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Abstract: To investigate the temperature field variation of the main tower of large-span suspension
bridges, the Nanjing Xinshengwei Yangtze River Bridge was selected as the objective of the present
study. The finite element model of the main tower was developed, and the analysis of the effect of
the temperature field on the structure of the main tower was carried out. The calculation parameters
of the temperature field of the main tower were determined, and the influence of the solar radiation
temperature of the main tower within 24 h was investigated. Differences in the temperatures inside
and outside the wall of the tower column were analyzed, and the thermal stress of the tower wall
under the most unfavorable temperature difference was calculated. Results show that under the
positive temperature difference, the area of tensile stress is mainly concentrated on the inner wall,
the maximum value is located at the corner of the intersection of the tower wall, and the range of
tensile stress is mainly diffused along the vertical wall. Under the action of negative temperature
difference, the area of tensile stress is mainly concentrated in the outer tower wall, the maximum
value is located in the upper part of the western outer tower wall, and the range of tensile stress is
mainly diffused along the center of the tower wall to both sides. The maximum tensile stresses in the
inner and outer tower wall are 2.8 MPa and 1.3 MPa, respectively, which meets the standard value of
2.85 MPa for the tensile strength of C60 concrete specified in the Chinese national standard.

Keywords: temperature field; main tower; thermal stress; finite element analysis

1. Introduction

The concrete tower is an important component of cable-stayed bridges, suspension
bridges, and other structural systems. Cracks in thin-walled structures (e.g., the main
concrete tower) during the service period have become a new problem for mass concrete
structures [1,2]. In particular, the solar radiation temperature variation will cause the
temperature difference between the inner and outer walls of the tower column, forming
a certain temperature difference stress, which often exceeds the stress generated by the
structure’s dead load, live load, and other loads, and usually leads to excessive local stress
and crack failure [3–5].

At present, the research on the temperature effect of concrete bridge structures mainly
focuses on the upper concrete box girder structure, while the temperature field effect of the
lower structure is rarely studied, such as the prestressed concrete continuous rigid frame
bridge, cable-stayed bridge, concrete piers and tower columns of suspension bridges [6].
Zhu et al. [7] proposed a numerical simulation analysis method for the temperature field
and stress field of concrete through real-time monitoring of the instantaneous temperature
field and strength field of the internal temperature of concrete. Li et al. [8] proposed
the solar temperature field model of the main tower of the cross-sea cable-stayed bridge
through transient heat transfer analysis. By introducing major parameters such as solar
elevation angle, azimuth angle, and radiation absorption coefficient, the accuracy of the
proposed model was verified by comparing the measured data of the temperature field
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with predicted values. Wang et al. [9] investigated the influence of solar temperature
difference on the deviation and stress of the cable tower under the condition of onsite
monitoring of the construction process of the Tieluoping super-large bridge. Feng et al. [10]
investigated the thermal stress of the bridge tower, indicating that the generation of vertical
cracks in the bridge tower was closely related to the temperature field inside the concrete
tower. In addition, concrete cracks would close and re-open under the action of different
temperature fields. Huang et al. [11] reduced the size of a concrete arch bridge by five
times, and the calculated temperature isoline and temperature time-history curve were
in good agreement with the measured values, which verified the accuracy of the finite
element model. