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Abstract: In this study, we optimized the σ-values of a block matching and 3D filtering (BM3D)
algorithm to reduce noise in magnetic resonance images. Brain T2-weighted images (T2WIs) were
obtained using the BrainWeb simulation program and Rician noise with intensities of 0.05, 0.10,
and 0.15. The BM3D algorithm was applied to the optimized BM3D algorithm and compared with
conventional noise reduction algorithms using Gaussian, median, and Wiener filters. The clinical
feasibility was assessed using real brain T2WIs from the Alzheimer’s Disease Neuroimaging Initiative.
Quantitative evaluation was performed using the contrast-to-noise ratio, coefficient of variation,
structural similarity index measurement, and root mean square error. The simulation results showed
optimal image characteristics and similarity at a σ-value of 0.12, demonstrating superior noise
reduction performance. The optimized BM3D algorithm showed the greatest improvement in the
clinical study. In conclusion, applying the optimized BM3D algorithm with a σ-value of 0.12 achieved
efficient noise reduction.

Keywords: magnetic resonance image; brain T2 weighted image; Rician noise; noise reduction
algorithm; optimization of block matching and 3D filtering algorithm; quantitative evaluation of
image qualities

1. Introduction

The medical system in the past focused on the treatment of diseases, but with the sig-
nificant advancements in medical technology today, the focus has shifted to early diagnosis
and treatment-oriented medical services to prevent diseases in advance and maintain a
healthy body for a long time. Along with the increased life expectancy in modern times, the
prevalence of human beings is also increasing, and rapid visual diagnosis using medical
imaging is required in the case of high prevalence and fatality rates such as cancer [1,2].
Therefore, the need for high-performance medical imaging equipment for precise diagnosis
is increasing [3]. However, X-rays and gamma rays, which are commonly used to examine
the human body, use ionizing radiation. Ionizing radiation consists of high-energy elec-
tromagnetic waves and is used in the medical field for human imaging. Unfortunately,

Appl. Sci. 2023, 13, 8803. https://doi.org/10.3390/app13158803 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13158803
https://doi.org/10.3390/app13158803
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-5593-6672
https://adni.loni.usc.edu
https://adni.loni.usc.edu/wpcontent/uploads/how
https://doi.org/10.3390/app13158803
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13158803?type=check_update&version=2


Appl. Sci. 2023, 13, 8803 2 of 18

ionizing radiation can cause minor side effects like radiation sickness and more severe
potential genetic issues by affecting DNA in the process of penetrating cells [4]. To defend
against harmfulness from ionizing radiation, the concept of nuclear magnetic resonance
was first established by Bloch and Purcell. The modern magnetic resonance imaging (MRI)
was developed through continuous research based on the concept. It is now possible to
obtain high-resolution medical images with reduced radiation [5].

The non-ionizing radiation used in MR apparatuses has significantly lower energy
than ionizing radiation and has been verified to have no harmful effects on the human body.
Moreover, imaging using a magnetic field directly stimulates hydrogen nuclei present in
each tissue allowing the acquisition of high-resolution images unlike the ionizing radiation
that exploits interactions with tissues [6,7]. In addition, compared with CT, MRI is more
effective in observing areas surrounded by air or bones and is widely used in clinical
practice for a precise diagnosis.

However, noise inevitably occurs in the resulting magnetic resonance (MR) images
because of coil malfunction or disturbance of the external magnetic field [8]. MR images
were corrupted by a zero-means Gaussian noise distribution, namely, Rician noise, with
equal variance. Rician noise arises in MRI primarily during the generation of frequency by
RF coils and the amplification of signals in pre-amplifiers. The raw data of MR images inher-
ently possess complex values and are corrupted due to a zero-mean Gaussian distribution
with equal variance [9]. Although similar to Gaussian noise in having tails on both sides of
the mean, Rician noise differs in that its means is non-zero and distribution is asymmetric.
MR images, typically in magnitude format, are formed by a non-linear transformation
that involves taking the square root of the sum of squares of two independent Gaussian
random variables at each pixel. This transformation leads to MR images having a Rician
distribution, which can be described by the amplitude of periodic signals and the standard
deviation of Gaussian noise. Noise occurring in all medical images, including MRI, has
a detrimental impact on observing irregular tissues within the human body. The small
distortions can lead to different interpretations particularly in regions like the abdomen or
brain, where various tissues with different contrasts are densely interconnected. Therefore,
noise reduction from medical images has been a persistent issue and is actively researched
to achieve accurate diagnoses [10].

