1. Robotic Arm Control System Design
3.1.1. Upper Computer Implementation

Due to the need to use the deep learning algorithm Yolov7, the Jetson Nano is chosen
as the host controller for this paper after comprehensively considering the computing
power and code running effect. The upper controller is externally connected to the camera
and the robotic arm, and the software algorithm is embedded internally to implement the
image recognition function and the robotic arm control function. Furthermore, because of
the depth data of the target in the image being used, the depth camera RealSense D435i
from Intel is chosen, which integrates two IR stereo cameras, one IR projector, and one
color camera.

To control the work of the lower computer, the upper computer software based on the
QT software development platform is compiled using the Python language. PYQT is the
implementation of the QT library in Python, which is a convenient interface for Python

Appl. Sci. 2023, 13, 8836 12 of 20

programming and thus enables graphical interface programming. The basic interactive
interface was designed in conjunction with the actual requirements of the robotic arm
control system by taking into account factors such as efficient collaboration between soft-
ware subsystems, reasonable interface layout, user-friendly interaction, and user habits, as
shown in Figure 10.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 21

from Intel is chosen, which integrates two IR stereo cameras, one IR projector, and one
color camera.

To control the work of the lower computer, the upper computer software based on
the QT software development platform is compiled using the Python language. PYQT is
the implementation of the QT library in Python, which is a convenient interface for Python
programming and thus enables graphical interface programming. The basic interactive
interface was designed in conjunction with the actual requirements of the robotic arm
control system by taking into account factors such as efficient collaboration between soft-
ware subsystems, reasonable interface layout, user-friendly interaction, and user habits,
as shown in Figure 10.

Figure 10. Upper computer interface diagram.

The main interface contains the following functional areas: serial information area,
identification interface display area, and motor control area. The following are the roles
of these three sections:
1. Serial port connection display area: The design goal of this area is to facilitate the user

to use the serial communication method to connect to the lower Arduino controller
through the upper computer software. This area can be set up with a series of param-
eters such as baud rate, serial number, etc. There are functions such as serial port
detection, serial port setting and sending motion information, and receiving answer
signals from the lower computer.

2. Recognition interface display area: The recognition interface display area is mainly
used to show the recognition situation of the camera, and also to allow the user to
directly see the position information of the target in the camera.

3. Sliding bar control motor area: To facilitate the user to operate the robotic arm di-
rectly, this area is set up so that the user can control the movement distance of the
motor by clicking on the various data in the sliding bar or directly by entering the
numbers after the sliding bar.
Next, the YOLOV7 target detection algorithm and the depth detection algorithm are

embedded in the software. For the YOLOV7 target detection algorithm, a configuration
file is first loaded in the constructor along with randomly generated colors for each cate-
gory, and the model is initialized. To improve processing efficiency, the image method is

Figure 10. Upper computer interface diagram.

The main interface contains the following functional areas: serial information area,
identification interface display area, and motor control area. The following are the roles of
these three sections:

1. Serial port connection display area: The design goal of this area is to facilitate the user
to use the serial communication method to connect to the lower Arduino controller
through the upper computer software. This area can be set up with a series of
parameters such as baud rate, serial number, etc. There are functions such as serial
port detection, serial port setting and sending motion information, and receiving
answer signals from the lower computer.

2. Recognition interface display area: The recognition interface display area is mainly
used to show the recognition situation of the camera, and also to allow the user to
directly see the position information of the target in the camera.

3. Sliding bar control motor area: To facilitate the user to operate the robotic arm directly,
this area is set up so that the user can control the movement distance of the motor
by clicking on the various data in the sliding bar or directly by entering the numbers
after the sliding bar.

Next, the YOLOV7 target detection algorithm and the depth detection algorithm are
embedded in the software. For the YOLOV7 target detection algorithm, a configuration file
is first loaded in the constructor along with randomly generated colors for each category,
and the model is initialized. To improve processing efficiency, the image method is first
preprocessed, i.e., the array is converted from a discontinuous array in memory to a
continuous array in memory, making it run faster. After the pre-processing, the detect
method calls the processed array and performs image normalization followed by model
inference and NMS non-maximum suppression of the inferred results. Finally, a rectangular
box with labels is drawn when a target object is present in the image

Appl. Sci. 2023, 13, 8836 13 of 20

For the depth detection algorithm, the different images of the open camera and the
return values are mainly defined. The depth image of the camera is first configured in the
constructor, after which the various internal parameters of the camera can be obtained via
the library functions of Realsense. Once the parameters have been obtained, the camera
parameters, depth parameters, color map, depth map, etc., are returned.

3.1.2. Lower Computer Design

The main functions of the lower computer in the system are:

1. Communicating with the upper computer through the serial port;
2. Carrying out the inverse operation of the robotic arm to decode the coordinate infor-

mation sent back from the upper computer into the level signal of the motor control
pins to control the movement of the robotic arm to the specified position;

3. Controlling the servo pins to achieve the opening and closing movement of the hand
claw, to collect the limit switch signal, and to control the robotic arm to zero.

Based on the above functional requirements, the lower computer circuit we designed
is mainly composed of Arduino MEGA2560+RAMPS1.4+A4988+stepper. Arduino Mega
2560 is an upgraded version of the Arduino MEGA series. The control board is equipped
with an ATmega2560 chip and a 16 M Hz crystal oscillator. There are 54 digital IN/OUT
ports, and among these pin ports, 15 can be pulse width modulated (PWM) and output;
there are 16 analog signal ports; 4 serial input and output ports; a USB port; and a reset
button, etc. Its power supply mode can be a USB power supply or DC port direct input.
Its programming method uses the compilation environment that comes with Arduino to
realize code writing.

A Stepper motor is an electromagnetic actuator that can convert the input digital signal
into the rotary motion of its central axis. It has the advantages of easy control, adjustable
speed, high motion precision, small motion inertia, and less accumulated error. Widely
used in electromechanical integration equipment, the rotation angle of the central axis
depends on the number of input pulses, which is positively correlated. At the same time,
the rotation speed of the stepper motor can be controlled by changing the input pulse
frequency. When selecting and using a stepper motor, it is necessary to consider the speed,
torque, and no-load starting frequency:

(1) When selecting a stepper motor, its speed is an important referenced factor because
the speed of the motor determines the output torque of the motor.

(2) The choice of the torque of the stepping motor. The torque of the stepping motor is
mainly determined for the work tasks in different scenarios. Generally speaking, mo-
tors with smaller shaft diameters such as 20, 28, and 42 are usually used. In the torque
scenario (below 0.8 N·m), 57 stepper motors are more suitable for a medium torque
(about 1 N·m), and for larger torques, stepper motors with larger shaft diameters such
as 86, 110 should be selected.

Given the above stepper motor selection indicators, the project finally decided to use
three 2-phase, 4-wire, 42-stepper motors as the power source of the system. The important
indicators are in Table 2.

Table 2. The main index parameters of the motor.

Motor Model Body Length (mm) Step Angle (◦) Number of Phases (NO.) Rated Voltage (V) Rated Current (A) Moment of Inertia (g cm3)

B0459 47 1.8 2 2.6 2.0 82

In the case that the stepper motor has been confirmed to choose a 42-stepper motor,
we select the driver based on the following points:

1. Determine the torque required for the load carried by the motor, and the torque of the
selected driver must meet the requirements of the motor.

Appl. Sci. 2023, 13, 8836 14 of 20

2. Determine the rated current of the stepping motor used. Generally, the output current
of the driver can be set within a certain range. If the current is too small, the output
torque of the motor may be insufficient. The rated current used in this article is 2.0 A.

3. Determine the working voltage of the motor. The output voltage of the driver must
be within the range of the motor. The voltage used in this article is 2.6 V.

4. The number of phases must be equal, the motor is two-phase, the step angle is 1.8◦,
and the driver must be two-phase.

The main function of the motor driver is to regulate the subdivision and control the
motor. Ramps are powerful Arduino expansion boards with multiple functional interfaces
such as a 12,864 screen interface, 5 stepper motor interfaces, temperature control, limit
switch interfaces, etc. Its circuit schematic diagram is shown in Figure 11.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 21

Table 2. The main index parameters of the motor.

Motor
Model

Body Length
(mm)

Step Angle
(°)

Number of Phases
(NO.)

Rated Voltage
(V)

Rated Current
(A)

Moment of Inertia (g
cm3)

B0459 47 1.8 2 2.6 2.0 82

In the case that the stepper motor has been confirmed to choose a 42-stepper motor,
we select the driver based on the following points:
1. Determine the torque required for the load carried by the motor, and the torque of

the selected driver must meet the requirements of the motor.
2. Determine the rated current of the stepping motor used. Generally, the output cur-

rent of the driver can be set within a certain range. If the current is too small, the
output torque of the motor may be insufficient. The rated current used in this article
is 2.0 A.

3. Determine the working voltage of the motor. The output voltage of the driver must
be within the range of the motor. The voltage used in this article is 2.6 V.

4. The number of phases must be equal, the motor is two-phase, the step angle is 1.8°,
and the driver must be two-phase.
The main function of the motor driver is to regulate the subdivision and control the

motor. Ramps are powerful Arduino expansion boards with multiple functional interfaces
such as a 12,864 screen interface, 5 stepper motor interfaces, temperature control, limit
switch interfaces, etc. Its circuit schematic diagram is shown in Figure 11.

Figure 11. Schematic diagram of ramps.

A4988 motor driver is a common drive module in CNC technology and mechatronics.
It has the characteristics of an affordable price, easy control, small size, and rich subdivi-
sion. The wiring diagram of the stepper motor driver A4988 is shown in Figure 12.

Figure 11. Schematic diagram of ramps.

A4988 motor driver is a common drive module in CNC technology and mechatronics.
It has the characteristics of an affordable price, easy control, small size, and rich subdivision.
The wiring diagram of the stepper motor driver A4988 is shown in Figure 12.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 21

Figure 12. A4988 pin definition map.

The underlying code implementation mainly includes the communication program,
the motion solver layer, and the motor motion control layer.

The main way for the upper computer to control the work of the lower computer is
to use serial communication to send different data. After the upper computer is connected
to the lower computer, the corresponding baud rate and serial port number on the upper
computer side need to be selected, and Open Serial Port is clicked to open the serial port.

