
Citation: Dingeto, H.; Kim, J.

Universal Adversarial Training Using

Auxiliary Conditional Generative

Model-Based Adversarial Attack

Generation. Appl. Sci. 2023, 13, 8830.

https://doi.org/10.3390/

app13158830

Academic Editor: Luis Javier

García Villalba

Received: 16 June 2023

Revised: 26 July 2023

Accepted: 27 July 2023

Published: 31 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Universal Adversarial Training Using Auxiliary Conditional
Generative Model-Based Adversarial Attack Generation
Hiskias Dingeto and Juntae Kim *

Department of Computer Science and Engineering, Dongguk University, Seoul 04620, Republic of Korea;
hisku@dgu.ac.kr
* Correspondence: jkim@dongguk.edu; Tel.: +82-2-2260-3712

Abstract: While Machine Learning has become the holy grail of modern-day computing, it has
many security flaws that have yet to be addressed and resolved. Adversarial attacks are one of
these security flaws, in which an attacker appends noise to data samples that machine learning
models take as input with the aim of fooling the model. Various adversarial training methods have
been proposed that augment adversarial examples in the training dataset for defense against such
attacks. However, a general limitation exists where a robust model can only protect itself against
adversarial attacks that are known or similar to those it was trained on. To address this limitation, this
paper proposes a Universal Adversarial Training algorithm using adversarial examples generated
by an Auxiliary Classifier Generative Adversarial Network (AC-GAN) in parallel with other data
augmentation techniques, such as the mixup method. This method builds on a previously proposed
technique, Adversarial Training, in which adversarial examples produced by gradient-based methods
are augmented and added to the training data. Our method improves the AC-GAN architecture
for adversarial example generation to make it more suitable for adversarial training by updating
different loss terms and testing its performance against various attacks compared to other robust
adversarial models. In this way, it becomes apparent that generative models are better suited for
boosting adversarial robustness through adversarial training. When tested using various attack types,
our proposed model had an average accuracy of 97.48% on the MNIST dataset and 94.02% on the
CelebA dataset, proving that generative models have a higher chance of boosting adversarial security
through adversarial training.

Keywords: adversarial training; adversarial attacks; generative models; conditional generative
adversarial network; auxiliary conditional generative adversarial networks

1. Introduction

Despite the popularity of machine learning models over the past decades, there is a
risk of basic functions being disrupted by different attacks. Adversarial attacks have been
gaining in popularity due to their simplistic attack generation. An attacker can produce
these attacks by adding subtle noise to input data to make the input malicious. This ma-
licious input, whether image, audio, video, or text, results in a normal sample that most
machine learning models misclassify without any adversarial defense [1–9]. The effects of
adversarial attacks can even be extended to areas such as numerical simulation and stabil-
ity [10,11]. Adversarial training aims to resolve the security flaws many machine learning
models face due to the malicious samples mentioned above [2,9,12–15]. Even though vari-
ous methods have been proposed to defend models from these attacks, adversarial training
is by far the most robust solution to the problem. Training a model adversarially requires
augmentation of adversarial examples made through different methods and adding them to
the training dataset. This training method works well if the malicious sample created by the
attacker uses the same or similar methods to those used when generating the augmented
adversarial dataset. There can be issues if an attacker uses a different attack method to
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create malicious samples. When a model is not trained on a specific type of adversarial
example, it fails to defend itself from the attack [16,17]. Anish Athalye et al., researchers
in the field of adversarial attacks and defenses, have shown in their research [16] that it
is possible to easily circumvent state-of-the-art adversarial defenses, providing evidence
of the need for better defenses against adversarial attacks. Even though the authors did
not explain why this phenomenon occurs, it can be hypothesized that it is due to holes in
adversarial defenses created through adversarial training that allow attackers the chance of
exploiting them. The process of adversarially training a model aims to teach it to recognize
data samples even though there is a perturbation in the input sample. This depends entirely
on the adversarial examples used to train it. Supposing that a model is provided with an
adversarial sample that it was not trained to defend against, it cannot defend itself, which
is a weakness in the current adversarial training process. Using one type of adversarial
attack for training does not defend the model from the plethora of other attacks that can be
exploited. Considering that over a thousand papers have already been published on the
topic, it is clear that a universal defense is more necessary than ever [18].

This article’s primary focus is showing that generative models can aid in the process
of adversarial training by generating unrestricted adversarial examples, as mentioned
in [19,20]. In this way, models can be trained on adversarial samples that are not confined to
“narrow” distributions that traditional methods such as the Fast Gradient Sign Method [1],
Projected Gradient Descent [9], Basic Iterative Method [21], and Jacobian-based Saliency
Maps Attacks [22] usually generate. Unrestricted adversarial examples from generative
networks provide a potential solution, as these samples are generated from scratch. If
visualized on a decision boundary, traditional adversarial examples are close to the model’s
decision boundary. In contrast, unrestricted examples contain samples close to the model
boundary and further away. In this paper, we propose that the approach of creating
unrestricted samples from generative models has the potential to create a universal defense.
Throughout this paper, the proposed technique is explored in depth with a conceptual
explanation, experimental setup, results, and analysis of the outcome.

