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Abstract: The challenges of computational cost and robustness are critical obstacles in topology
optimization methods, particularly for the iterative process of optimizing large-scale multiphysical
structures. This study proposes an efficient and robust topology optimization method for minimizing
the thermoelastic damping of large-scale microresonators. An evolutionary structural optimization
method is adopted to passively determine the search direction of optimizing large-scale thermoelastic
structures. To efficiently reduce the computational cost of the iterative process of an optimizing
process, a model reduction method is developed based on the projection-based model reduction
method whose reduced basis is generated within the Neumann series subspace. However, the
projection-based model reduction method may be unstable when topology modifications are made
during an iteration optimization process. To ensure robustness, a modal validation technique is
first implemented in the iterative process to stabilize the iteration and narrow down the search
domain, and a posterior evaluation of the Neumann series expansion is then developed to retain
the convergence of the projection-based model reduction method. Furthermore, the efficiency and
accuracy of the proposed topology optimization method are validated through numerical examples.
Two large-scale numerical models are also used to demonstrate the advantage of the proposed method.
It is found that large-scale thermoelastic structures with a phase-lag heat conduction law can be
designed passively, precisely, and efficiently by using the proposed topology optimization method.

Keywords: model reduction method; non-Fourier heat conduction; topology optimization; Neumann
series expansion; posterior evaluation; efficient and robust method

1. Introduction

Micro-electromechanical system (MEMS) resonators are currently dominating the
billion-dollar market, particularly in the fields of biomedicine, aerospace, and others [1,2].
High-frequency resonators are widely used as the key components of MEMS. Two critical
dynamic characteristics for microresonators are known as resonance frequency and energy
dissipation (inverse quality factor). Frequency affects the sensitivity of the response of
resonators, while the energy dissipation rate affects their accuracy and noise. Enlarging
the quality factor of microresonators can, therefore, reduce their signal loss and improve
stability [3]. The attainment of both high sensitivity and high accuracy is a vital requirement
for most MEMS resonators; unfortunately, resonance frequency and energy dissipation are
generally mutually exclusive.

Although the quest continues for higher frequency resonators, these have little-to-no
use as MEMS resonators without appropriate accuracy (qualify factor). One of the major
damping sources of microresonators is thermoelastic damping [4], which cannot be reduced
by external measurement-and-control methods. Thermoelastic damping determines the
upper limit of the performance of high-frequency MEMS resonators [5,6], although their
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resonance frequency is generally high [7]. For these reasons, the development of high-
frequency yet low-dissipation microresonators is an optimization problem for an exercise
in the compromise between frequency and quality.

As depicted in Figure 1, a thermoelastic structure undergoes vibration, resulting in the
emergence of compressed and stretched regions within the structure. Since temperature
increases in the compressed region but decreases in the stretched region, the temperature
gradient-derived heat conduction will lead to irreversible thermoelastic damping. It has
been examined by some works [8,9] that microstructural features can affect the thermoe-
lastic damping of microresonators, and structural topology design methods can be used
to enlarge the quality factor of microresonators. On the other hand, advancements in
lithography manufacturing processes and 3D printing technology have gradually loos-
ened the constraints of manufacturing processes on the design of thermoelastic structures.
As a result, it has become possible to fabricate microresonators with intricate internal
configurations [10].
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Figure 1. Schematic diagram of a structure considering thermoelastic damping.

The fundamental theory of the structural topology optimization method is defined by
combining homogenization theory with numerical optimization methods. This method
achieves optimal structural performance by modifying the micro-structural features within
the design domain [11]. There have been extensive studies in this field, including the
classic solid isotropic material with the penalization (SIMP)-based optimization criteria
method [12], the evolutionary and bi-directional evolutionary structural optimization [13],
the Smooth-edged material distribution for optimizing topology algorithm [14], and the
floating projection topology optimization [15].

The heat transfer mechanism plays a significant role in the analysis and design of
thermoelastic structures. It has been demonstrated through a large number of experiments
that the assumption of infinite heat conduction velocity, which is required for linear Fourier
heat conduction, is no longer valid for devices at the micron or even nanoscale. Instead,
nonlinear non-Fourier heat conduction gradually dominates as the size of thermoelastic
structures is down from the micrometer to the nanometer [16]. For instance, extreme
temperatures in a micro-cantilever not only affect its Young’s modulus but also change the
tension in the cantilever due to differential thermal expansion, resulting in the variation of
both frequency and dissipation [17]. To better characterize these nonlinear heat conduction
effects, scholars have extensively studied the phenomenon since the classical Maxwell–
Cattaneo–Vernotte equation [18,19]. Among the non-Fourier heat conduction models, there
is a specific branch dedicated to modeling non-Fourier phase-lag behavior. This branch
attributes nonlinear non-Fourier heat conduction effects to the hysteresis effect between
heat conduction and temperature gradients. One of the features of the non-Fourier phase-
lag model is its ability to be degenerated by setting specific lag values [20]. According
to the heat wave theory, the lag of heat conduction in solid structures usually affects the
heat flux. In other words, the change of heat flux is driven by the changing temperature
gradient [21]. Additionally, the single-phase lag and the dual-phase lag can be converted to
each other [22]. For these reasons, we choose the dual-phase lag heat conduction model as
the non-Fourier heat conduction law in this paper due to its universal nature.
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The thermoelastic structures with the dual-phase lag heat conduction model will cause
a nonlinear thermoelastic eigenproblem, which is very different to handle. Often, the
linearization technique based on the state–space method [23,24] is used for solving the non-
linear eigenproblem. When the parametric partial differential equations of thermoelastic
structures are discretized using commonly-used numerical techniques, the degrees of free-
dom of the governing equations will be very large. However, the dimension of the system
matrix of the state–space method is much larger than the original dimension of the nonlinear
thermoelastic eigenproblem, thereby resulting in a huge computational challenge.

There has been extensive research on accelerating the solution of large-scale linear
eigenproblems, which can, of course, be used for handling the state–space method of
thermoelastic eigenproblems with the dual-phase lag heat conduction model. The reduced
basis method, which finds the relationship between the design variable and the system
information (such as the displacement field) to solve the problem, has been employed to
reduce the dimensionality of the problem and computational cost [25]. Furthermore, the
matrix operator method, when combined with other optimization algorithms, has been
utilized to improve stability and accelerate the solution of partial differential equations [26],
and has been widely applied to solve finite element eigenvalue problems in multi-field
coupled dynamical systems [27]. Currently, there are many types of matrix operators,
including diagonal matrix operators, reduced-basis matrix operators, and differential ma-
trix operators, and these operators are often necessary for subspace solutions of partial
differential equations [28,29]. Among the types of matrix operators, diagonal and triangular
matrix operators are known for their simplicity and fast convergence [30]. These efficient
methods, although general, do not capture the essential features of thermoelastic struc-
tures. For the sake of further computational efficiency, Fu et al. [31] constructed diagonal
systemic matrices of the lumped mass and heat generation matrices. With these diagonal
systemic matrices, an efficient Krylov subspace method is proposed for the thermoelastic
eigenproblem. Note that the analysis of thermoelastic eigenproblems with the Fourier heat
conduction model has been provided recently for commercial software COMSOL. However,
these works mentioned above can only be used for thermoelastic eigenproblems with the
Fourier heat conduction model, rather than the non-Fourier heat conduction model of
interest. Furthermore, the repeated updating of topology optimization designs is com-
putationally challenging, especially for large-scale linear eigenproblems of thermoelastic
eigenproblems with the dual-phase lag heat conduction model.