For example, to control the three-axis zeroing, the upper computer sends the “H”
character when the serial communication is enabled and the communication is stable, and
the lower computer will settle the character and match it to the corresponding action after
receiving it. For the convenience of users, the specific communication method will be dis-
played in the upper computer receiving area after this connection, and users can follow
the corresponding example to control the movement of the robotic arm.

After the upper computer sends the corresponding 3-dimensional coordinate points
to the lower computer, the motion solver layer program realizes the motor motion inverse
solution using kinematic analysis to calculate the distance that the corresponding motor
needs to move. The motor motion control layer is used to realize the specific motor motion
control. To achieve program reuse and easy maintenance of the code, the underlying
driver code is written and declared in the corresponding file using the C++ programming
language and instantiated in the main file. For the motor control program, firstly, the mo-
tor class is defined, and its member variables and properties are declared, including motor
pins, speed, etc. After that, functions are defined to control the movement distance of the
motor by specifying the number of pulses.

3.2. Vision Control Algorithms
As the most typical representative of one-stage target detection algorithms [25], the

YOLO algorithm can be used in real-time systems due to the fast running time, which is
based on deep neural networks for object recognition and localization. To ensure that
high-speed detection is possible on embedded platforms, the YOLOV7 algorithm is used
in this paper, which is the most advanced algorithm in the current YOLO series and sur-
passes the previous YOLO series in terms of accuracy and speed [26,27]. In addition, in
this paper, we use the TensorRT optimizer, a deep learning inference engine introduced
by NVIDIA[28,29], which can accelerate the model during inference and improve the
recognition speed of the model for images as well as the read-in and read-out efficiency
[30,31]. Currently, the model can be applied in common deep-learning frameworks [32].

After the deployment method is determined, the dataset is produced with the robotic
arm recognizing and grasping objects, mainly including 8 common objects such as cell
phones, glasses, tea cups, and Bluetooth headphones. Firstly, a total of 3 datasets were
made to train the model for the pictures of the photographed objects, but the final trained

Figure 12. A4988 pin definition map.

Appl. Sci. 2023, 13, 8836 15 of 20

The underlying code implementation mainly includes the communication program,
the motion solver layer, and the motor motion control layer.

The main way for the upper computer to control the work of the lower computer is to
use serial communication to send different data. After the upper computer is connected
to the lower computer, the corresponding baud rate and serial port number on the upper
computer side need to be selected, and Open Serial Port is clicked to open the serial port.

For example, to control the three-axis zeroing, the upper computer sends the “H”
character when the serial communication is enabled and the communication is stable, and
the lower computer will settle the character and match it to the corresponding action after
receiving it. For the convenience of users, the specific communication method will be
displayed in the upper computer receiving area after this connection, and users can follow
the corresponding example to control the movement of the robotic arm.

After the upper computer sends the corresponding 3-dimensional coordinate points
to the lower computer, the motion solver layer program realizes the motor motion inverse
solution using kinematic analysis to calculate the distance that the corresponding motor
needs to move. The motor motion control layer is used to realize the specific motor motion
control. To achieve program reuse and easy maintenance of the code, the underlying
driver code is written and declared in the corresponding file using the C++ programming
language and instantiated in the main file. For the motor control program, firstly, the motor
class is defined, and its member variables and properties are declared, including motor
pins, speed, etc. After that, functions are defined to control the movement distance of the
motor by specifying the number of pulses.

3.2. Vision Control Algorithms

As the most typical representative of one-stage target detection algorithms [25], the
YOLO algorithm can be used in real-time systems due to the fast running time, which is
based on deep neural networks for object recognition and localization. To ensure that high-
speed detection is possible on embedded platforms, the YOLOV7 algorithm is used in this
paper, which is the most advanced algorithm in the current YOLO series and surpasses the
previous YOLO series in terms of accuracy and speed [26,27]. In addition, in this paper, we
use the TensorRT optimizer, a deep learning inference engine introduced by NVIDIA [28,29],
which can accelerate the model during inference and improve the recognition speed of
the model for images as well as the read-in and read-out efficiency [30,31]. Currently, the
model can be applied in common deep-learning frameworks [32].

After the deployment method is determined, the dataset is produced with the robotic
arm recognizing and grasping objects, mainly including 8 common objects such as cell
phones, glasses, tea cups, and Bluetooth headphones. Firstly, a total of 3 datasets were
made to train the model for the pictures of the photographed objects, but the final trained
model had poor anti-interference ability and low detection accuracy due to the single
background of the photographed objects. After several attempts, a model with better
detection accuracy was trained by increasing the background of the images, the number
of images, and the number of training sessions. After the dataset was created, the target
annotation was labeled. After all the images in the dataset are labeled, the overall dataset is
created, and the original dataset is classified according to a certain ratio. In this paper, a
ratio of 7:3 is used to divide the dataset into a training dataset and a test dataset.