In summary, the contributions of this paper are:

• To propose the use of an auxiliary generative model for adversarial training purposes;
• To enhance model robustness by adopting the AC-GAN architecture and using it to

generate adversarial samples for adversarial training;
• To show experimental test results of AC-GAN-based adversarially trained models

and compare their attack robustness with adversarially trained models using differ-
ent methods.

Using generative models allows for better adversarial robustness, as it creates samples
from various distributions and prevents the models from being fooled by different types
of adversarial examples. In this paper, background research is conducted to introduce the
necessary concepts and compare them with previously proposed techniques in adversarial
training, the methodology is presented, and the experimental results are analysed.

2. Background Research
2.1. Conditional Generative Adversarial Networks and AC-GANs

Generative Adversarial Networks (GANs) have been circulating in the machine learn-
ing community for the past several years. Goodfellow published the original idea in
2014 [23], and various additions to GANs have subsequently been used in many computing
and machine learning-related areas. Compared to their counterparts that follow a similar
concept of deep generative modeling, such as Variational Auto-encoders [24], GANs have
been deemed superior in various aspects [25].

As explained in the original paper, the general structure of a GAN sets two models
against each other to determine whether this process improves either of the models. One
of the models, the Generator, tries to generate data that are as close to the original dataset
as possible. The other model, the Discriminator, attempts to identify whether the data it
receives are real.
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The process carried out in GANs is best explained by comparison with the “Minimax
Game”, i.e., using the Minimax Algorithm. The concept of a Minmax game is that there
are two players; the maximizer tries to reach the highest score possible, while the mini-
mizer attempts to reach the lowest score possible. In the case of GANs, the Discriminator
continuously tries to differentiate the original data from the artificial data produced by
the Generator, whether pictures, audio, or, ideally, any other type of data format. The
Generator takes feedback from the Discriminator to improve its output and eventually
generates data that the Discriminator cannot differentiate from the original data.

A variation of GANs that is worth mentioning here is Conditional GAN (CGAN),
first proposed by M. Mirza et al. (2014) [26]. What makes CGANs different is that the
model is conditioned on a class label, where the provided label allows for control over the
labels of the samples to be generated. In his paper, we use an extension of CGANs named
Auxiliary Classifier GAN, introduced by A. Odena et al. (2017) [27], to generate adversarial
samples. In the case of CGANs, the Generator and Discriminator are conditioned on extra
information y, where y is any auxiliary information, including class labels. ACGANs
extend this idea further by adding an auxiliary classifier that allows the Discriminator to
predict whether the image is real or fake and label the generated image as the target class
provided to the Generator. Hence, the Discriminator maximizes the probability of correctly
classifying the generated image and accurately predicting the class label of the generated
image. The authors of [27] represented these two processes through the objective functions
in Equations (1) and (2):

Ls = E [log P(S = real|Xreal)] + E [log P(S = f ake|X f ake)] (1)

Lc = E [log P(C = c|Xreal)] + E [log P(C = c|X f ake)] (2)

where Ls is the log-likelihood of the correct source and Lc is the log-likelihood of the correct
class. An architecture similar to the one proposed in [20] is used to generate adversarial
examples, with a modification made to the architecture to generate adversarial examples
from all class labels on the MNIST and CelebA datasets for adversarial training, along with
minor adjustments to better fit our objective.

Recently, AC-GANs have seen through different modifications to improve their per-
formance. Despite improvements over the vanilla GAN and other types of conditional
GANs, research has shown that they are susceptible to various instability issues, as shown
in [28–30]. The results of Kang et al. (2021) [28] showed the most significant bump in
performance by introducing an extension of the previously used cross-entropy loss cost
function. This customized loss function, called the Data-to-Data Cross-Entropy Loss (D2D-
CE), resolves the instability in the original AC-GAN when using the common cross-entropy
loss function. The resulting ReAC-GAN model remains one of the highest-performing
AC-GAN modifications by far and is grouped as one of the best performing conditional
generative models, as shown in [31].