To the literature above, current system solutions of large-scale thermoelastic structures
are difficult and time-consuming. Furthermore, the iterative optimization of thermoelastics
requires an eigenvalue analysis in each iteration; as a result, the consumption of compu-
tational time and resources could be unbearable. Although an efficient design method of
thermoelastic structures by topology optimization is proposed in our previous research [31],
it could not resolve thermoelastic problems in the framework of the phase-lag heat conduc-
tion law and may also suffer from an iterative procedure oscillation. Thus, an effective and
robust design method is urgently needed for fully-coupled thermoelastic microstructures
under non-Fourier phase-lag heat conduction law. To address the need for an efficient
design method for thermoelastic microstructures with phase-lag heat conduction law, and
considering that existing design methods are not qualified to solve large-scale problems
with complex geometry, this paper proposes an efficient and robust topology optimization
method for minimizing the thermoelastic damping of large-scale microresonators with
phase-lag heat conduction law.

This article is organized as follows. First, a state–space method is developed for large-
scale microresonators with phase-lag heat conduction law in the framework of commonly-
used numerical techniques, and the corresponding optimization method is defined to
enlarge the quality factor of the large-scale microresonators. Then, to efficiently reduce the
computational cost of the iterative process of optimizing process, a model reduction method
is developed based on the projection-based model reduction method whose reduced basis
is generated based on the Neumann series expansion technique. However, the model
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reduction method may be unstable when topology modifications are made during an
iteration optimization process. Thus, to ensure robustness, a modal validation technique
is first implemented in the iterative process to stabilize the iteration and narrow down
the search domain, and a posterior evaluation of the Neumann series expansion is then
developed to retain the convergence of the parameterized model reduction method. Finally,
several numerical results are discussed to validate the efficiency and accuracy of the
proposed method.

2. Statement of the Topology Optimization Problem

The objective of this topology optimization method is to enhance the quality factor of
thermoelastic microresonators with the phase-lag heat conduction law. As per the definition
of the phase-lag heat conduction model, the dissipation resulting from the non-Fourier form
of the entropy increases because of the irreversible process related to both internal energy
and heat flux and can be converted into a time-dependent lag form [32]. The introduction
of higher-order time-dependent terms significantly increases the complexity of solving the
system equations.

In an optimal design method, the search direction, search domain, efficiency, and
convergence are the crucial properties [33]. The search direction determines the ability
to obtain optimal solutions to a design problem, while the search domain influences the
speed of the method. Moreover, the optimization method must be convergent to obtain an
appropriate solution.

In this section, we propose a modified evolutionary structural optimization method to
determine the search direction of the design method.

2.1. Thermoelastic Damping with Phase Lag Heat Conduction Law

In the case of a small energy dissipation (thermoelastic damping) of the microresonator,
the quality factor of the i-th mode shape, Qi, is similar to the dissipation angle [34], which
can be obtained by the following formula [35]:

Q−1
i = 2

∣∣∣∣=(λi)

<(λi)

∣∣∣∣, (1)

where λi is the i-th eigenvalue of the system, and =(•) and <(•) denote the imaginary and
real part of (•), respectively. As the system eigenvalues have to be solved by the governing
equations of the thermoelastic system, the fully-coupled equation will be derived through
the law of momentum and heat conduction.

2.2. Governing Equations of Thermoelstic Structures

For a thermoelastic system constructed with linear isotropic thermoelastic material,
the equation of motion can be obtained through the conservation law of momentum [36]:

E
1 + ν

ε ·∇+
Eν

(1 + ν)(1− 2ν)
∇[Tr(ε)]− Eα

1− 2ν
∇θ + b̃ = ρü (2)

where θ is the temperature field, E is the elastic modulus, α is the coefficient of thermal
expansion, T0 is the reference temperature, and ν is Poisson’s ratio.

This paper mainly considers the dynamic characteristics of structures, i.e., free vi-
bration analysis (modal analysis), so the body force b̃, external force, and corresponding
load terms are zero. Combining the finite element method and classical global matrix
assembly method, and considering boundary conditions, the global equation of motion can
be expressed as

MÜ + KU−GΘ = 0 (3)

where M, K, and G are the global mass, stiffness, and thermal stress matrices of the whole
structure, U and Θ are the global vectors of displacement and temperature, respectively.
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Note that the thermal stress term (GΘ) is related to the temperature field of the structure.
Therefore, the solution of the structural equation of motion requires the use of the structural
heat conduction equation.

On the other hand, the dual-phase lag heat conduction model takes the following
form [20,22]:

q(r, t) + τqq̇(r, t) = −κ
[
∇T(r, t) + τT∇Ṫ(r, t)

]
, (4)

where q and ∇T are the heat flux and temperature gradient, respectively. r and t are,
respectively, the position vector and time. τq and τT are the phase lags on heat flux and
temperature, respectively. Overdot denotes the derivative with respect to time.

The following equation describes the behavior of heat conduction and is known as the
governing equation of heat conduction:

κ∆θ = Cv θ̇ +
EαT0

1− 2ν
Tr(ε̇) (5)

where Cv = ρCp represents the specific heat capacity per unit volume, ∆ represents the
Laplacian operator, κ is the thermal diffusivity, θ̇ is the rate of change of the temperature
field, and ε̇ is the strain rate tensor.

Similar to the thermal stress term in the governing equation, the heat generation
term (FU̇) caused by strain in the thermal conduction equation is related to the structural
displacement field, and therefore, the solution of the structural thermal conduction equation
requires the use of the motion equation.

Combining Equations (4) and (5), the global equation of heat conduction considering
the non-Fourier heat conduction dual-phase lag model can be expressed as [36]:

SΘ + STΘ̇ + HΘ̇ + FU̇ + HqΘ̈ + FqÜ = 0 (6)

where 
ST = τTS
Hq = τqH
Fq = τqF

(7)

The governing heat conduction equation can take various forms depending on the
chosen phase lag. In single-phase lag non-Fourier heat conduction models, the phase lag is
usually applied to the heat flux [21]. Therefore, only the heat flux lag form is considered.
When the temperature lag τT is equal to zero, Equation (6) degenerates to a single-phase
lag form.

SΘ + HΘ̇ + FU̇ + HΘ̈ + FqÜ = 0 (8)

When both the temperature and heat flux lags are zero (τq = 0, τT = 0), Equation (6)
reduces to the classical Fourier heat conduction form [31]:

SΘ + HΘ̇ + FU̇ = 0 (9)

2.3. State–Space Method for Large-Scale Microresonators with Phase-Lag Heat Conduction Law

Combining Equations (3) and (6), we obtain{
MÜ + KU−GΘ = 0
SΘ + STΘ̇ + HΘ̇ + FU̇ + HqΘ̈ + FqÜ = 0

(10)

Equation (10) represents a unified thermoelastic governing equation that takes into
account different heat conduction models. The full coupling between the temperature
field and displacement field in the equation of motion and the heat conduction equation
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requires a simultaneous solution of the governing equations of heat conduction and motion.
Moreover, the introduction of high-order terms related to the phase-lag time, such as STΘ̇,
HqΘ̈, and FqÜ, further increases the difficulty of solving this fully-coupled system equation.