Noise-reduction methods can be classified into two types. First, it improves the per-
formance of medical imaging apparatus [11]. Increasing the magnetic field strength can
reduce noise and simultaneously improve the resolution of MR images. High-performance
superconducting magnets are required to generate a strong magnetic field [12]. The mod-
eling and development of the magnets involve significant time and cost. Moreover, even
with a high-performance coil capable of generating a strong magnetic field and signal,
appropriate detectors and partial coils that can accommodate them are also necessary.

Noise can be removed by applying algorithms to acquired images and restoring
damaged signals based on the principles of signal recovery due to the drawbacks of
hardware development mentioned above [13]. Software application is straightforward
and requires less time compared to hardware development. Additionally, using the same
parameters allows for reproducibility control. However, this method involves mathematical
computations to calculate already acquired signals, and applying incorrect parameters can
cause image distortion. Hence, the appropriate implementation is necessary to efficiently
reduce noise and restore image quality.

Among the noise reduction algorithms, linear filtering, which was initially developed,
is a basic image-processing method. Linear filters remove noise through convolution opera-
tions that have a linear function with respect to the input signal. Although linear filters are
computationally efficient and easy to implement, they have the disadvantage of not detect-
ing complex noise patterns or edge information in images effectively. The Gaussian and
median filters used in this study belong to the category of linear filters. On the other hand,
non-linear filters reduce noise using non-linear operations and thresholding. The Wiener
filter and BM3D algorithm used in this study are examples of non-linear filters [14,15]. Non-
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linear filters possess characteristics opposite to those of linear filters. Therefore, selecting
an appropriate filter that suits the specific task in essential in their application.

With the development of algorithms for noise reduction, various modified methods
have been devised and used to obtain improved results. Among them, the block-matching
and 3D filtering (BM3D) algorithm is a noise reduction method in the frequency domain
that uses sparse representation [16]. The sparse representation is a method of expressing
a signal or data as a linear combination of basis vectors where the key idea is to estimate
the original signal using only a subset of the basis vectors. As a result, most of the weights
become zeros, and only a few basis vectors play a significant role. Consequently, sparse
representation simplifies the representation compared to operating on the entire pixel
values, reducing the required computational values and speeding up the processing. From
the perspective of noise reduction, sparse representation restores images in a way that
minimizes the impact of noise by making the weights of basis vectors affected by the noise
close to zero.

The concept of the BM3D algorithm was first introduced as a wide-range scanning
approach for motion estimation in video compression. Attempts to apply the BM3D
algorithm to the field of medical image processing are gradually increasing, and it is being
used in various fields, such as nuclear medicine and CT [17,18].

However, optimization of the σ-value, which determines the degree of smoothing for
noise reduction, has not been performed in the field of MR image processing. Therefore, in
this study, Rician noise was arbitrarily added to a brain T2-weighted image (T2WI) acquired
using a simulation to derive the σ-value representing the optimal image characteristics.
In addition, the results of the application were compared with those of conventional
noise reduction algorithms using open-access data for clinical MR images to confirm the
effectiveness of the BM3D algorithm with optimized σ-values in clinical images.