2.2. Adversarial Attacks

Adversarial attacks are attacks performed on machine learning algorithms to cause
models to make mistakes during tasks such as classification. The attacks are usually
performed by adding a small perturbation or noise to input examples, making them
adversarial examples. C. Szegedy et al. (2014) [2] coined the term “Adversarial Examples”
and proposed one of the first adversarial attacks; subsequently, various studies have tried
to unveil the root cause of this phenomenon. The most conclusive research in explaining
adversarial examples was carried out by I. Goodfellow et al. (2015) [1]. The authors
attributed the ability of adversarial examples to fool models to neural networks not learning
the “true underlying concepts that determine the correct output label”. In other words,
the networks do not understand the actual training data sample, instead drawing a false
mathematical perception to identify the class of the sample as long as there is no artificial
noise that can affect that system. The authors compare this phenomenon to a “Potemkin
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village”, i.e., a false construct that does not accurately represent reality. According to
their research, the linear nature of neural networks is what allows for a small amount of
noise (adversarial perturbation) to affect the output of the model. In other words, while
machine learning models draw a mathematical relation between their received inputs
and the outputs from the training data, the representation they create does not represent
what human beings perceive. Given a clean Labrador picture (Figure 1a) and one that
has been adversarially perturbed (Figure 1b,c), we as human beings see and perceive all
three pictures as a Labrador-breed dog. However, a state-of-the-art machine learning
model specializing in classifying dog breeds mistakenly classifies the adversarial images
(Figure 1b,c) as Saluki and Weimaraner dog breeds, dogs that have significantly different
appearances compared to the original image. These results show that our current machine
learning models are not able to understand the world as humans do.
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Both C. Szegedy et al. (2014) [2] and I. Goodfellow et al. (2015) [1] proposed ad-
versarial attacks based on the gradient of a given model, respectively, Limited-Memory
BFGS (L-BFGS) and the Fast Gradient Sign Method (FGSM). After L-BFGS and FGSM,
various types of attacks have used different algorithms to generate adversarial perturbation.
Examples include, among many others, Jacobian-based Saliency Map Attack (JSMA) by N.
Papernot et al. (2015) [22], Carlini and Wagner Attack (C&W) by N. Carlini et al. (2017) [33],
Basic Iterative Method by A. Kurakin et al. (2017) [21], and Projected Gradient Descent
(PGD) by A. Madry et al. (2018) [9]. The methods listed above are classified as gradient-
based methods, in which perturbations are generated by utilizing the gradient such that
the generated noise is large enough to change the resulting label of the model while at
the same time being small enough to make no noticeable changes to the data sample. For
familiarity, the section below briefly summarizes the adversarial attacks used in this paper:

• Fast Gradient Sign Method (FGSM) [1]: FGSM is an adversarial attack generation
algorithm that is performed by calculating the gradient with respect to each image
pixel and adjusting it to maximize the loss value.

• Projected Gradient Descent (PGD) [9]: This attack is an update of FGS; while FGSM
takes only one step to calculate the generated noise, PGD improves the attack efficacy
through a multi-step process.

• Simultaneous Perturbation Stochastic Approximation (SPSA) [34,35]: SPSA uses ran-
dom approximations with finite difference estimates in cases where an analytic gradi-
ent can be used.

• Momentum Iterative Method (MIM) [36]: this attack uses momentum-based algo-
rithms to “boost” adversarial attacks, i.e., improve the generated adversarial examples
by adding momentum to the process and avoiding local maxima that are not sufficient
during each iteration.
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• Basic Iterative Method (BIM) [21]: BIM extends the idea of FGSM and implements the
attack multiple times with smaller step sizes.

• Unrestricted Adversarial Examples [19,20]: the authors who proposed this idea took a
different approach to generating adversarial examples; in this approach, a GAN learns
to create adversarial examples from scratch by searching the latent space of the model
that is being attacked. Because our architecture is based on their proposed solution,
this alternative is discussed in detail in the following sub-section.

Machine learning plays many essential and security-sensitive roles, from image classi-
fication to spam filtering and malware detection. For this reason, adversarial attacks pose a
huge risk to many application areas. The most common security issue here is adversarial
attacks in the form of images. Many of the introductory works in this area were carried out
using image data from C. Szegedy et al. (2014) [2] and I. Goodfellow et al. (2015) [1]. These
authors focused on image-based attacks that engineer adversarial perturbation to add to
the sample image. Despite the initial research focus on images, there has been research on
adversarial examples that has successfully reduced the performance of machine learning
models that work with other forms of data. Studies such as [4,5,37] have proven that
adding perturbation to audio input can affect speech-to-text transcription neural networks.
Similar attacks have been able to affect other Machine Learning applications as well, such
as Natural Language Processing (NLP), areas including sentiment classification, fake news
detection, neural machine translation, spam filtering, malware detection, bot detection,
network intrusion detection, and even self-driving cars, as shown in [3,13,16,38–50].

In this paper, we use PGD [9] and Unrestricted Adversarial Examples [19,20] for
adversarial training and use PGD [9], FGSM [1], SPSA [34,35], Unrestricted Adversarial
Examples [19,20], MIM [36], and BIM [21] for testing purposes. FGSM and PGD are both
classified as gradient-based adversarial example generation algorithms. These attacks use
the gradients produced during backpropagation to generate an optimal perturbation added
to the original input. Despite most attacks being gradient-based, attacks such as SPSA use
“gradient-free optimization” to generate adversarial examples. In the specific case of SPSA,
Uesato et al. (2018) [35] states that a technique proposed in [34] can be used to approximate
the gradients through finite difference estimates in random directions, providing an efficient
way of producing adversarial examples. Gradient-based and gradient-free attacks were
used to challenge the universality of both previously proposed adversarial training methods
and our proposed method.