After the dataset is divided, the images in the dataset need to be trained. First,
YOLOv7 is downloaded, and data inference is performed on a cloud-based server to ensure
the inference rate. The parameters of the server are pytorch1.10, python3.8, CUDA11.3,
RTXA4000 GPU, 16 GB video memory, 12-core Intel(R) Xeon(R) Gold 5320 CPU @ 2.20 GHz,
and 32 GB memory. According to the above server configuration, the corresponding training
parameters are set. The main parameters include input image size (640 × 640), number of
training iterations (200), batch size (16), learning rate (0.01), and momentum (0.937). The
changes in various values during the training process as the number of iterations increases
is shown in Figure 13. It can be seen from Figure 13 that after 200 training iterations, the

Appl. Sci. 2023, 13, 8836 16 of 20

values of high precision and recall do not fluctuate greatly, and the changes in each value
tend to be smooth, indicating an excellent training result.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 21

model had poor anti-interference ability and low detection accuracy due to the single
background of the photographed objects. After several attempts, a model with better de-
tection accuracy was trained by increasing the background of the images, the number of
images, and the number of training sessions. After the dataset was created, the target an-
notation was labeled. After all the images in the dataset are labeled, the overall dataset is
created, and the original dataset is classified according to a certain ratio. In this paper, a
ratio of 7:3 is used to divide the dataset into a training dataset and a test dataset.

After the dataset is divided, the images in the dataset need to be trained. First,
YOLOv7 is downloaded, and data inference is performed on a cloud-based server to en-
sure the inference rate. The parameters of the server are pytorch1.10, python3.8,
CUDA11.3, RTXA4000 GPU, 16 GB video memory, 12-core Intel(R) Xeon(R) Gold 5320
CPU @ 2.20 GHz, and 32 GB memory. According to the above server configuration, the
corresponding training parameters are set. The main parameters include input image size
(640×640), number of training iterations (200), batch size (16), learning rate (0.01), and mo-
mentum (0.937). The changes in various values during the training process as the number
of iterations increases is shown in Figure 13. It can be seen from Figure 13 that after 200
training iterations, the values of high precision and recall do not fluctuate greatly, and the
changes in each value tend to be smooth, indicating an excellent training result.

Figure 13. Training results of the robotic arm system.

4. Experimental Results and Discussion
After the various parts of the robotic arm system have been designed, to verify the

accuracy performance of the proposed system as well as the recognition performance, the
end repetition accuracy of the robotic arm and the results of the robotic arm target detec-
tion algorithm are subsequently tested.

4.1. Robotic Arm End Repetition Accuracy Test
The international standard ISO 9283-1998 was used to evaluate the performance of

robotic arms [33], focusing on the end repetition accuracy of robotic arms. End repetition
accuracy is an important index describing the motion performance of the whole robotic
arm, which is closely related to the stiffness of the hardware structure of the robotic arm
body, transmission errors, and the corresponding level of motion control [34]. Figure 14
shows the position repetition accuracy described in the ISO 9283 standard, where the
value of RPl is the required position repetition accuracy.

Figure 13. Training results of the robotic arm system.

4. Experimental Results and Discussion

After the various parts of the robotic arm system have been designed, to verify the
accuracy performance of the proposed system as well as the recognition performance, the
end repetition accuracy of the robotic arm and the results of the robotic arm target detection
algorithm are subsequently tested.

4.1. Robotic Arm End Repetition Accuracy Test

The international standard ISO 9283-1998 was used to evaluate the performance of
robotic arms [33], focusing on the end repetition accuracy of robotic arms. End repetition
accuracy is an important index describing the motion performance of the whole robotic
arm, which is closely related to the stiffness of the hardware structure of the robotic arm
body, transmission errors, and the corresponding level of motion control [34]. Figure 14
shows the position repetition accuracy described in the ISO 9283 standard, where the value
of RPl is the required position repetition accuracy.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 17 of 21

Figure 14. Position repeatability diagram.

The size of the sphere at all arrival position points of this envelope is defined in a
mathematical sense according to the formula for RPl, as defined by ISO 9283 [35]: 𝑅𝑃 = 𝐿 + 3𝑆 (22)

where L1 is the average of the distances of all arrival positions from their center of gravity,
calculated as:

𝐿 = 1𝑛 𝑙 (23)

𝑙 = 𝑥 − 𝑥 + 𝑦 − 𝑦 + 𝑧 − 𝑧 (24)

where xj, yj, zj are the spatial Cartesian coordinates of each arrival position; x1, y1, z1 are the
spatial Cartesian coordinates of the center of gravity of each arrival position; and Sl is a
standard deviation:

𝑆 = ∑ 𝑙 − 𝑙𝑛 − 1 (25)

The practical physical meaning of the calculation using the 3θ principle is that a spec-
ified amount of standard deviation is added to the average value, resulting in a minimum
value that encompasses the diameter of all spheres reaching the position point, i.e., the
position repeatability accuracy. The actual end repeatability of the robotic arm in this pa-
per was 0.05 mm when tested at a rated speed of the stepper motor under a load of 1 kg.

4.2. Robotic Arm Target Detection Algorithm Testing
To demonstrate the effectiveness of yolov7 deployed on the embedded platform Jet-

son Nano, the same dataset was tested on the same device using different algorithms.
Figure 15 shows the effect of target recognition, using a mouse as an example.

Figure 14. Position repeatability diagram.