2. Materials and Methods
2.1. Application of Noise Reduction Algorithms
2.1.1. Optimization of σ-Value for the Block Matching and 3D Filtering Algorithm

The BM3D algorithm is one of the fusion-type noise reduction methods based on non-
local means (NLM) [19]. The process of the BM3D algorithm can be largely divided into two
steps, and in each step, noise reduction is performed through the wavelet transform-based
hard-thresholding technique and Wiener filtering, respectively. The wavelet transform-
based hard-thresholding technique treats pixel values below a set threshold value as 0 to
increase sparsity, enabling simple and rapid calculation during algorithm processing. In
addition, Wiener filtering is an adaptive filter commonly used to remove noise in medical
images and has the advantage of less boundary information loss than other linear filters
because it is adjusted appropriately for regional variance. Below is the equation for hard-
thresholding [20].

ht(x) =
{

x i f |x| ≥ λ
0 otherwise

, (1)

Here, x and λ denote the input pixel value and the threshold.
NLM is a noise reduction algorithm that is the basis of the grouping principle in the

BM3D algorithm. The processing of entire image with the same weights or parameters is
inefficient and inaccurate, since the noise distribution in a general image is not uniform.
To compensate for this problem, NLM was devised [21]. NLM works on the principle of
evaluating the similarity between kernels within the search window, and noise is removed
by averaging similar image pixels according to the distance to the center pixel of each
kernel. The entire image is divided into search windows since the pixel which is the most
similar to the given pixel is not absolutely close. The weight for the center pixel p of the
kernel set within the search window is equally applied to all pixels in the same kernel. The
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weights are determined by the square of the Euclidean distance and introduced to average
similar kernels.

NLM =
1

C(p)

∫
f (d(B(p), (B(q)))u(q)dq , (2)

where d(B(p), B(q)) denotes the Euclidean distance of the two kernels centered at p and q;
f and C(p) mean the decreasing function and the normalization factor, respectively.

The BM3D algorithm works through two key principles: grouping and collaborative
filtering [22]. Grouping means collecting n-dimensional patches similar to the given signal
(reference) in the original image in n+1 dimensions. In this study, it was used in the
process of forming a 3D block by stacking patches extracted from 2D images. The similarity
between patches is judged through the reciprocal of the distance measurement value using
the L2 norm. If the distance is less than the predefined threshold, the patches are considered
to be mutually similar and grouped together as a single 3D block. The patches in the 3D
block are listed in descending or ascending order in a similar order.

Pht
2D = x ∈ X :

∥∥∥Y′
(

τht
2D(PxR)

)
−Y′

(
τht

2D(Px)
)∥∥∥2

2

(Nht
1 )

2 ≤ τht
match, (3)

where PxR and Px denote the reference block and similar block in the noisy image X, Y′ is
the hard-threholding factor, τht

2D means the 2D linear transform, Nht
1 represents the block

size of the first step, and Pht
2D is the set of coordinates of all blocks similar to PxR .

Eht
Pht

2D
= τht−1

3D

(
Y
(

τht
3D

(
APht

2D

)))
, (4)

where Eht
Pht

2D
denotes the estimate acquired through inverse 3D transform, τht

3D and τht−1

3D

mean the 3D transform and inverse 3D transform, respectively. Y is the 3D hard-threholding
factor, and APht

2D
represents the formed 3D block. The BM3D algorithm goes through a

process of transforming from the spatial domain to the frequency for processing. Therefore,
an inverse 3D transform is utilized to convert the noise reduced frequencies back to the
spatial domain in order to derive final denoised image.

After the grouping process, each 3D block is subjected to a denoising procedure using
collaborative filtering, which produces an estimation for each constituent patch in the
block. The reference patch determining the basis for block grouping can be redundantly
processed, since the patches are randomly selected from the whole region of the image. In
order to compensate for this, the weighted average removes repeated estimates and obtains
a final estimate.