2.3. Adversarial Training

Adversarial Training, as the name implies, is the process of training a model with
adversarially perturbed images. The training process might use a dataset containing both
clean and adversarial examples, as in [2], or a dataset with only adversarial examples, as
in [13]. There have been various improvements and additions to the method; essentially,
however, the algorithm should be able to augment or transform the training dataset with
adversarial examples. Research has shown that training the model with perturbed examples
significantly improves performance when an attack occurs [12–15].

Adversarial attacks can be divided into several classes based on their training tech-
niques. According to T. Bai et al. (2021) [12], adversarial training is generally divided into
six main types, with other variants not classified under the main branches. Most variations
here are based on the initially proposed adversarial training model in [2]. Examples such
as [15] have suggested using augmented adversarial examples generated from different
target models to generate different types of adversarial samples, while other research,
including [51–53], has changed the perturbation with respect to each pixel, i.e., epsilon (ε),
in an adaptive fashion that allows for better generation. These attacks can be implemented
on regression models, as done by Weixia et al. [54]. Although it is outside of our research
scope in this paper, applying the proposed method to regression models is an interesting
future direction.
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The concept of using generative models for adversarial training is a relatively recent
concept that has been gaining traction. In this paper, we compare Madry’s adversarial train-
ing method proposed in [9] with our adversarially robust models based on Unrestricted
Example generation using the AC-GANs proposed in [20] improved for Adversarial train-
ing. Research by X. Yin et al. (2022) [55] proposed using a generative classifier to boost
adversarial performance, which is very different from our approach; similar research was
conducted by F. Catak et al. (2020) [56]. In this latter case, the authors used autoencoders
to generate adversarial examples instead of GANs. Our reasoning for using GANs is that
they can be conditioned to produce the required results while generating clear samples.
Research has shown that GANs have superior performance in generating well-defined
quality images [57]. This paper proves that GANs have better potential to generate univer-
sal adversarial examples and, as a result, boost defenses. This improvement in robustness
results from better coverage of adversarial samples generated from scratch. This generative
nature adds a variety of samples that attackers might exploit; such samples are not usually
discovered through traditional algorithms such as PGD and FGSM.

2.4. Unrestricted Adversarial Examples

As mentioned in [16] by T. Brown et al. (2018), there have been various studies on
generating unrestricted adversarial examples where some specific norm constraint does
not constrain the generated adversarial examples. More specifically, this paper focuses on
Y. Song et al. (2018) [20], where the authors used a generative model to create adversarial
samples from scratch. Their method is based on searching for these adversarial samples in
the latent space of the model at hand. Unlike other methods, which generally add small
perturbations, generating unrestricted adversarial examples through an AC-GAN performs
a search that opens new possibilities for discovering adversarial samples that standard
algorithmic attack methods cannot create. The authors demonstrated the legitimacy of their
results through human evaluation on datasets such as MNIST, SVHN, and CelebA.

To further explain the generative model process, Y. Song et al. (2018) [20] formulated
the objective functions of the Generator and Discriminator in an adversarial example
generation context as follows in Equations (3) and (4):

min
θ
−Ez∼Pz ,y∼Py [dϕ(gθ(z, y))− logcψ(y|gθ(z, y)))] (3)

min
ϕ,ψ

Ez∼Pz ,y∼Py

[
dϕ(gθ(z, y))

]
− Ex∼Px

[
dϕ(x)

]
− Ex∼Px ,y∼Py|x

[
log cψ(y|x

)
]

+λE∼
x∼P∼

x

[(∥∥∥∇∼x dϕ

(∼
x
)∥∥∥

2
− 1
)2
] (4)

The equations were derived from the original Wasserstein GAN [58] and AC-GAN [27]
formulations and customized to an adversarial example generation scenario. Equation (3)
provides a minimization function for generating unrestricted adversarial examples. Accord-
ing to the equation, with cψ being the auxiliary classifier, it can be seen that the Generator’s
objective is to minimize the loss over the classification of the generated images. On the
other hand, in Equation (4), the Discriminator is trying to minimize the loss between the
output generated samples gθ(z, y) and the output of the original samples, x. The last term
of the equation is a gradient penalty term that encourages the discriminator’s gradient to
have a norm of 1.

Based on the above equations, our approach modifies this, aiming to primarily ben-
efit adversarial training by allowing for the generation of adversarial samples for better
robustness. The architecture was changed due to the constraint implemented when gen-
erating adversarial examples. Removing this constraint and implementing different loss
functions can improve adversarial training coverage; this can be seen through the proposed
methodology and experimental results in the following sections.
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2.5. Mixup Data Augmentation

In addition to adding augmented unrestricted adversarial examples to the original
dataset, we implemented a domain-agnostic data augmentation technique proposed by H.
Zhang et al. (2018) in [59]. This is a method in which a combination of randomly selected
image pairs is generated and added to the original dataset for training. The later sections
show that the augmentation algorithm interpolates two MNIST numbers from the training
set along with their labels. Training is accomplished by creating virtual training examples.
This method can be summarized using the following two equations, which show how the
virtual training examples are created.