Appl. Sci. 2023, 13, 8836 17 of 20

The size of the sphere at all arrival position points of this envelope is defined in a
mathematical sense according to the formula for RPl, as defined by ISO 9283 [35]:

RPl = L1 + 3Sl (22)

where L1 is the average of the distances of all arrival positions from their center of gravity,
calculated as:

L1 =
1
n

n

∑
j=1

lj (23)

lj =
√(

xj − x1
)2

+
(
yj − y1

)2
+
(
zj − z1

)2 (24)

where xj, yj, zj are the spatial Cartesian coordinates of each arrival position; x1, y1, z1 are
the spatial Cartesian coordinates of the center of gravity of each arrival position; and Sl is a
standard deviation:

Sl =

√
∑n

j=1
(
lj − l1

)2

n− 1
(25)

The practical physical meaning of the calculation using the 3θ principle is that a
specified amount of standard deviation is added to the average value, resulting in a
minimum value that encompasses the diameter of all spheres reaching the position point,
i.e., the position repeatability accuracy. The actual end repeatability of the robotic arm in
this paper was 0.05 mm when tested at a rated speed of the stepper motor under a load
of 1 kg.

4.2. Robotic Arm Target Detection Algorithm Testing

To demonstrate the effectiveness of yolov7 deployed on the embedded platform Jetson
Nano, the same dataset was tested on the same device using different algorithms. Figure 15
shows the effect of target recognition, using a mouse as an example.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 21

Figure 15. Object recognition effect.

The main algorithms compared are the YOLOV5 [36], Faster-RCNN [37], SSD [38],
and YOLOV7 [39], the results of which are shown in Table 3. It can be seen that the average
detection rate as well as the speed of yolov7 outperformed the other algorithms, indicating
that the YOLOV7 algorithm is more suitable for deployment on embedded platforms than
other algorithms.

Table 3. Comparison between different algorithms.

Algorithm
Detection Accuracy (%) Average Accuracy

(%) Speed/(fps)
Mobile Phones Teacups Eyeglasses

Faster RCNN 88.6 89.2 91.3 89.7 1
SSD 88.9 88.6 89.2 88.9 8

YOLOV5 91.9 91.7 92.7 92.1 20
YOLOV7 94.8 95.2 95.6 95.2 29

Next, to evaluate the power consumption performance of the robotic arm,under the
same working conditions, we use the rotation center of the big arm as the system origin
(0, 0, 0), and make the end of the robotic arm move from point (100, 100, 0) to point (200,
100, 0) at a movement speed set to 200 mm/s and a set load of 1000 N and compare the
driving power of the three robotic arms, as shown in Figure 16. It is obvious that the driv-
ing power of the robotic arm designed in this paper is less than the other two robotic arms,
so our robotic arm has the feature of low power consumption.

Figure 16. Comparison results of three kinds of robotic arm drive power.

Figure 15. Object recognition effect.

The main algorithms compared are the YOLOV5 [36], Faster-RCNN [37], SSD [38],
and YOLOV7 [39], the results of which are shown in Table 3. It can be seen that the average
detection rate as well as the speed of yolov7 outperformed the other algorithms, indicating
that the YOLOV7 algorithm is more suitable for deployment on embedded platforms than
other algorithms.

Appl. Sci. 2023, 13, 8836 18 of 20

Table 3. Comparison between different algorithms.

Algorithm
Detection Accuracy (%)

Average
Accuracy (%)

Speed/(fps)Mobile
Phones Teacups Eyeglasses

Faster RCNN 88.6 89.2 91.3 89.7 1
SSD 88.9 88.6 89.2 88.9 8

YOLOV5 91.9 91.7 92.7 92.1 20
YOLOV7 94.8 95.2 95.6 95.2 29

Next, to evaluate the power consumption performance of the robotic arm, under the
same working conditions, we use the rotation center of the big arm as the system origin (0,
0, 0), and make the end of the robotic arm move from point (100, 100, 0) to point (200, 100,
0) at a movement speed set to 200 mm/s and a set load of 1000 N and compare the driving
power of the three robotic arms, as shown in Figure 16. It is obvious that the driving power
of the robotic arm designed in this paper is less than the other two robotic arms, so our
robotic arm has the feature of low power consumption.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 21

Figure 15. Object recognition effect.

The main algorithms compared are the YOLOV5 [36], Faster-RCNN [37], SSD [38],
and YOLOV7 [39], the results of which are shown in Table 3. It can be seen that the average
detection rate as well as the speed of yolov7 outperformed the other algorithms, indicating
that the YOLOV7 algorithm is more suitable for deployment on embedded platforms than
other algorithms.

Table 3. Comparison between different algorithms.

Algorithm
Detection Accuracy (%) Average Accuracy

(%) Speed/(fps)
Mobile Phones Teacups Eyeglasses

Faster RCNN 88.6 89.2 91.3 89.7 1
SSD 88.9 88.6 89.2 88.9 8

YOLOV5 91.9 91.7 92.7 92.1 20
YOLOV7 94.8 95.2 95.6 95.2 29

Next, to evaluate the power consumption performance of the robotic arm,under the
same working conditions, we use the rotation center of the big arm as the system origin
(0, 0, 0), and make the end of the robotic arm move from point (100, 100, 0) to point (200,
100, 0) at a movement speed set to 200 mm/s and a set load of 1000 N and compare the
driving power of the three robotic arms, as shown in Figure 16. It is obvious that the driv-
ing power of the robotic arm designed in this paper is less than the other two robotic arms,
so our robotic arm has the feature of low power consumption.