There are several ways to solve the combined Equation (10). Direct decoupling of (10)
is usually achieved by ignoring the coupling terms in the motion equation or the heat
conduction equation, but this destroys the original equation form and neglects the impact
of thermoelastic behavior on energy dissipation. Iterative methods such as the Newton
iteration method are generally inefficient for solving fully-coupled high-order equations.
Therefore, based on the idea of expanded complexity and descended order, this paper
constructs a low-order state–space model that retains the thermoelastic influence while
preserving the possibility of a subsequent accelerated solution. Unit matrices related to
displacement rate and temperature rate are added:

−IU̇ + IU̇ = 0 (11)

−IΘ̇ + IΘ̇ = 0 (12)

Filling in the zero terms, we obtain the state–space method of large-scale microresonators
with the phase-lag heat conduction law as

H Hq F Fq
0 0 0 M
I 0 0 0
0 0 I 0




Θ̇

Θ̈

U̇
Ü

+


S ST 0 0
−G 0 K 0

0 −I 0 0
0 0 0 −I




Θ

Θ̇

U
U̇

 = 0 (13)

Equation (13) represents the governing equation of the system taking into account
non-Fourier phase-lag heat conduction. In the 2D thermoelastic eigenvalue problem, the
number of nodes Nn directly affects the degrees of freedom of the system, where the basic
degrees of freedom Nd are given by Nd = 3Nn (including two displacement degrees of
freedom and one temperature degree of freedom per node). However, the state–space
method increases the degrees of freedom, and for the non-Fourier dual-phase lag heat
conduction combined Equation (20), the degrees of freedom of the state–space solution
increase to Ns = 6Nn. Similarly, for the 3D thermoelastic eigenvalue problem, the basic
degrees of freedom are Nd = 4Nn, and for the non-Fourier dual-phase lag heat conduction
combined Equation (20), the dimension of the state–space solution increases to Ns = 8Nn.

With the help of the state–space method, for the free vibration considered herein, the
solution is assumed to take the form:

Θ = Θ̃eλit, U = Ũeλit (14)

where λi is the i-th eigenvalue of the thermoelastic system,
[
Θ̃
]

Nn×1 and
[
Ũ
]

2Nn×1 or[
Ũ
]

3Nn×1 are the amplitudes of temperature and 2D/3D displacement, respectively.
Then, Equation (13) can be expressed as

(λiB−A)Φi = 0 (15)

where, for the 2D non-Fourier dual-phase lag heat conduction model,
[Φi]6Nn×1 =

[
Θ̈, Θ̇, Ü, U̇

]T, and in the case of 3D, [Φi]8Nn×1 =
[
Θ̈, Θ̇, U̇, Ü

]T.
Since the degrees of freedom of the system matrix reach 6Nn and 8Nn for the 2D

and 3D thermoelastic problems, respectively, solving the system typically incurs heavy
computational costs. Moreover, for large-scale design problems, the intermediate variables
of the expanded system may exceed the storage capacity of computing devices. Once
the thermoelastic system matrices are constructed, an optimal design method must be
employed to solve the quality factor design problem.
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2.4. Definition of Optimization Problem

The objective of the topology optimization process is to minimize the thermoelastic
dissipation of the microbeam resonator. There are several methods for material structure
topology optimization design, which can be roughly classified into gradient-based and
non-gradient methods. The gradient-based method determines the search direction by
computing the sensitivity gradient of the design variables. One specific branch of the
gradient-based method is evolutionary structural optimization and its derivative algo-
rithms, where the element pseudo-densities are the design variables. In this approach, a
value of “1” for an element pseudo-density signifies that the element is filled with material,
while a value of “0” denotes that the element is empty. By iteratively adjusting the element
pseudo-densities based on the sensitivity of the design variable and the optimization evo-
lution rate, the material in the structure is either added or removed, thereby altering its
dynamical performance. The evolutionary iterative optimization process converges when
the optimized structure reaches the target volume fraction within the constraints, and the
objective function converges.

The advantage of evolutionary structural optimization lies in its clear and concise
concept of element sensitivity. Elements with high design variable sensitivity make a greater
contribution to the objective function and are retained, while those with low sensitivity are
removed [37]. In addition, the structure obtained by its optimization has no intermediate
density and is closer to the “0-1” topology configuration. Furthermore, since the iterative
algorithm considers the relative values of the design variable sensitivity, there is no strict
requirement for the positive or negative signs of the sensitivity, making it more convenient
in handling multiphysics optimization problems than other optimization methods such as
density-based methods. Thus, the evolutionary structural optimization method is chosen
as the design method to determine the search direction of the design problem.

For the optimization of microstructures with the non-Fourier phase-lag heat conduc-
tion law, the thermoelastic optimization model can be expressed in a specific structural
topology optimization form by combining topology optimization-related constraints, de-
sign variables pe, and objective function C. Taking the i-th quality factor Qi of the microres-
onator as the objective function, the matrix form of the thermoelastic optimization problem
can be obtained as follows:

Max C = Qi

s. t. AΦi = λiBΦi (16a)
N

∑
e=1

Ωe pe − lvΩ0 ≤ 0 (16b)

l f f (origin) − f ≤ 0 (16c)

pe = pmin or 1, (e = 1, 2, . . . N) (16d)

The eigenvalue equation in (16a) is the main constraint of the optimization problem, where
A and B are the system matrices mentioned earlier. Through finite element analysis, both
free vibration boundary conditions and adiabatic boundary conditions are included in (16a).
In addition, volume constraint (16b) and element volume constraint (16d) are imposed on
the optimization process to obtain a lightweight structure and ensure that the optimization
process is not affected by the singularity of the overall system matrix. Here, pe is the pseudo-
density of the e-th element, which takes the value of 1 or a small positive number close to
zero pmin. N is the number of finite elements in the entire structure, lv is the volume fraction
of the optimized structure, Ωe is the volume of each element, and Ω0 is the initial volume
of the structure. Furthermore, a frequency constraint (16c) is imposed to ensure the stability
of the optimization process and prevent excessive reduction of structural frequency.
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As mentioned before, this paper mainly focuses on the evolutionary structural opti-
mization method to improve the quality factor of the structure. The sensitivity of the i-th
order eigenvalue λi of the system to the design variable pe can be expressed as:

∂λi
∂pe

=ΨT
i

(
∂A
∂pe
− λi

∂B
∂pe

)
Φi (17)

As shown in Equation (17), the right-hand side can be obtained by solving the system equa-
tion. Therefore, this equation reveals an explicit relationship between system eigenvalue
sensitivity and design variables. As mentioned before, we choose an evolutionary structural
topology optimization method based on finite element analysis to solve the fully-coupled
thermoelastic optimization problem in Equation (16). Since gradient-based evolutionary
structural optimization methods require the sensitivity of the objective function with re-
spect to the design variables, and considering that the displacement field, temperature
field, and characteristic frequency of the system may be functions of the design variables
themselves, according to the chain rule, the sensitivity of the objective function with respect
to the design variables can be expressed as follows. Consequently, the sensitivity of the
quality factor Q with respect to the element pseudo-density pe can be obtained using the
chain rule and the relationship between the system’s eigenvalues and quality factor:

∂Q−1

∂pe
= 2
=
(

∂λi
∂pe

)
<(λi)−=(λi)<

(
∂λi
∂pe

)
[<(λi)]

2 (18)

This equation represents the explicit expression of the sensitivity of the objective function
Q with respect to the design variable pe, and it contains terms related to the hysteresis time
(such as ST , Hq, and Fq) as indicated by the definition of λi.