∼
x = λxi + (1− λ)xj (5)

∼
y = λyi + (1− λ)yj (6)

Equations (5) and (6) show two examples drawn at random from the training data
interpolated using the parameter λ ε [0, 1]. Both

∼
x and

∼
y are the merged input vector

and label.
As shown in [60], mixup augmentation can improve adversarial robustness by linearly

interpolating multiple samples and their labels. Due to these improvements, we used the
mixup technique to create a Universal Adversarial Defense.

3. Methodology
3.1. Auxiliary Classifier GAN to Generate “Unrestricted Adversarial Examples”

As mentioned above, Auxiliary Classifier GANs can generate high-quality samples
due to the auxiliary classifier. In this paper, we aim to improve adversarial sample gener-
ation through the AC-GAN proposed by Y. Song et al. (2018) in [20] by modifying it for
adversarial training. This improvement achieves a wider range of adversarial example
searches in the latent space of the model, allowing for broader coverage of adversarially
trained defenses. T. Brown et al. (2018) [19] were the first to define the term “Unrestricted
Adversarial Examples”, suggesting the generation of unconstrained samples as opposed to
previous methods that were norm-constrained. According to [20], through the use of gener-
ative models it is potentially possible to find adversarial examples that are not limited by
the size of the perturbation, which is a superset for generative-based adversarial samples.

Vanilla adversarial training is generally based on augmenting a clean dataset with
adversarial images. These images are generated by adding small perturbations to clean
samples using methods such as FGSM [13] and PGD [9]. Despite their widespread use,
however, it has been shown in studies such as [1,12,15,25] that adversarially trained models
lack generalization with respect to unseen attacks. This lack of generalization is due to
the algorithms only generating constrained adversarial examples, meaning that defenses
trained only on these samples can be circumvented by different kinds of attacks that use
other lp norms or larger epsilon values (ε) compared to those used during adversarial
training [6,7].

The AC-GAN model solves the problem of constrained adversaries by looking through
the latent space and finding samples that qualify as adversarial examples. As shown in
Equations (1) and (2), the Generator aims to produce samples that resemble images from
the target class C but that are classified by the Generator as the source class S. The generated
samples can be used for adversarial training. The general formulation, first stated in [9]
(simplified by F. Tramer et al. (2020) [15]), is shown in the equation below:

min
θ

E(x,y)∼D

[
max

||xadv−x||∞≤ε
L
(

h
(

xadv
)

, ytrue

)]
(7)
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Madry et al. (2018) [9] explained adversarial examples through a min-max formulation,
as shown above. The inner maximization refers to an adversary that is trying to maximize
the loss L of an input xadv perturbed by a noise n = xadv − x, which is less than ε. The
outer minimization minimizes the loss from any perturbed sample. This objective function
is the goal of every adversarially robust model. In our case, training is carried out using
examples from an AC-GAN. Hence, the min-max formulation is modified as follows:

min
θ

E(x,y)∼D

[
maxL(h(xg), ytrue)

]
(8)

where xg is an adversarial sample generated by an AC-GAN. Note that there are no
constraints on xg because it is an unrestricted adversarial example.

3.2. Modifying AC-GAN Architecture for Adversarial Training

Taking a closer look at the AC-GAN architecture proposed in [17], which is used in
constructing Unrestricted Adversarial Examples from scratch, it can be noted that three
different loss functions are proposed. According to the authors, the first loss L0 improves
the performance of the target classifier f in predicting ytarget. It is expected that the classifier
classifies, or rather misclassifies, the input with a source label ysource to the target label
ytarget, as shown in Equation (9).

L0 , −log f
(
ytarget

∣∣gθ(z, ysource)
)

(9)

On the other hand, the loss term L1, shown in Equation (10) below, places a soft
constraint on the search region of the noise z such that more diverse samples can be
produced. In this paper, we argue that the loss function restricts the search region instead,
and that replacing it with another term would be more efficient. This improvement is
discussed further in the later parts of this section.

L1 ,
1
m∑m

i=1 max
{∣∣∣zi − zi

0
∣∣∣− ε, 0

}
(10)

The last loss component, as shown in the equation below, encourages the auxiliary
classifier cϕ to correctly classify the generated images, i.e., classify them as their source label.

L2 , −log cϕ(ysource|gθ(z, ysource)) (11)

To summarize all the loss functions mentioned above, the total loss helps the model
find the latent space z that produces quality unrestricted adversarial examples; hence,
minimizing the loss L helps to optimize the latent space provided to the Generator. The
first loss L0 helps the target classifier f to predict ytarget, which is the wrong target that
an attacker might exploit. On the other hand, L1 constrains the search range of the latent
space to a certain degree. Our research shows that this restriction reduces the efficacy and
universality of the generated adversarial samples and weakens adversarial training on the
said samples. Lastly, L2 allows the auxiliary classifier to make the correct prediction ysource.