Figure 16. Comparison results of three kinds of robotic arm drive power. Figure 16. Comparison results of three kinds of robotic arm drive power.

5. Conclusions

Aiming at the problems of the high cost, low recognition accuracy, and difficult design
of traditional manipulators, this paper designs and improves a lightweight four-degree-
of-freedom manipulator. The manipulator is based on the YOLOv7 target recognition
algorithm and depth perception algorithm. The arm adds visual guidance. To reduce the
cost of the robotic arm, this paper introduces embedded devices into the robotic arm system
and builds a deep learning algorithm on top of it to improve the intelligence of the robotic
arm and obtain multi-dimensional information about the target. In terms of mechanical
movement accuracy, the mechanical arm designed in this paper can achieve an end accuracy
of 0.05 mm under the condition of a load of 1 kg using the ISO 9283 international standard.
The lower recognition accuracy reaches 95.2%. At the same time, after relevant experiments,
the overall power consumption of the manipulator is also lower than that of the traditional
manipulator. Finally, based on the QT platform, a robotic arm control host computer is
built, which makes the system portable and highly expandable. After relevant experimental
verification, the results show that applying the object recognition and grasping functions
to the four-axis robotic arm can greatly improve the intelligence of the robotic arm, while
greatly reducing the robotic arm’s design and manufacturing costs and power. At the same
time, this system has the characteristics of strong portability, so it can be considered to
be applied to the six-axis robot arm. More work tasks can be realized on the robotic arm.
Therefore, this paper is conducive to promoting the wide application of manipulators in
industrial environments and improving the construction of industrial automation. It is

Appl. Sci. 2023, 13, 8836 19 of 20

worth mentioning that the robotic arm designed in this paper has the following directions
for further improvement:

(i) Continue to realize the optimization processing of the manipulator recognition algo-
rithm and improve the deep reinforcement learning ability of the manipulator;

(ii) Manipulators with different structures/dimensions should be produced to meet actual
application requirements.

Author Contributions: Methodology, Y.W. and Y.Z.; software, Y.Z.; validation, Y.W. and Y.Z.; formal
analysis, Y.W.; investigation, Y.Z.; resources, L.W.; data curation, Y.W.; writing—original draft
preparation, L.W.; writing—review and editing, Y.Z.; visualization, L.W.; project administration and
research resource, R.L. All authors have read and agreed to the published version of the manuscript.

Funding: Funding was provided by the 2023 College Students Innovation and Entrepreneurship
Training Program, project number S202310497099.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Arikapudi, R.; Vougioukas, S.G. Robotic Tree-Fruit Harvesting with Telescoping Arms: A Study of Linear Fruit Reachability

Under Geometric Constraints. IEEE Access 2021, 9, 17114–17126. [CrossRef]
2. Chatterjee, A.; Chatterjee, R.; Matsuno, F.; Endo, T. Augmented Stable Fuzzy Control for Flexible Robotic Arm Using LMI

Approach and Neuro-Fuzzy State Space Modeling. IEEE Trans. Ind. Electron. 2008, 55, 1256–1270. [CrossRef]
3. Chen, L.; Sun, H. Picking Path Optimization of Mobile Robotic Arm Based on Differential Evolution and Improved A* Algorithm.

IEEE Access 2021, 9, 154413–154422. [CrossRef]
4. Dai, Y.; Liu, W.; Wang, H.; Xie, W.; Long, K. YOLO-Former: Marrying YOLO and Transformer for Foreign Object Detection. IEEE

Trans. Instrum. Meas. 2022, 71, 1–14. [CrossRef]
5. Dewi, C.; Chen, R.-C.; Liu, Y.-T.; Jiang, X.; Hartomo, K.D. Yolo V4 for Advanced Traffic Sign Recognition With Synthetic Training

Data Generated by Various GAN. IEEE Access 2021, 9, 97228–97242. [CrossRef]
6. Erol, D.; Sarkar, N. Coordinated control of assistive robotic devices for activities of daily living tasks. IEEE Trans. Neural Syst.

Rehabil. Eng. 2008, 16, 278–285. [CrossRef]
7. Felzenszwalb, P.F.; Zabih, R. Dynamic programming and graph algorithms in computer vision. IEEE Trans. Pattern Anal. Mach.

Intell. 2011, 33, 721–740. [CrossRef]
8. Fournier-Viger, P.; Nkambou, R.; Nguifo, E.M.; Mayers, A.; Faghihi, U. A multiparadigm intelligent tutoring system for robotic

arm training. IEEE Trans. Learn. Technol. 2013, 6, 364–377. [CrossRef]
9. Cabre, T.P.; Cairol, M.T.; Calafell, D.F.; Ribes, M.T.; Roca, J.P. Project-Based Learning Example: Controlling an Educational Robotic

Arm With Computer Vision. IEEE Rev. Iberoam. Tecnol. Aprendiz. 2013, 8, 135–142. [CrossRef]
10. Sepulveda, D.; Fernandez, R.; Navas, E.; Armada, M.; Gonzalez-De-Santos, P. Robotic Aubergine Harvesting Using Dual-Arm

Manipulation. IEEE Access 2020, 8, 121889–121904. [CrossRef]
11. Yang, C.; Wu, H.; Li, Z.; He, W.; Wang, N.; Su, C.-Y. Mind Control of a Robotic Arm With Visual Fusion Technology. IEEE Trans.