The optimization process of an ESO method can be discretized into several steps, as
shown in Figure 2. For a large-scale design problem, the finite element analysis step of
the fully-coupled system, as marked in red, requires heavy computational cost, while the
repeated reconstruction of the structure further exacerbates the computational burden.

Start

Converge?

Initialize mesh, boundary 

condition, penalty factors

End

Finite element analysis

(Solving eigenproblem)

Sensitivity analysis

Construct a new design

Yes

No

Figure 2. Flowchart of the optimization process: The finite element analysis of the fully-coupled
system incurs a significant computational cost, and the repeated reconstruction of the structure
further exacerbates the computational burden.

According to the definition and standard process of the ESO method, the convergence
of the optimization process can be acquired when the structure reaches the design volume
fraction, and the objective function changes little between two iterations [13].
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As mentioned before, the search direction, search domain, efficiency, and convergence
are vital to the design process. For instance, the gradient-based ESO method determines
the search direction. The search domain needs to be narrowed down. The efficiency of the
method needs to be improved, and the convergence of the optimization process needs to be
validated. In the next section, we will propose an efficient and robust topology optimization
method to solve this optimization problem with efficiency and accuracy.

3. Efficient and Robust Topology Optimization Method

In this section, a modal analysis method based on a Neumann series expansion is
proposed to efficiently solve the combined system equation (Equation (13)). Then, a modal
validation process based on the modal assurance criteria is implemented to narrow down
the search domain, along with the posterior evaluation technique to retain the convergence
of the design method.

3.1. Reconstruction of the System Matrices

According to the definition of thermoelastic damping, the system matrices become
complex when considering the effects of thermoelastic damping. For the governing equa-
tion of motion, let M be a positive definite mass matrix, K be a non-negative definite
symmetric stiffness matrix, and G be the thermal expansion matrix in the equation of
motion. As mentioned above, the asymmetry of the combined system matrices A and B
leads to the complex eigenvalue problem, which is difficult and time-consuming to solve.
The key difficulty in solving the eigensolution is the decomposition and inversion step of
the combined matrix. To facilitate the decomposition and inversion of the combined terms
in the system equations, we construct the lumped mass matrix by making its diagonal
elements proportional to the corresponding diagonal elements of the original consistent
mass matrix. The lumped mass matrix is a diagonally positive definite matrix obtained
from the traditional consistent mass matrix, which is widely used in finite element dynamic
analysis. Its accuracy has been verified through numerical examples [38,39].

It is assumed that the total sum of all elements in both types of mass matrices is equal,
that is

[M]
lumped
ii =

[M]consistent
ii

∑ [M]consistent
ii

∑ ∑ [M]consistent
ij (19)

where [M]ij represents the element in the i-th row and j-th column of matrix M, and ∑ is the
summation operator for the elements in the matrix. For convenience, we use M to denote
the lumped mass matrix in the following text. Similarly, the heat generation matrix H in the
heat conduction control equation is also constructed as a positive definite diagonal matrix.

For thermal-elastic coupling systems that consider non-Fourier dual-phase lag heat
conduction models, the full coupling between the motion equation and the heat conduction
equation requires a simultaneous solution of both equations. In the previous chapters, the
order of the thermoelastic system was reduced by applying a state–space transformation
to the system equations due to the influence of high-order time derivatives in the motion
and heat conduction system equations. However, this increases the dimensionality of the
system equations, and the classic direct combination method for control equations shown
in Equation (13) results in two asymmetric matrices for the inherent terms of the system
equations. This leads to a slow direct solution of the system equations due to the inversion
and decomposition process of the global matrix.

To avoid the extremely time-consuming decomposition and inversion steps in solving
the asymmetric matrix of the system equation, this paper combines the system matrices M
and H into a single matrix to reduce computation time. Moreover, for the thermoelastic
system with the non-Fourier dual-phase lag heat conduction model considered in this
paper, the second-order term related to time cannot be directly transformed. Therefore, the
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first term on the left side of the equation is constructed as a triangular matrix to simplify
the inversion and decomposition steps:

Hq 0 Fq 0
0 I 0 0
0 0 M 0
0 0 0 I




Θ̈

Θ̇

Ü
U̇

+


ST + H S + F 0 0
−I 0 0 0
0 −G 0 K
0 0 −I 0




Θ̇

Θ

U̇
U

 = 0 (20)

Thus, Equation (13) can be restructured into a form similar to the standard characteris-
tic problem while preserving the original structure of the control equation to the greatest
extent possible.

Equation (20) represents the eigenvalue problem of thermoelastic systems under free
vibration considering the non-Fourier phase-lag heat conduction model. Since the first term
is a triangular matrix, the inversion step is computationally efficient. However, the second
term in the equation is asymmetric and may not be positive definite, which increases the
computational cost of solving the eigenvalue problem of the combined equation. In the
following text, we adopt a subspace method to approximate the solution in a small degree
of freedom system to reduce the computational cost.

For the reconstructed system equations considering different heat conduction models,
the combination matrix B is constructed as a triangular matrix, which greatly simplifies the
inversion and decomposition of this matrix compared to the original system equations.

3.2. Reduced Basis in Neumann Series Subspace

During the iteration of topology optimization, structural configuration changes often
occur by changing its material distribution to improve the mechanical system’s performance.
Therefore, the system matrix change caused by changes in structural design parameters
can be represented as follows:

Am = A + ∆A, Bm = B + ∆B (21)

where Bm and Am are the system matrices after structural configuration changes, and
∆B and ∆A represent the changes of the system matrices. The eigenvalue problem after
structural configuration changes can be expressed as

(λmiBm −Am)Φmi = 0 (22)

where λmi and Φmi are, respectively, the ith eigenvalue and eigenvector of the modified
viscoelastic structures.

Recalling Equation (21) and using some matrix manipulations, the modified eigen-
problem (22) can be rewritten as(

IN − ξiB−1
m ∆A

)
Φmi = ξiB−1

m AΦmi (23)

where

ξi =
1

λmi
(24)

Applying Neumann series expansion to implement the inverse matrix of the coefficient
matrix,

(
IN − ξiB−1

m ∆A
)−1, one obtains

Φmi = ξi

∞

∑
k=0

(
ξiB−1

m ∆A
)k

B−1
m AΦmi (25)



Appl. Sci. 2023, 13, 8811 11 of 25

Using the first r expansion terms and the initial eigenvector Φi to approximate the modified
eigenvector Φmi, we can obtain an approximate approach for calculating the modified
eigenvector Φmi as

Φmi = ξi

r

∑
k=0

(
ξiB−1

m ∆A
)k

B−1
m AΦi (26)

Definition 1 (Neumann series subspace). The Neumann series subspaceRr is formed by an r-
dimensional recursive sequence

{
r(0)i , r(1)i , r(2)i , · · · , r(n−1)

i

}
generated by original system matrices

A and B, the changes in original system matrices ∆A and ∆B, as well as the ith eigenvector Φi of
the original eigenproblem defined in Equation (18). That is,

Rr(A, B; Am, Bm; Φi)
.
= span

{
r(0)i , r(1)i , . . . , r(r−1)

i

}
(27)

where

r(0)i = (B + ∆B)−1AΦi

r(k)i = (B + ∆B)−1∆Ar(k−1)
i , ∀k = 2, 3 . . . , r

(28)

Using a Neumann series subspace Rr, it is convenient to use known modes to ap-
proximate the modified eigenvectors as the following form according to the approximate
approach defined in Equation (26).