ŷstep1 =
∑XR∈Xxm ∑xm∈Pht

2D
wht

xR
Eht

Pht
2D
(x)

∑XR∈Xxm ∑xm∈Pht
2D

wht
xR

χxm(x)
, (5)

where ŷstep1 represents the estimate acquired through the first step of the BM3D algorithm,
wht

xR
is the weight, and χxm denotes the square support function located in xm ∈ X.
In Equations (3)–(5), the superscript ht of the modifiers means that the hard-thresholding

technique is used in the first step as the noise reduction method. Replacing ht with wie
results in a equation that means the second stage of removing noise using Wiener filtering,
since the process of grouping and collaborative filtering in each stage is identical. The first
estimate obtained after completing the first step is used as a pilot signal for Wiener filtering
to improve the performance. Figure 1 is the flowchart of the noise reduction process of the
BM3D algorithm.
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Figure 1. The flowchart illustrating the principle of the noise reduction process of the block matching
and 3D filtering algorithm.

2.1.2. Relative Performance Evaluation of the Optimized BM3D Algorithm

To compare the performance efficiency of the BM3D algorithm, conventional noise re-
duction algorithms referred to as Gaussian, median, and Wiener filters were applied [23–25].
These conventional noise reduction algorithms were developed in the very early stages
of image processing history, and various modified approaches with adaptive techniques
have been applied in the medical imaging field. However, the noise reduction performance
of conventional algorithms is proved with various studies. Therefore, we employed the
above-mentioned filters for comparison with the optimized BM3D algorithm aiming to
assess the performance of the optimized BM3D algorithms. The following are the equations
for each conventional noise reduction algorithm. The kernel size was set to be the same as
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the BM3D algorithm. Entire noise reduction algorithms were modeled and applied using
the MATLAB program (MathWorks, Boston, MA, USA).

Gau(x) =
1√
2πs

e−
x2

2s2 , (6)

where x denotes the distance from the center pixel of the kernel and s is the standard
deviation of the noise in the kernel.

Med(n) = MED[Y(n− k), Y(n− k + 1), · · · , X(n), X(n + k)], (7)

where when the length of the median filter is satisfied as n = 2k + 1, X(n), and Y(n) denote
n− th elements of the input and output images, respectively.

Wie(m, n) = µ +
v2 − σ2

v2 (a(m, n)− µ), (8)

where µ denotes the mean value of the Wiener filter with the kernel size of m× n, v means
the variance of the input image, and σ is the setting of noise variance.

2.2. The Acquisition of the Magnetic Resonance Images
2.2.1. Acquisition of Simulated Brain T2-Weighted Image Using BrainWeb Program

Simulated brain MR T2WIs were acquired using the BrainWeb simulation program [26,27].
The BrainWeb simulation program generates images using an MRI simulator developed
by the McConnel Brain Imaging Center, and it implements the MR signal generation
process based on the Bloch equation. The Bloch equation represents the changes in nuclear
magnetic moments over time and explains the phenomenon of materials absorbing and
emitting magnetic fields. MR imaging also utilizes signals generated by the precession and
relaxation of hydrogen nuclei within the human body. Thus, in the BrainWeb simulation
program, the Bloch equation is employed to simulate MR signals. One of the significant
advantages of the BrainWeb simulation program is its ability to easily modify imaging
acquisition parameters and its accessibility through the internet, allowing users to utilize it
from anywhere without locational constraints. Additionally, the program maintains high
reproducibility as external variables are excluded.

Among the 181 slices of the acquired 3D data, the 95th slice was extracted and used
because it could clearly represent the ventricles and surrounding tissues, making it easy to
set a region of interest (ROI) for quantitative evaluation. The intensity of Rician noise was
set from 0.05 to 0.15 by 0.05 increments using the MATLAB program, as shown in Figure 2.

2.2.2. Clinical Brain T2-Weighted Image Using the Alzheimer’s Disease
Neuroimaging Initiative

The results of optimizing the σ-value of the BM3D algorithm derived from the simula-
tion study were reviewed using clinical MR images acquired using actual MRI to confirm
its effectiveness. The clinical T2WI used in this study was obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI), which is an open-access database that provides
MR images for diagnosing brain diseases, particularly Alzheimer’s disease [28,29]. We
obtained a T2WI with a matrix size of 256 × 256 using a 1.5T MR machine to acquire
images of conditions commonly acquired for Alzheimer’s disease diagnosis. The acquired
clinical brain T2WI is shown in Figure 3, and specific information is available online
“https://adni.loni.usc.edu (accessed on 22 March 2023)”.