As shown in Figure 2, the Generator is trying to minimize the summation of all three
loss functions. The hypothesis is that the soft constraint L1 limits the search range of the
Generator, thereby not allowing for an efficient defense. This is shown in the experiments
section by comparing adversarial training on the original AC-GAN architecture proposed
in [20] with our modified method. The experiments involve removing different loss terms,
including the soft-constraint loss L1, adding a custom loss function from [28] named Data-
to-Data Cross-Entropy Loss (D2D-CE), and training the proposed model on unrestricted
examples to test against different types of attacks. Kang et al. 2021 [28] improved the per-
formance of traditional AC-GAN by creating data-to-class and data-to-data relationships,
making the produced samples more visually similar to the original target data. Therefore,
testing different combinations of loss functions from the above four has proven that using
D2D-CE loss and removing the soft constraint generates unrestricted samples, in turn
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creating a more robust adversarial training output. The formulation of the D2D-CE loss as
shown by Kang et al. (2021) [28] is provided in the equation below.

LD2D−CE ,
1
N∑N

i=1 log(
exp([ fi

>vyi −mp]−/τ)

exp([ fi
>vyi −mp]−/τ) + ∑j∈N(i) exp([ fi

>vyi −mp]+/τ)
) (12)
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Figure 2. Modifications to the AC-GAN architecture; red (λ1, L1) shows the replaced loss function
for generation of broader unrestricted adversarial samples.

Figure 3 below compares the proposed model to the original adversarial model trained
on unrestricted examples from [20]. The models were tested on a range of attacks in order to
test their universality. When looking at the drop in accuracy of the unrestricted adversarial
model (blue line) compared to our proposed model, it is clear that the improvements
made to the models improved the overall robustness against all the attacks. The results
in the experiments section demonstrate how the different types of loss functions used in
unrestricted example generation throughout the different versions of the models vary in
accuracy when tested against various types of attacks.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 17 
 

in [20] with our modified method. The experiments involve removing different loss terms, 

including the soft-constraint loss 𝐿1, adding a custom loss function from [28] named Data-

to-Data Cross-Entropy Loss (D2D-CE), and training the proposed model on unrestricted 

examples to test against different types of attacks. Kang et al. 2021 [28] improved the per-

formance of traditional AC-GAN by creating data-to-class and data-to-data relationships, 

making the produced samples more visually similar to the original target data. Therefore, 

testing different combinations of loss functions from the above four has proven that using 

D2D-CE loss and removing the soft constraint generates unrestricted samples, in turn cre-

ating a more robust adversarial training output. The formulation of the D2D-CE loss as 

shown by Kang et al. (2021) [28] is provided in the equation below. 

𝐿D2D−CE ≜
1

N
∑ log(

exp([𝑓𝑖
⊤𝑣𝑦𝑖

 − 𝑚𝑝]−/𝜏)

exp([𝑓𝑖
⊤𝑣𝑦𝑖

 − 𝑚𝑝]−/𝜏) + ∑ exp([𝑓𝑖
⊤𝑣𝑦𝑖

 − 𝑚𝑝]+/𝜏)𝑗∈𝑁(𝑖) 
)N

i=1    (12) 

 

Figure 2. Modifications to the AC-GAN architecture; red (𝜆1, 𝐿1) shows the replaced loss function 

for generation of broader unrestricted adversarial samples. 

Figure 3 below compares the proposed model to the original adversarial model 

trained on unrestricted examples from [20]. The models were tested on a range of attacks 

in order to test their universality. When looking at the drop in accuracy of the unrestricted 

adversarial model (blue line) compared to our proposed model, it is clear that the im-

provements made to the models improved the overall robustness against all the attacks. 

The results in the experiments section demonstrate how the different types of loss func-

tions used in unrestricted example generation throughout the different versions of the 

models vary in accuracy when tested against various types of attacks. 

 

Figure 3. Visualization of adversarial robustness between different versions of proposed defenses. Figure 3. Visualization of adversarial robustness between different versions of proposed defenses.



Appl. Sci. 2023, 13, 8830 10 of 17

3.3. Augmenting Model Training with Generated Images

After the adversarial samples are generated, they are used to augment the original
dataset during the training of a new model. A convolutional model with four layers is
used to generate adversarial examples from the AC-GAN and retrain the new dataset that
includes the samples. Figure 4 below gives an overview of the process.
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Figure 4. AC-GAN architecture used for adversarial training. The original MNIST dataset (1) is used
in the adversarial sample generation (2) to create an augmented dataset. The adversarial dataset
(3) is then merged with the original image dataset to undergo adversarial training (4). This training
process ultimately results in a robust classifier.