Φmi ≈
r

∑
k=0

ξ
−(k+1)
i r(k)i (29)

where the r-dimensional recursive sequence has already been defined in (28).

Remark 1. In the classic subspace method for solving the characteristic equation, the most compu-
tationally intensive part is often the inversion step, i.e., the process of solving Bm

−1. However, for
the reconstructed system matrix Bm obtained from the lumped mass matrix M and heat generation
matrix H, which were previously discussed, the matrix decomposition and inversion steps have very
low computational cost since Bm is a diagonal matrix.

3.3. Projection-Based Model Reduction Method

To maintain the robustness of the modified eigenproblem while reducing the degrees
of freedom of the system, this section uses the projection-based model reduction method
based on the Neumann series subspaceRr.

Based on the r-th order Neumann subspace basis vectors, the modified eigenvector can
be expressed as a linear combination of the original high-fidelity subspace in the Neumann
series subspaceRr:

Φmi=
r−1

∑
k=0

α
(k)
i q(k)

i = Riαi (30)

where Ri is the space spanned by the orthonormalization basis q(k)
i in the Neumann series

subspace Rr and αi is the unknown parameters to be solved. Note that the previous
equation used the following relation:
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Ri =
[

q(0)
i , q(1)

i , . . . , q(r−1)
i

]
, αi =

[
α
(0)
i , α

(1)
i , . . . , α

(r−1)
i

]T
(31)

According to the projection-based model reduction method, the degrees of freedom of
the system matrices can be reduced as the following form [25]:

BR = RT
i BmRi, AR = RT

i AmRi (32)

Because Ns � r, the reduced system matrices are very small.

Remark 2. Because Ri is a reduced-basis matrix operator and Am is not necessarily a self-adjoint
matrix, the robustness of the rectangular basis matrix Ri must be improved by using the Gram–
Schmidt orthogonalization algorithm. Thus, Ri is the space spanned by the orthonormalization basis
q(k)

i and can be generated by using the r-dimensional recursive sequence already defined in (28)
based on the Gram–Schmidt orthogonalization algorithm. That is, the rectangular basis matrix Ri
should be normalized such that each column becomes linearly independent.

Since the approximate eigenvectors should satisfy the eigenproblem (22), the un-
known coefficients αi can be determined by substituting the approximate eigenvectors into
Equation (22). Combining Equations (22) and (32), the standard eigenvalue problem of the
system can be replaced by a reduced eigenvalue problem:

(λmiBR −AR)αi = 0 (33)

The dimension of the reduced system matrix is r× r, which is much smaller than the origi-
nal system matrix Ns × Ns. Therefore, it is only necessary to solve the reduced eigenvalue
problem, which reduces the size of the eigenvalue problem from Ns × Ns to r× r. Thus, the
projection-based model reduction method can save the computational cost significantly. Af-
ter solving for coefficients αi, the modified eigenvector can be obtained using Equation (30).

As shown in Algorithm 1, the construction of the r order subspace of the Neumann
series expansion combined with the reduced-basis solution improves the efficiency of the
modal analysis. Numerous studies have shown that the computational complexity of the
traditional method for solving the combined eigenvalue equation is O(N3

s ) [40,41]. Since the
calculation scale of solving the basis vectors is relatively large compared to other steps, we
mainly focus on the computational complexity of solving the basis vectors. For the system
matrix A, the computational complexity of solving the left and right multiplication of the
basis vectors is 4LrNsb, where b is the half-bandwidth of the combination matrix, r is the
number of basis vectors, and L is the order of eigenvalues to be solved; the half-bandwidth
b is approximately proportional to N0.5

s [41]. Therefore, the computational complexity of
the complex modal analysis process for thermoelastic structures is O(4LrN1.5

s ).
Thus, for large-scale problems with a large Ns, since r � Ns and L � Ns, the

projection-based model reduction method based on the Neumann series subspace Rr
has lower computational cost compared to conventional solving methods. However, the
projection-based model reduction method based on the Neumann series subspaceRr can-
not be directly used in the optimization process due to the instability and convergent problems.
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Algorithm 1: Efficient modal analysis
Input: A, Am, B, Bm, Φi, r
Output: λmi, Φmi

1 ∆A = Am −A
2 ∆B = Bm − B

3 r(0)i = B−1
m AΦi/

∥∥B−1
m AΦi

∥∥
4 for k = 2, 3, . . . , r do
5 p(k) = B−1

m ∆Ar(k−1)
i

6 q(k) = p(k)

7 for i = 1, 2, . . . , k− 1 do
8 βi,k =

〈
q(k), p(i)

〉
9 q(k) = q(k) − βi,kp(i)

10 end

11 q(k)
i

.
= q(k)/

∥∥∥q(k)
∥∥∥

12 end

13 Ri =
[

q(0)
i , q(1)

i , . . . , q(r−1)
i

]
14 αi =

[
α
(0)
i , α

(1)
i , . . . , α

(r−1)
i

]T

15 BR = RT
i BmRi

16 AR = RT
i AmRi

17 solve: (λmiBR −AR)αi = 0

18 Φmi=
r−1
∑

k=0
α
(k)
i r(k)i = Riαi

3.4. Modal Validation Process

According to the definition of the quality factor in the case of small dissipation
(Equation (1)), the quality factor of the structure is dependent on the eigenvalues and mode
shapes of the structure. Thus, during the iterative optimization process, a different mode
shape may result in a different quality factor; the same order of mode shape has to be
ensured in the optimization process.

For this reason, we use a modal assurance criteria-based (MAC-based) validation
process to identify the first-order mode in the iterative optimization process. First, the first-
order left and right eigenvectors Ψ1

1 and Φ1
1 of a solid original structure without cavities

are used as the reference group for the first iteration in the optimization process.
Then, the modal assurance criteria are introduced to the process as follows [42]:

MACj,j+1
1 =

[(
Ψ

j+1
1

)T
Φ

j
1

]2

[(
Ψ

j
1

)T
Φ

j
1

][(
Ψ

j+1
1

)T
Φ

j+1
1

] (34)

In the above equation, Ψ
j
1 and Φ

j
1 represent the first-order left and right eigenvectors in the

j-th iterative loop, respectively, while Ψ
j+1
1 and Φ

j+1
1 represent the first-order left and right

eigenvectors in the (j + 1)-th iterative loop. MACj,j+1
1 represents the similarity between

the first-order mode in the (j + 1)-th iterative loop and the original structure’s first-order
mode, which ranges from 0 to 1. A larger MAC value indicates a higher similarity between
the two modes, while a smaller value indicates a lower similarity. By searching through all
modes in the (j + 1)-th iteration, the mode most similar to the reference group’s left and
right eigenvectors Ψj and Φj is selected, and the corresponding eigenfrequency is used
to calculate the quality factor of the current iteration step to maintain the stability of the
structure modes during the optimization process.
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Furthermore, as mentioned in the previous section, the solution of the fully-coupled
system means heavy computational cost. While in the case of topology optimization
problems, the solution of multiple eigenvalues and local modes will significantly affect
the search domain and accuracy of the optimization method. To narrow down the search
domain and improve the efficiency of the optimization process, the resonance frequency of
the working mode shape in the j-th iterative loop will be used as the reference frequency in
the next loop and only the system mode shapes with nearby resonance frequencies will be
solved in the (j + 1)-th iterative loop. Then, the working mode shape of the structure can
be obtained precisely and efficiently during the optimization process.