Similar to the simulation study, to verify the applicability of the BM3D algorithm with
the optimized σ-value set in a clinical brain MR T2WI, we compared it with the widely
used noise reduction algorithm, including Gaussian, median, and Wiener filters.

https://adni.loni.usc.edu
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2.3. Quantitative Evaluation for the Results of Applying Noise Reduction Algorithms

We measured the contrast-to-noise ratio (CNR) and coefficient of variation (CV) to
quantitatively evaluate the results of optimization and application of the BM3D algorithm in
this simulation study [30,31]. ROIs for the quantitative evaluation were set in cerebrospinal
fluid (CSF) and white matter (WM).

The CNR is a factor representing the contrast ratio between adjacent tissues and is
one of the methods for evaluating contrast resolution in medical images. It represents the
similar results to visual evaluation and is often used as an index for quantitative evaluation
such as image quality control and equipment performance comparison. The CNR can be
obtained by dividing the signal intensity by the noise standard deviation, and the value
decreases as the image contains more noise. The set ROIs in CSF and WM were used to
calculate the CNR. The CV is a metric that quantitatively assesses the amount of noise
present in an image by dividing the standard deviation within the defined ROI by the signal
value. Therefore, CV was employed to measure the noise reduction rate after restoring
the noisy image in this study. A smaller value means that the image contains less noise.
The final value used for quantitative evaluation was acquired by averaging the CV of the
two ROIs.

CNR =
|SCSF − SWM|√

σ2
CSF + σ2

WM

, (9)

CV =
σROI
SROI

, (10)

where SCSF and SWM denote the signal intensity in the ROIs of the CSF and WM, σCSF and
σWM represent the standard deviations.

In addition, the structural similarity index measurement (SSIM) and root mean square
error (RMSE), which are similarity evaluation factors, were measured to evaluate how
closely the degraded image was reconstructed from the noise-free reference [32,33]. The
characteristic of simulation studies lies in the ability to obtain an ideal reference image with
zero noise. The objective of noise reduction research is to make the degraded image most
similar to the reference through algorithms. For this purpose, the structural similarity index
measure (SSIM) was utilized to compare the reference and resulting images. SSIM enables
a quantitative evaluation similar to human vision in terms of brightness, contrast, and
structure. In addition, the RMSE is also for evaluating the similarity between the reference
and noisy image. The difference is measured by calculating the pixels in the corresponding
coordinates in both images. The RMSE is used as an index to determine the degree of
distortion in the entire image. As the SSIM and RMSE assess the similarity between the
restored noisy images and the reference images, the entire region of the images was utilized
to evaluate the overall structure and pixel values.

SSIM(x, y) =

(
2µxµy + c1

)(
2σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

) , (11)

where given the images x and y, µx and µy denote the mean value of x and y, σx and σy
represent the standard deviation, c1 and c2 represent the stabilization variables.

RMSE =

√
1
N ∑N

i=1[I1(m, n)− I2(m, n)]2, (12)

where N denotes the number of pixels; I1 and I2 denote the reference and noisy images,
respectively; and (m, n) are the coordinates of the pixel.
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3. Results
3.1. Simulation Study

In order to derive the noise reduction effect with the most reasonable image charac-
teristics, the σ-value of the BM3D algorithm was increased in the interval of 0.01 to 0.99
and applied to the simulated brain T2WI with three noise intensities of 0.05, 0.10, and 0.15
set. Among the images to which the BM3D algorithm was applied, σ-values of 0.01, 0.05,
0.10, 0.15, 0.20, 0.50, and 0.99 were set to extract the results to analyze the change in image
quality from the image with 0.05 Rician noise added, as shown in Figure 4.
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(b) 0.05, (c) 0.10, (d) 0.15, (e) 0.20, (f) 0.50, and (g) 0.99 in the simulated brain T2-weighted image of
noise 0.05 with regions of interest.