This training method allows the model to identify adversarial samples that are not
close to the learned distribution and to classify them correctly. Compared to adversarial
training on samples generated from algorithms such as FGSM and PGD, the adversarial
training method proposed in this paper allows the resulting models to identify adversarial
examples that are not restricted to adding small noise to samples from the target dataset.
For this reason, an attacker may find it challenging to exploit adversarial examples from
different generation algorithms, which is shown in later sections where the proposed
method outperforms commonly used adversarial training methods. Additionally, the
generated adversarial samples underwent mixup augmentation to enhance their adversarial
robustness. As explained in the background section, this technique blends different images
from different classes to create augmented data containing both classes to a certain degree.
In [59,60], the authors explain how using mixup data augmentation can greatly benefit
adversarial robustness. Examples of MNIST dataset mixup augmentation are shown in
Figure 5 below.
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Figure 5. Examples of mixup-augmented MNIST dataset (the right and middle images show the
original input and the left image shows the output after applying the mixup method).

4. Experimental Results

Experiments were conducted by modifying the AC-GAN setup to generate Unre-
stricted Adversarial Examples [20]. Because the original authors did not provide the base
model, it was necessary to recreate the base model used to generate adversarial examples.
The architecture that we used was a simple model with two convolutional layers. When
trained on the MNIST dataset, it had a testing accuracy of 97.1%, which was sufficient for
our intended purposes. A similar model was used on CelebA, achieving a clean accuracy of
96.4% on gender classification. As explained in the previous section, the previous AC-GAN
configuration was modified to boost robustness for adversarially trained models. Table 1
lists the arrangement of each loss function for our model.

Table 1. Loss arrangements between different model versions.

Loss Functions Unrestricted Adv. Model Our Model

L0 Yes Yes
L1 Yes No
L2 Yes Yes

D2D− CE No Yes

Our experiments were run on an NVIDIA Ampere A100 GPU with 80 gigabytes of
video RAM using TensorFlow version 2 for both experiments. The Adversarial Robustness
Toolbox (ART) by M. Nicolae et al. (2019) [61], a library that provides different attacks
and defenses, was used for adversarial defense implementation. Conversely, the Clever-
Hans library proposed by N. Papernot et al. (2018) [62] was used for adversarial attack
implementation.

A range of adversarial examples was generated using the AC-GAN model. Because the
MNIST and CelebA datasets were used, a combination of each class label as a source, i.e., the
number or gender that the image should look like, and a target s, i.e., the misclassification
target class, was generated. The same model settings mentioned in [20] were used for the
other components of the AC-GAN. Figures 6 and 7 show two generated samples with
different sources and targets.
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Figure 7. Adversarial samples (source 6 to target 8).

The same model architecture proposed by Madry et al. (2018) [9] was used to perform
adversarial training and was compared with different versions of our adversarial training
methods. Our models were trained separately on clean MNIST and CelebA datasets and
augmented with unrestricted adversarial samples and mixup, such as those shown in the
figures above. On the other hand, the model based on Madry et al. (2018) [9] was trained on
adversarial images generated using a PGD attack, as recommended in their research paper.
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The tests were carried out using FGSM [1], PGD [9], Unrestricted Adversarial Exam-
ples [19,20], MIM [36], SPSA [34,35], and BIM [21], as shown in Table 2. Through these
experiments, the performance of our proposed model against unseen adversarial examples
was measured. To ensure a common ground with which to check the accuracy, the model
architecture was kept the same as the one mentioned above for all of the test models while
using different adversarial training methods. These different adversarial models were
compared in terms of accuracy with the clean models.

Table 2. MNIST accuracy comparison between a clean model, a model trained on PGD images, and
models trained on our proposed method.

Attacks Clean
Model

Madry’s
Model

Unrest. Adv
Model

Our Model
(w./o Mixup) Our Model

Clean 97.1% 98.7% 98.5% 98.4% 98.4%
PGD 13.5% 99.9% 98.7% 98.6% 98.3%

FGSM 13.4% 98.8% 98.4% 98.4% 98.8%
Unrestricted 13.9% 91.1% 99.9% 99.1% 99.1%

SPSA 37.7% 76.9% 90.3% 94.4% 99.8%
MIM 4.9% 50.0% 92.9% 90.2% 94.0%
BIM 9.3% 75.5% 89.5% 92.9% 98.5%

Categorical accuracy was used to measure how the predictions from the model
matched the true one-hot labels. The average and variance in Table 3 summarize the
results across various attacks.

Table 3. MNIST average and variance accuracy comparison between models (showing the variance
and average performance of the model accuracy provided in Table 1).

Model Average Variance

Madry’s Model 83.43% 3 × 10−2

Unrestricted Adv. Model 94.70% 2 × 10−3

Proposed Model 97.48% 7.2 × 10−4

The original unrestricted adversarial model was based on the original AC-GAN
architecture to generate Unrestricted Examples [20]. As explained in the methodology
section, the original architecture was modified in different ways in order to produce a more
robust model. The results in Tables 2–4 show the universality of our proposed model. Even
though performance on PGD and FGSM is slightly lower than that of Madry’s model or
the Unrestricted Adversarial Model, our model largely outperforms them on other attacks,
such as SPSA, MIM, and BIM. The accuracy of Madry’s model specifically drops by up to
half on these attacks. This drop in accuracy is because models that use previously proposed
adversarial training methods defend a model from only a small number of inherently
similar attacks.