From the literature above, the MAC-based validation process can reduce the search
domain and stabilize the process of the iterative optimization method.

The computational efficiency of topology optimization methods based on finite ele-
ment analysis and sensitivity gradients is heavily influenced by the number of degrees
of freedom of the system. However, the fully-coupled nature of thermoelastic damping
makes the system equations and sensitivity analysis more difficult to solve. Particularly
for large and complex thermoelastic structures, the repetitive analysis process in itera-
tive optimization further exacerbates the issue of low computational efficiency. On the
other hand, current commercial software mainly focuses on decoupling and analyzing
multi-field coupling systems, with optimization design modules only including statics and
weak coupling analysis, lacking corresponding design tools for thermoelastic structures.
Therefore, this paper proposes combining efficient modal analysis and modal validation
techniques, along with the posterior evaluation technique to ensure the convergence of the
optimization process, as a solution to the problem of difficulty and low efficiency in solving
thermoelastic structures.

3.5. Posterior Evaluation Technique

The convergence of the Neumann series expansion depends on the eigenvalues of its
non-identity terms [43]. Therefore, for the convergent Neumann series (26), the necessary
and sufficient condition can be obtained as follows:

ρ(ξiB−1
m ∆A) < 1 (35)

where ρ(•) denotes the spectral radius of the matrix (•), i.e., it requires that the absolute
value of all eigenvalues of the coefficient matrix are less than 1.

The maximum eigenvalue of the matrix B−1
m ∆A can be obtained by solving the follow-

ing eigenvalue problem for its minimum eigenvalue:

Bmyi = si∆Ayi (36)

As the thermal-elastic damping of the system is small, the known undamped (real part)
frequencies can be used to approximate. Combining the minimum eigenvalue smin and
Equation (24) yields

|smin| < |λi| (37)

Note that the original eigenvalue λi is used herein to approximate the modified
eigenvalue λmi.

As shown in Equations (24) and (35), the convergence of the Neumann series expansion
depends on the system eigenvalues λi, system matrix B, and the system matrix perturbation
∆A. However, due to the thermoelastic damping in the system, the perturbation ∆A is
uncertain as it may change during the evolutionary optimization process when materials
are added or removed from different locations. Therefore, the convergence of the Neumann
series expansion cannot be verified by a priori methods. The convergence of the Neumann
series expansion directly affects the efficiency and accuracy of the subspace dimensionality
reduction method, and thus affects the optimization process. If the series diverges, it
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may cause oscillations in the iterative optimization process and cannot guarantee the
convergence of the optimization algorithm.

As the technique of accelerating the solution of eigenproblems serves the optimization
algorithm, and the convergence of the Neumann series cannot be verified in an a priori way,
we adopt a posterior evaluation technique to ensure the convergence of the optimization
algorithm. As shown in Algorithm 2, the parameter evalnum is the number of iterations
the posterior process has taken effect on. In the first iteration of evaluation, the evolution
rate is adjusted, while in later iterations, the sensitivities are adjusted to ensure the con-
vergence of the Neumann series expansion. The adjustment of sensitivities is repeated
until the Neumann series expansion converges to ensure the robustness of the topology
optimization process.

Algorithm 2: Posterior evaluation for Neumann series subspace

Input: λi, smin, er,

(
∂λmi

∂pe(low)

)(k)

,

(
∂λmi

∂pe(high)

)(k)

,Per,Pe(low),Pe(high), evalnum

Output: λmi
1 if |smin| > |λi| then
2 if evalnum = 1 then
3 er(k+1) = Per × er(k)

4 else

5

(
∂λmi

∂pe(low)

)(k+1)

= Pe(low)

(
∂λmi

∂pe(low)

)(k)

6

(
∂λmi

∂pe(high)

)(k+1)

= Pe(high)

(
∂λmi

∂pe(high)

)(k)

7 end
8 evalnum = evalnum + 1
9 return to last iteration

10 else
11 evalnum = 1
12 λmi = λi
13 continue to next step
14 end

The evolution rate in gradient-based structural optimization, which is the overall vol-
ume reduction rate per iteration, directly affects the change of system matrix ∆A. Therefore,
when the Neumann series expansion does not converge, the optimization process first
returns to the structure obtained in the previous iteration and adjusts the evolution rate
based on it to ensure convergence:

er(k+1) = Per × er(k) (38)

where er(k) denotes the evolution rate in the k-th iteration, andPer is the penalty function for
the evolution rate. After adjusting the evolution rate, a new structure and the corresponding
system matrix ∆A are obtained through optimization. If the new structure satisfies the
convergence of the Neumann series expansion, the optimization process continues.

If the new structure obtained after adjusting the evolution rate still does not satisfy
the convergence of the Neumann series expansion, the optimization process returns to
the structure from the previous iteration. Then, the weights of the sensitivities of each
element are adjusted based on the structure retained from the previous optimization. For
the inefficient elements that were discarded in the previous optimization (e(low)) and
the efficient elements that were added in the current optimization (e(high)), their penalty
factors are increased to encourage the algorithm to choose other regions for optimization in
the next iteration.
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(
∂λmi

∂pe(low)

)(k+1)

= Pe(low)

(
∂λmi

∂pe(low)

)(k)

,

(
∂λmi

∂pe(high)

)(k+1)

= Pe(high)

(
∂λmi

∂pe(high)

)(k)

(39)

where Pe(low) and Pe(high) are penalty functions for inefficient and efficient elements,
respectively. After adjusting the element sensitivities, the optimization obtains a new
structure and system matrix change ∆A, and optimizes for a new structure. If the new
structure obtained after adjusting the sensitivities satisfies the convergence condition of the
Neumann series expansion, the optimization process continues. Otherwise, based on the
optimized elements in the current structure, the process returns to the previous structure
and adjusts the element sensitivities to obtain a new structure. This process is repeated
until the Neumann series expansion of the new structure converges.

By combining the traditional ESO convergent checks with the efficient modal analysis
and posterior evaluation technique, the efficiency and robustness of the topology opti-
mization method can be assured. The flowchart of the whole process is shown in Figure 3.
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Figure 3. Flowchart of the efficient and robust topology optimization method.



Appl. Sci. 2023, 13, 8811 17 of 25

Step 1 : Initialize mesh, boundary condition, evolutionary parameters, and penalty
factors.

Step 2: Construct global system matrices using the reconstruction technique in
Section 3.1.

Step 3: Efficient modal analysis can be implemented based on Algorithm 1.
Step 4: Use posterior evaluation for Neumann series subspace in Algorithm 2 to

ensure convergence so that the proposed method is robust.
Step 5: Validate the mode shape of the system using Equation (34). With the help

of the modal assurance criteria, the same order of mode shape is ensured, and the search
domain of the optimization method is reduced.

Step 6: Analyze the global sensitivities through Equation (18) and construct a new
design according to global sensitivity.

Step 7: Repeat Steps 2–6 until the objective function converges.