Consequently, we confirmed that as the σ-value increased, the noise of the image
decreased. Specifically, it was observed that blurring was also intensified at values of 0.20
or higher. Figure 5 shows the results of the CNR and CV measurements of the images
obtained through the σ-value optimization experiment. When the σ-values were 0.08, 0.13,
and 0.16 according to the noise intensity, which is shown by the values blue circled in
Figures 5 and 6, the CNR was measured as approximately 190.03, 142.49, and 95.65 for each
noise intensity, respectively. In addition, the calculated CV values were 0.0058, 0.0079, and
0.0095, respectively.

Additionally, the SSIM and RMSE were measured to quantitatively determine the
difference between the reference and resulting images of optimizing the σ-value of the
BM3D algorithm. As shown in Figure 6, when the σ-values for each noise intensity
were 0.08, 0.13, and 0.16, the SSIM values were approximately 0.6989, 0.6621, and 0.6287,
respectively. The RMSE values were calculated to be approximately 0.1513, 0.1670, and
1931 for the same σ-values, respectively. We estimated the optimized σ-value as 0.12 based
on the average value derived from the quantitative evaluation results of the simulation.

Subsequently, a comparison was conducted between the BM3D algorithm with the
σ-value of 0.12, the optimization value derived from the simulation study, and the conven-
tional noise reduction algorithm. The application results of each algorithm were evaluated
by calculating quantitative evaluation factors. Figure 7 shows the results of applying
the Gaussian, median, Wiener filters, and optimized BM3D algorithms to the image with
0.05 Rician noise added.
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From the CNR and CV measurements used to observe the change in the noise intensity,
a significant improvement was confirmed in the optimized the BM3D algorithm, as shown
in Figure 8. In addition, the similarity with the reference image was the highest when the
optimized BM3D algorithm was applied, as shown in Table 1 and Figure 9.

3.2. Clinical Study

For the optimization of the σ-value confirmed in the simulation study, it was applied
to the brain T2WI obtained from the ADNI dataset to examine its applicability to the clinical
MR image. In addition, we attempted to prove the superiority of the BM3D algorithm
with an optimized σ-value in comparison to conventional noise reduction algorithms.
The results of applying the algorithms were quantitatively evaluated by comparing the
CNR and CV from the perspective of noise level due to the unavailability of a noise-free
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reference image in clinical experiments. Figure 10 shows the resulting images for each
applied algorithm.
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Table 1. The results of quantitative evaluation of applying Gaussian filter, median filter, Wiener filter
and the optimized BM3D algorithm for each noise level.

Noise Level 0.05 Noise Level Similarity

CNR COV SSIM RMSE

Gaussian 15.17 0.2980 0.3858 0.1772
Median 28.00 0.0432 0.6500 0.1464
Wiener 34.02 0.0352 0.6748 0.1494

Optimized BM3D 182.99 0.0061 0.6974 0.1499
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Table 1. Cont.

Noise Level 0.10 Noise Level Similarity

CNR COV SSIM RMSE

Gaussian 15.42 0.0307 0.3661 0.1931
Median 20.39 0.0570 0.5540 0.1649
Wiener 20.47 0.0531 0.5876 0.1689

Optimized BM3D 142.39 0.0080 0.6628 0.1667

Noise Level 0.15 Noise Level Similarity

CNR COV SSIM RMSE

Gaussian 15.00 0.0329 0.3491 0.2178
Median 10.60 0.0900 0.4755 0.1924
Wiener 11.16 0.0868 0.5094 0.1984