Ind. Inform. 2018, 14, 3822–3830. [CrossRef]
12. Wang, X.; Geiger, F.; Niculescu, V.; Magno, M.; Benini, L. Leveraging Tactile Sensors for Low Latency Embedded Smart Hands for

Prosthetic and Robotic Applications. IEEE Trans. Instrum. Meas. 2022, 71, 1–14. [CrossRef]
13. Sun, F.; Chen, Y.; Wu, Y.; Li, L.; Ren, X. Motion Planning and Cooperative Manipulation for Mobile Robots With Dual Arms. IEEE

Trans. Emerg. Top. Comput. Intell. 2022, 6, 1345–1356. [CrossRef]
14. Huang, L.; Meng, Z.; Deng, Z.; Wang, C.; Li, L.; Zhao, G. Toward Verifying the User of Motion-Controlled Robotic Arm Systems

via the Robot Behavior. IEEE Internet Things J. 2022, 9, 22422–22433. [CrossRef]
15. Luo, R.C.; Kuo, C.-W. Intelligent Seven-DoF Robot With Dynamic Obstacle Avoidance and 3-D Object Recognition for Industrial

Cyber–Physical Systems in Manufacturing Automation. Proc. IEEE 2016, 104, 1102–1113. [CrossRef]
16. Hsieh, Y.-Z.; Xu, F.-X.; Lin, S.-S. Deep Convolutional Generative Adversarial Network for Inverse Kinematics of Self-Assembly

Robotic Arm Based on the Depth Sensor. IEEE Sens. J. 2023, 23, 758–765. [CrossRef]
17. Hsu, W.Y.; Lin, W.Y. Ratio-and-Scale-Aware YOLO for Pedestrian Detection. IEEE Trans. Image Process 2021, 30, 934–947.

[CrossRef]
18. Du, G.; Yao, G.; Li, C.; Liu, P. An Offline-Merge-Online Robot Teaching Method Based on Natural Human-Robot Interaction and

Visual-Aid Algorithm. IEEE/ASME Trans. Mechatron. 2022, 27, 2752–2763. [CrossRef]

https://doi.org/10.1109/ACCESS.2021.3053490
https://doi.org/10.1109/TIE.2007.896439
https://doi.org/10.1109/ACCESS.2021.3060738
https://doi.org/10.1109/TIM.2022.3219468
https://doi.org/10.1109/ACCESS.2021.3094201
https://doi.org/10.1109/TNSRE.2008.922668
https://doi.org/10.1109/TPAMI.2010.135
https://doi.org/10.1109/TLT.2013.27
https://doi.org/10.1109/RITA.2013.2273114
https://doi.org/10.1109/ACCESS.2020.3006919
https://doi.org/10.1109/TII.2017.2785415
https://doi.org/10.1109/TIM.2022.3165828
https://doi.org/10.1109/TETCI.2022.3146387
https://doi.org/10.1109/JIOT.2021.3121623
https://doi.org/10.1109/JPROC.2015.2508598
https://doi.org/10.1109/JSEN.2022.3222332
https://doi.org/10.1109/TIP.2020.3039574
https://doi.org/10.1109/TMECH.2021.3112722

Appl. Sci. 2023, 13, 8836 20 of 20

19. Kaczmarski, B.; Goriely, A.; Kuhl, E.; Moulton, D.E. A Simulation Tool for Physics-Informed Control of Biomimetic Soft Robotic
Arms. IEEE Robot. Autom. Lett. 2023, 8, 936–943. [CrossRef]

20. Kazemi, M.; Gupta, K.K.; Mehrandezh, M. Randomized Kinodynamic Planning for Robust Visual Servoing. IEEE Trans. Robot.
2013, 29, 1197–1211. [CrossRef]

21. Li, S.; Rameshwar, R.; Votta, A.M.; Onal, C.D. Intuitive Control of a Robotic Arm and Hand System With Pneumatic Haptic
Feedback. IEEE Robot. Autom. Lett. 2019, 4, 4424–4430. [CrossRef]

22. Mahadevkar, S.V.; Khemani, B.; Patil, S.; Kotecha, K.; Vora, D.R.; Abraham, A.; Gabralla, L.A. A Review on Machine Learning
Styles in Computer Vision—Techniques and Future Directions. IEEE Access 2022, 10, 107293–107329. [CrossRef]

23. Meribout, M.; Baobaid, A.; Khaoua, M.O.; Tiwari, V.K.; Pena, J.P. State of Art IoT and Edge Embedded Systems for Real-Time
Machine Vision Applications. IEEE Access 2022, 10, 58287–58301. [CrossRef]

24. Patruno, C.; Marani, R.; Nitti, M.; D’Orazio, T.; Stella, E. An Embedded Vision System for Real-Time Autonomous Localization
Using Laser Profilometry. IEEE Trans. Intell. Transp. Syst. 2015, 16, 3482–3495. [CrossRef]

25. Pramod, R.T.; Arun, S.P. Improving Machine Vision Using Human Perceptual Representations: The Case of Planar Reflection
Symmetry for Object Classification. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 228–241. [CrossRef]