4. Results and Discussion

In this section, numerical examples are conducted to compare the iterative process
with and without acceleration techniques in order to validate the accuracy and computa-
tional cost of the accelerated method. The accelerated method adopts the modified modal
assurance criteria and the reduced basis method to solve the complex eigenfrequencies,
the first example is conducted to verify its accuracy and computational cost. Then, two
large-scale examples are discussed to show the accuracy and efficiency of the method. The
accuracy of the finite element analysis of the proposed accelerated method is verified by
comparing the results with the commercial software.

Both the non-accelerated and accelerated methods use the same material parameters,
that is, the Young’s modulus 157 GPa, density 2330 kg/m3, Poisson’s ratio 0.22, thermal
expansion coefficient 2.6 × 10−6 K−1, specific heat per unit mass 700 J/(kg ·K), thermal
conductivity 90 W/(m ·K).

Moreover, the first-order thermoelastic quality factor (Q1) of the objective function is
normalized for better comparison.

4.1. Validation of Efficiency and Accuracy

The dual-phase lag heat conduction model is more representative of the actual oper-
ating conditions of microresonators at the microscale and below. Therefore, this section
discusses the optimization results of different solutions considering the non-Fourier dual-
phase lag heat conduction model.

The clamped–clamped microbeam resonator is often used as the key component of mi-
cro devices, and its quality factor will directly affect the performance of these devices [44,45].
Thus, the clamped–clamped microbeam resonator is chosen as the example in the valida-
tion process. Considering a clamped–clamped microbeam with the size of 8 × 1 µm, the
entire design domain is discretized using a 2D finite element method into a grid mesh
of 320× 40 2D isoparametric thermoelastic finite elements, with a total system degree
of freedom of 39,483. The evolutionary optimization parameters were set as lv = 0.8,
er = 0.008, rmin = 4, and the material penalty factors were set as pE = 2, pρ = 1, pκ = 3,
pα = 1, pCv = 1. The temperature phase-lag was set to τT = 0.1 µs, while the phase-lag of
heat flux was set to τq = 0.005 µs.

As shown in Figure 4, for the case of non-accelerated method, the normalized qual-
ity factor of the microbeam after optimization was 130.07% of the initial structure. The
optimization result for the accelerated method with the order of reduced basis r = 10
was 134.39% of the initial structure. The material distribution and contour map of tem-
perature are similar for the optimization results of non-accelerated (Figure 4b) and ac-
celerated (Figure 4c) methods, with some differences at the border of the vacations, this
might be caused by the truncation error of mode shape and reduced basis process of the
accelerated method.
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On the other hand, the error of the normalized quality factor between these two meth-
ods is also acceptable, this indicates that the accelerated method can solve the optimization
problem with accuracy.
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Figure 4. Optimization results for the clamped–clamped microbeam resonator. (a) Original structure,
(b) optimized structure using the non-accelerated state–space method, (c) optimized structure using
the accelerated reduced basis method, (d) iterative process using the non-accelerated state–space
method, (e) iterative process using the accelerated reduced basis method.

As shown in Table 1, the average computation time per iteration of the traditional
subspace method for solving eigenvalue problems without acceleration is 26.3567 s, while
the same step takes 8.1933 s with the accelerated method. As shown in Figure 4d, the
non-accelerated method converges after 39 iterations, with a total computation time of
1453.64 s, including other operations such as sensitivity analysis. As shown in Figure 4e, the
accelerated method converges after 45 iterations, with a total computation time of 859.32 s.
As the posterior evaluation process takes effect in the iterative optimization process, which
can be observed in iterations 28 to 32, the accelerated method takes more total iterations
compared to the non-accelerated method. Therefore, the acceleration method proposed
in this chapter saves 68.91% of the computational time of the eigenvalue solution step.
Although in order to maintain the robustness of the optimization process, the accelerated
method takes more iterations to achieve an optimized structure than the non-accelerated
method, the accelerated method saves approximately 40.88% of the total computation time
of the optimization process compared to the non-accelerated method.

Table 1. The comparison of eigensolution and overall computational times of non-accelerated and
accelerated design process of the clamped–clamped microbeam resonator.

Clamped–Clamped Microbeam (320× 40 Mesh)

Average Eigenvalue Solution (s) Iteration Loop Overall Time (s)

non-accelerated method 26.3567 39 1453.64
accelerated method 8.1932 45 859.32

Time saved (%) 68.91% 40.88%

Note that for traditional state–space solution of finite element analysis problems of
the thermoelastic system, the complexity of the problem will increase exponentially with
the degrees of freedom. Thus, for larger scale problems, the percentage of the computa-
tional time saved will increase with the scale of the problem, while for some problems,
the time and storage consumed may be unbearable and exceed the maximum of many
computation devices.
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4.2. Optimal Design of Grid Beams

In microelectromechanical systems, periodic grid beam structures are often used as
key components of actuators, sensors, and energy-absorbing structures [46,47]. Among
them, grid beams considering in-plane vibrations are widely used, such as the capacitive
load sensor and actuator structure. For the in-plane vibrating grid beam sensor, its quality
factor affects the measurement accuracy and system stability, and its resonance frequency
affects the transmission sensitivity. Therefore, the quality factor is vital to the grid beam
system, and improving the quality factor will affect the overall performance of the system.

Thus, in this section, an in-plane vibrating grid beam with phase-lag heat conduction
law is considered as an example of the design problem of thermoelastic damping. The
sketch map of the structure is shown in Figure 5a, it can be observed that the grid structure
is symmetric. Therefore, for the convenience of solving, the left side of the symmetrical
structure is selected, and an elemental structure of five beams is chosen as an example in
this research, as shown in Figure 5b. In the whole structure, the gray part is the non-design
region, these parts of the beams have to be unchanged to maintain the connection with
the support end, the finite element grid with a size of 5 µm × 132 µm and a discretization
of 20 × 528 2D isoparametric thermoelastic finite elements. The yellow part is the design,
where each individual beam has a size of 95 µm × 10 µm and a mesh discretized to
380 × 40 2D isoparametric thermoelastic finite elements. For the 2D microgrid beams,
the system has a total 267,027 degrees of freedom. For the classic 2D space–state system
solution, the total degrees of freedom is 534,054, due to the iterative characteristic of the
optimization process and the medium parameters of the solution, the computation cost is
inevitably high. In terms of boundary conditions, the displacement boundary condition
is considered as the left fixed support constraint, and the thermal boundary condition is
considered an insulated thermal boundary.

Design regionNon-design 
region

Fixed end

(b)

5x1

1x1

(a)

设计域非设计域

Figure 5. Numerical example of the grid beam, (a) is the sketch map of the grid beam, (b) is the
design and non-design regions of the grid beam.

The material parameters of single crystal silicon are used as reference. Furthermore,
as the existing commercial software lack the solution function considering non-Fourier
phase lag heat conduction, the Fourier heat conduction is considered in the validation step
of the structure (τq = 0, τT = 0). As the energy dissipation rate is crucial for the system,
the optimization objective of the thermoelastic is to maximize the system’s quality factor,
subject to a volume constraint of 0.8.

First, the proposed 2D efficient thermoelastic finite element analysis solver is validated
by comparing the structure’s frequencies and modes with the COMSOL software’s finite
element thermoelastic analysis module. As shown in Figure 6, the original full structure’s
frequency obtained using this software was 1.4207× 106 Hz, while the frequency obtained
through the commercial software was 1.4144× 106 Hz, with an error of less than 1%. The
original structure’s quality factor obtained using the accelerated method was 7456, and the
quality factor obtained using the COMSOL software was 7481, with an error also less than
1%. Therefore, it can be concluded that the finite element system equation solver in this
paper is stable and feasible.