Optimized BM3D 69.34 0.0127 0.6206 0.1940
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The CNR values were approximately 34.99, 24.65, 25.26, and 39.74 when the Gaussian,
median, Wiener filters, and optimized BM3D algorithms were applied, respectively. The
calculated CV values were approximately 0.0102, 0.0151, 0.0148, and 0.0086, respectively.
Figure 11 shows a graph of the CNR and CV measured from the images obtained using
conventional noise reduction algorithms and the optimized BM3D algorithm.
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4. Discussion

The importance of noise reduction algorithms for medical imaging is significantly
increased. Therefore, the appropriate parameters are considered as a key to acquire rea-
sonable image quality for diagnosis [34–36]. The performance of the BM3D algorithm
is influenced by various modifier factors; however, among them, σ-value is a factor that
determines the degree of smoothing of the signal values and serves as a criterion for dis-
criminating and eliminating noise [22]. In this study, we aimed to determine the optimal
σ-value of the BM3D algorithm by adjusting the σ-value from 0.01 to 0.99 and applying it
to simulated and clinical MR images, thereby attempting to identify the σ-value that could
yield the optimal image characteristics.

The results of applying the BM3D algorithm to the simulated brain T2WI acquired
using the BrainWeb simulation program were evaluated using quantitative evaluation
factors of CNR, CV, SSIM, and RMSE. Quantitative evaluation demonstrated that when
the three intensities of Rician noise of 0.05, 0.10, and 0.15 were added, the CNR initially
exhibited a sharp increase with an increase in the σ-values up to 0.08, 0.13, and 0.15,
respectively. Subsequently, irregular fluctuations without a clear pattern were observed.
Similarly, the CV also displayed a rapid decrease until the above-mentioned σ-value,
following which it exhibited a minimal difference.

Overall, we confirmed that the CNR and CV increased and decreased exponentially
up to a certain σ-value for all three noise intensities; however, thereafter, the quantitative
evaluation results demonstrated fluctuation patterns that were not consistent. This means
that excessive smoothing was achieved by applying a σ-value higher than the noise intensity
contained in the image. As a result of the similarity evaluation, both SSIM and RMSE
rapidly increased until a certain σ-value and then decreased. The σ-values that exhibited
these trends were found to be 0.08, 0.13, and 0.16 for images with Rician noise intensities of
0.05, 0.10, and 0.15, respectively. These values were aligned with the σ-values that showed
optimal image characteristics in the assessment of noise-level variations.

The images acquired using the BrainWeb simulation program and the T2WI from the
ADNI dataset are obtained using different methods. In particular, the T2WIs from the
ADNI dataset are actual clinical images with unknown noise distribution. Despite this,
the reason why the optimized sigma value derived from the simulation study could be
applied is that the additional noise introduced during the simulation study was modeled as
Rician noise, considering that MR signals exhibit a complex form. Rician noise distribution
is similar to the noise encountered in clinical settings; there are practical limitations in
measuring and applying the noise distribution of each acquired image. Therefore, the
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final optimized sigma value of 0.12 was derived as the average of the sigma values that
demonstrated excellent quantitative evaluation results at various levels of additional noise
in the simulation study. As a result, we consider that this optimized sigma value maintains
consistency even in a blind state of noise estimation.

Clinical MR images of brain T2WIs were obtained from the ADNI dataset. The
BM3D algorithm with a σ-value of 0.12 was obtained from the simulation study and
applied to confirm its usability. We attempted to compare and evaluate the performance by
applying conventional noise reduction algorithms: Gaussian, median, and Wiener filters.
Consequently, the CNR and CV were calculated as 39.74 and 0.0086, respectively, when the
optimized BM3D algorithm was applied. In comparison with the original noise-added and
conventional noise-reduction algorithms, the optimized BM3D demonstrated substantial
improvements in CNR by approximately 1.68, 1.13, 1.61, and 1.57-fold compared with noisy
image, Gaussian, median, and Wiener filters, respectively. Additionally, the optimized
BM3D demonstrated the best performance in terms of CV, increasing by approximately
1.83, 1.18, 1.75, and 1.72-fold, respectively. Through a comprehensive evaluation of the
simulation and clinical study results, it was demonstrated that the BM3D algorithm with
the optimized σ-value had superior performance compared to that of the conventional
noise reduction algorithms used in this study. However, our results were conducted by
applying a commonly available σ-value at different noise levels through simulation studies.
Thus, the optimized σ-value may not show “perfect” performance under all equipment
and shooting conditions.