Table 4. CelebA accuracy comparison between a clean model, a model trained on PGD images, and
models trained on our proposed method.

Attacks Clean
Model

Madry’s
Model

Unrest. Adv
Model

Our Model
(w/o Mixup) Our Model

Clean 96.4% 95.5% 91.2% 94.2% 96.8%
SPSA 26.4% 70.5% 88.5% 90.5% 91.7%
MIM 10.3% 50.2% 92.9% 94.1% 94.5%
BIM 7.4% 70.3% 88.6% 90.0% 93.1%
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On the other hand, it can be shown that the performance improvement of the highest-
performing model is due to the removal of the soft-constraint loss L1 and addition of
the D2D− CE loss function proposed in [28]. This modification allows the AC-GAN to
search for and find adversarial samples that are impossible to generate using standard
methods such as PGD and FGSM. One thing to note here is that the unrestricted adversarial
model, which was trained on unrestricted examples based on the original architecture
in [20], outperforms our proposed model with regard to unrestricted attacks because
the augmented adversarial training samples are in the same set as the attack examples.
However, when comparing Madry’s model with our model, the overall attack performance
across all attacks is better, as shown in Table 3. In the case of the MNIST dataset, our
proposed model has performance degradation on clean images; however, when considering
the case of the CelebA dataset, its performance is better. There was a performance drop
from 98.9% to 98.4% on clean samples when increasing the number of augmented samples,
from which it can be speculated that there is a limit on how much augmentation improves
the overall model performance without affecting performance on the clean dataset, and
that this limit depends on the dataset.

Mixup augmentation, explained in detail in the previous section, is another factor
that significantly improved the adversarial robustness of the model. Our findings indicate
that mixup augmentation resulted in an average accuracy improvement of 2.13% on the
MNIST dataset and 1.82% on the CelebA dataset, which is noticeably superior to not using
this method.

The experimental results in Tables 2–4 show gaps in the defenses created by adversarial
training that attackers might exploit. Research by H. Zhang et al. (2019) [63] showed that,
unless adversarially trained models can cover these types of samples, attackers might
be able to exploit such gaps to affect even state-of-the-art models. Our proposed model
bridges this gap by boosting performance with less variance in model accuracy and better
average performance across all the attacks, as shown in Table 3. Adversarial Training based
on AC-GAN Adversarial Example Generation provides defense with more coverage for
adversarial samples that might appear further away from the manifold.

In contrast to Madry’s model, which was trained using PGD samples, our model
employs Unrestricted Adversarial Samples during training. This unique approach grants
our model superior defensive coverage owing to the remarkable capabilities of generative
models to synthesize a diverse array of samples without any constraints. These generative
models have the potential to generate samples that have never been encountered before,
enabling our model to exhibit an unparalleled ability to withstand attacks. Our model
demonstrates resilience against attacks it has never been exposed to, a notable distinction
compared to Madry’s model and even the Unrestricted Adversarial Model. This devel-
opment paves the way for the concept of zero-shot adversarial defense, in which models
possess the robustness to defend against adversarial attacks even in cases where the attack
types have never been witnessed previously. This is an important step towards creating
a robust model, as traditional adversarial defense can be broken by simple attacks that
the model was never trained on. By overcoming the limitations of prior training data, our
model showcases the potential for better defense in the field of adversarial training and
machine learning security.

5. Conclusions

Previous adversarial training methods have produced various results and created
adversarial defenses that have improved baseline accuracy. However, as these defense
mechanisms improve, adversarial attacks become more resilient to defenses and circumvent
them easily, as shown in various research, including [16,17]. This is caused by common
adversarial defense methods, specifically, adversarial training restricted by small pertur-
bations added to the original images, which results in “narrower” defensive coverage.
Attackers can exploit adversarial samples generated using different algorithms, i.e., by
producing adversarial examples not covered by the defenses to use in attacks. Standard
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adversarial training methods become less accurate as datasets grow more complex, as
discussed in [9,63], further worsening matters.

In this paper, we propose using AC-GAN, which is geared towards adversarial train-
ing, to generate adversarial samples that are “unrestricted, ” a term taken from [19,20].
This ensures a larger area of defensive coverage, thereby providing universal defense. The
AC-GAN architecture in [20] was modified for robust adversarial training. Our experiments
demonstrate the robustness of our methods, as detailed in the Results section. From this,
it can be concluded that generative models have better potential in finding adversarial
samples that are not restricted and that allow for robust adversarial training.

As a future direction, this method can be implemented on datasets with a more
complex data manifold, such as ImageNet and CIFAR. Such implementation would allow
for a better understanding of conditional generative models such as AC-GANs in order to
boost adversarial robustness. Another improvement could involve resolving the issue of a
specific Generator being needed for each domain/dataset. The current process is both time-
and resource-consuming. To simplify it, using meta-learning to improve the time required
to generate adversarial examples could be an option. Future directions might include using
Few-Shot Generative Models such as the one mentioned in [64] to generate adversarial
samples without creating a generative model from scratch.
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