Appl. Sci. 2023, 13, 8811 20 of 25

特征频率 = 1.4207E6+ 95.2723i Hz 特征频率 = 1.4144E6+ 94.532i Hz 
温度 (K)

Normalized

Temperature

0.2

0.4

0.6

0.8

-0.2

-0.4

-0.6

-0.8

0

Normalized

Temperature

(a)Proposed FEM (b)COMSOL FEM

(c)Optimization result

Structural Optimization

0.2

0.4

0.6

0.8

-0.2

-0.4

-0.6

-0.8

0

λ1 = 1.4207×106+ 95.2723i Hz λ1 = 1.4144×106+ 94.532i Hz 

(opt)

norm 343.28%Q =

Figure 6. The finite element analysis and optimization results of the grid beam: (a) result of the
proposed FEM, (b) result of the COMSOL software, (c) optimization result of the proposed efficient
and robust design method.

Due to the lack of thermoelastic damping optimization module in existing commercial
software packages, the optimization result is compared with the original structure solved
by the proposed finite element method. The non-Fourier dual-phase lag heat conduction
law is considered in the optimization step of the structure (τq = 0.01 µs, τT = 0.1 µs),
and a normalization process is applied to the objective function (quality factor) of the
optimized structure to clearly show the improvement [36]. The temperature cloud-chart of
the optimized structure is shown in Figure 6. The optimized structure shows an improved
quality factor by 343.28%, compared to the original structure.

4.3. Optimal Design of MEMS Uniaxial Mirror

There are many thermoelastic MEMS applications related to microresonators, such as
MEMS switches, energy harvesters, and actuators [48]. Among them, the MEMS switch is
widely used in medical devices, mobile phones, radio frequency, and other devices [49].
Take the micro-electromechanical single-axis mirror structure in Figure 7 as an example [1],
this mirror can be used as a switch-like component for high-speed switching, which requires
high accuracy and stability, that is, the thermoelastic damping is small.

Its xoy-plane can be expressed as shown in Figure 7a, where the left side is two
vibrating driving beams, the vibrating direction extends along the z-axis, and the right
side is the working mirror. Therefore, it can be simplified as a three-dimensional structural
optimization problem, as shown in Figure 7b, where the gray part is the non-design domain
of the working mirror, the yellow part is the design domain, and the left side is the fixed
constraint. The quality factor is considered the objective function and frequency constraints
are imposed to reduce the excessive reduction of the structural frequency during the
optimization process. The material parameters are the same as in former examples, and
considering the degrees of freedom of the structure, only the optimization design in the
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range of Fourier heat conduction is considered. As shown in Figure 7b, the structural
non-design domain mirror size is 400 µm × 800 µm × 40 µm and is discretized into a
80× 160× 8 mesh with 3D isoparametric thermoelastic finite elements. The design domain
is two driving beams with fixed support on the left side, and the right side is rigidly
connected with the mirror surface, the size of a single beam is 400 µm × 100 µm × 40 µm
and the beam is discretized into a 80× 20× 8 mesh with 3D isoparametric thermoelastic
finite elements. The total degrees of freedom of the 3D system are 590,436. For the classic
3D state–space solution, the total degrees of freedom reaches the number of 1,180,872,
which will significantly impair the efficiency of the solution. Moreover, considering the
impact of intermediate variables of the solution, there is a high probability that it exceeds
the storage limit of conventional computers.

Design region
Non-design 
region

Fixed end

MirrorDrived beam

(a) (b)

Figure 7. Numerical example of the structure of a uniaxial mirror. (a) is the sketch map of the
xoy-plane of the structure, (b) is the design and non-design regions of the structure.

We validate the solution of the 3D thermoelastic finite element analysis of the proposed
method, and compare the structural frequency and mode shape with the finite element
thermoelastic analysis module in the COMSOL software. As shown in Figure 8a,b, the
original structure frequency obtained by using the accelerated method in this paper is
3.9225× 104 Hz, and the frequency obtained by commercial software is 3.9105× 104 Hz, the
error is less than 1%. The quality factor of the original structure obtained by the accelerated
solution is 14,164, and the quality factor of the COMSOL software solution is 14,196, and the
error is acceptable. Therefore, it can be considered that the finite element system equation
solving module in the software of this paper is feasible.

Similarly, as commercial software lacks a thermoelastic optimization module, the
optimized structure is compared with only the original structure obtained by finite element
analysis of this paper. The temperature contour map of the optimized result is shown in
Figure 8c, with grid lines retained and only half of the structure displayed in the z-axis
direction on the right side to highlight the internal configuration of the optimized structure.
The optimized structural quality factor is 30,110, which is improved by 212.58% compared
to the original structure.

Thus, the proposed method saves significant computation time in comparison with
the traditional linear method in the sensitivity analysis of the thermodynamically coupled
system, and have the capability of the solution of complex systems with a large scale of
degrees of freedom, with little loss of accuracy of the optimization result.
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Figure 8. The finite element analysis and optimization results of the uniaxial mirror: (a) result of the
proposed FEM, (b) result of the COMSOL software, (c) optimization result of the proposed efficient
and robust design method.

5. Conclusions

With the reduction in structural scales, the influence of thermoelastic damping becomes
gradually dominant, determining the upper limit of the performance of high-frequency
MEMS microresonators. Thus, enlarging thermoelastic damping based on the topology
optimization design plays a critical role in improving the dynamical performance of mi-
croresonators. However, the challenges of computational cost and robustness are critical
obstacles in the topology optimization design of microresonators. This is due to the iterative
process of optimizing large-scale viscoelastic structures.

This study proposes an efficient and robust topology optimization method for minimiz-
ing the thermoelastic damping of large-scale microresonators. An evolutionary structural
optimization method is adopted to passively determine the search direction of optimizing
large-scale thermoelastic structures. To efficiently reduce the computational cost of the
iterative process of optimizing process, a model reduction method is developed based on
the projection-based model reduction method whose reduced basis is generated within the
Neumann series subspace. However, the projection-based model reduction method may be
unstable when topology modifications are made during an iteration optimization process.
To ensure robustness, a modal validation technique is first implemented in the iterative
process to stabilize the iteration and narrow down the search domain, and a posterior
evaluation of the Neumann series expansion is then developed to retain the convergence of
the projection-based model reduction method. Furthermore, the efficiency and accuracy of
the proposed topology optimization method are validated through numerical examples.

Three numerical examples are discussed, results show that the proposed method
saves significant computation time in comparison with the traditional linear method in
the sensitivity analysis of the thermodynamic structures, with little loss of accuracy of the
optimization result. Furthermore, the proposed method has the capability of designing
complex large-scale structures.
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The feasibility of the efficient and robust method is demonstrated in the gradient-based
topology optimization problem for thermoelastic structures. Thus, the research work can
be implemented in designing large-scale thermoelastic structures under phase-lag heat
conduction law. Furthermore, the topology optimization method proposed in this work
combines the matrix reconstruction and parameterized model reduction techniques for
thermoelastic systems under the non-Fourier heat conduction law. Thus, it is hopeful for
the eigensolution analysis of thermoelastic structures under the phase-lag heat conduction
law and expedite the application of thermoelastic structures arising in different subjects,
including conceptual design problems, damage analysis, and smart or adaptive structures,
and further research in these areas is worth pursuing.
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