Additionally, MRI requires an expeditious image-processing technique. In this study,
the time required for image processing using the BM3D algorithm was measured as follows:
first, in optimizing the BM3D algorithm using simulated brain T2Wis, it took approximately
0.11 sec per image for a matrix size of 217 × 181. In comparison, for clinical MR images
with a matrix size of 256 × 256, it took approximately 0.86 s.

The BM3D algorithm has a relatively fast processing speed, but they actually have a
considerable amount of processing time compared to that of conventional noise reduction
algorithms because the BM3D algorithm does not perform image processing by simple
calculations. This process involves converting 2D patches into 3D blocks; the signal in the
spatial domain is converted to the frequency domain, and noise reduction is performed
twice through hard thresholding and Wiener filtering. The proposed model used in this
study achieved significant noise reduction performance compared to conventional noise
reduction algorithms based on quantitative evaluation. However, improvement is nec-
essary to shorten the time required for using the BM3D algorithm. Therefore, we plan
to compensate for the processing time by adopting machine learning techniques that can
simplify the image processing step while preserving the noise reduction performance along
with the optimization of the BM3D algorithm in further study.

Brain MR images and numerous cognitive ability indicators are used to diagnose
Alzheimer’s disease (AD) [37,38]. In particular, the expansion of the ventricles, which
is considered important for visually evaluating the progress of AD, can be observed in
brain MR images. No prominent difference was found between conventional noise reduc-
tion algorithms in clinical studies, while the quantitative image quality of the optimized
BM3D algorithm was observed to be the most superior among all. In future studies, to
secure reliability for versatility, we plan on applying the BM3D algorithm with optimized
σ-values to clinical MR images acquired using various pulse sequences, such as echo
planar imaging, to evaluate the algorithm’s performance across different sequences and
establish its effectiveness in noise reduction and image quality improvement in diverse
clinical scenarios.

5. Conclusions

In this study, we aimed to optimize the σ-value of the BM3D algorithm to achieve
efficient noise reduction. For this purpose, we obtained brain T2WIs acquired using the
BrainWeb simulation program and clinical MR images from the ADNI dataset. Rician noise



Appl. Sci. 2023, 13, 8803 16 of 18

with intensities of 0.05, 0.10, and 0.15 was added to these images, and the σ-values of the
BM3D algorithm were incrementally increased from 0.01 to 0.99 with a step size of 0.01.
Furthermore, in the simulation study of the optimized BM3D algorithm, we observed that
sigma values of 0.08, 0.13, and 0.15 demonstrated the most improved image characteristics
for each noise level. The optimal σ-value was derived from the average of these values.

Additionally, to verify its performance on actual clinical images, we applied the
optimized BM3D algorithm to brain T2WIs obtained from the ADNI dataset. The results
demonstrated a trend similar to the simulation findings, and the optimized BM3D algorithm
exhibited superior similarity to the conventional noise reduction algorithms.

In conclusion, applying the BM3D algorithm with a σ-value of 0.12 to brain T2WIs
can provide excellent noise reduction effects, despite the relatively longer processing time
compared to that of conventional noise reduction algorithms. The purpose of medical
image processing is to acquire clear medical images with noise excluded, enabling accurate
and rapid diagnosis. The results of this study demonstrate that the optimized sigma value
derived from the BM3D algorithm effectively suppresses excessive smoothing, allowing
for efficient noise reduction. It is inferred that this approach can be effectively applied in
practical clinical settings.
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