26. Qin, L.; Shi, Y.; He, Y.; Zhang, J.; Zhang, X.; Li, Y.; Deng, T.; Yan, H. ID-YOLO: Real-Time Salient Object Detection Based on the
Driver’s Fixation Region. IEEE Trans. Intell. Transp. Syst. 2022, 23, 15898–15908. [CrossRef]

27. Ranft, B.; Stiller, C. The Role of Machine Vision for Intelligent Vehicles. IEEE Trans. Intell. Veh. 2016, 1, 8–19. [CrossRef]
28. Rodriguez, I.; Nottensteiner, K.; Leidner, D.; Durner, M.; Stulp, F.; Albu-Schaffer, A. Pattern Recognition for Knowledge Transfer

in Robotic Assembly Sequence Planning. IEEE Robot. Autom. Lett. 2020, 5, 3666–3673. [CrossRef]
29. Scheirer, W.J.; Anthony, S.E.; Nakayama, K.; Cox, D.D. Perceptual Annotation: Measuring Human Vision to Improve Computer

Vision. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 1679–1686. [CrossRef]
30. White, J.; Kameneva, T.; McCarthy, C. Vision Processing for Assistive Vision: A Deep Reinforcement Learning Approach. IEEE

Trans. Hum.-Mach. Syst. 2022, 52, 123–133. [CrossRef]
31. Wu, Z.; Chen, S.; Han, J.; Zhang, S.; Liang, J.; Yang, X. A Low-Cost Digital Twin-Driven Positioning Error Compensation Method

for Industrial Robotic Arm. IEEE Sens. J. 2022, 22, 22885–22893. [CrossRef]
32. Xu, Q.; Lin, R.; Yue, H.; Huang, H.; Yang, Y.; Yao, Z. Research on Small Target Detection in Driving Scenarios Based on Improved

Yolo Network. IEEE Access 2020, 8, 27574–27583. [CrossRef]
33. Yin, H.; Liu, J.; Yang, F. Hybrid Structure Design of Lightweight Robotic Arms Based on Carbon Fiber Reinforced Plastic and

Aluminum Alloy. IEEE Access 2019, 7, 64932–64945. [CrossRef]
34. Zarei, N.; Moallem, P.; Shams, M. Fast-Yolo-Rec: Incorporating Yolo-Base Detection and Recurrent-Base Prediction Networks for

Fast Vehicle Detection in Consecutive Images. IEEE Access 2022, 10, 120592–120605. [CrossRef]
35. Zhang, Y.; Liang, W.; Yuan, M.; He, H.; Tan, J.; Pang, Z. Monocular Visual-Inertial and Robotic-Arm Calibration in a Unifying

Framework. IEEE/CAA J. Autom. Sin. 2022, 9, 146–159. [CrossRef]
36. Zhu, Y.N.; Wang, Z.; Yang, Y.; Li, J.P.; Wan, C.; Jin, H.W.; Fang, F. Automatic Identification Technology of Lycium barbarum

Flowering Period and Fruit Ripening Period Based on Faster R-CNN. Chin. J. Agrometeorol. 2020, 41, 668.
37. Peng, H.; Huang, B.; Shao, Y.; Li, Z.; Zhang, C.; Chen, Y.; Xiong, J. General improved SSD model for picking object recognition of

multiple fruits in natural environment. Trans. Chin. Soc. Agric. Eng. 2018, 34, 155–162.
38. Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object

detectors. arXiv 2022, arXiv:2207.02696.
39. Li, Y.; Fan, Y.; Wang, S.; Bai, J.; Li, K. Application of YOLOv5 Based on Attention Mechanism and Receptive Field in Identifying

Defects of Thangka Images. IEEE Access 2022, 10, 81597–81611. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/LRA.2023.3234819
https://doi.org/10.1109/TRO.2013.2264865
https://doi.org/10.1109/LRA.2019.2937483
https://doi.org/10.1109/ACCESS.2022.3209825
https://doi.org/10.1109/ACCESS.2022.3175496
https://doi.org/10.1109/TITS.2015.2459721
https://doi.org/10.1109/TPAMI.2020.3008107
https://doi.org/10.1109/TITS.2022.3146271
https://doi.org/10.1109/TIV.2016.2551553
https://doi.org/10.1109/LRA.2020.2979622
https://doi.org/10.1109/TPAMI.2013.2297711
https://doi.org/10.1109/THMS.2021.3121661
https://doi.org/10.1109/JSEN.2022.3213428
https://doi.org/10.1109/ACCESS.2020.2966328
https://doi.org/10.1109/ACCESS.2019.2915363
https://doi.org/10.1109/ACCESS.2022.3221942
https://doi.org/10.1109/JAS.2021.1004290
https://doi.org/10.1109/ACCESS.2022.3195176

	Introduction
	Kinematic Analysis and Design of Robotic Arms
	Positive Kinematic Analysis of the Robotic Arm
	Robotic Arm Inverse Kinematics Analysis
	Robotic Arm Path Planning Analysis

	Vision-Guided Design of the Four-Axis Robotic Arm System
	Robotic Arm Control System Design
	Upper Computer Implementation
	Lower Computer Design

	Vision Control Algorithms

	Experimental Results and Discussion
	Robotic Arm End Repetition Accuracy Test
	Robotic Arm Target Detection Algorithm Testing

	Conclusions
	References

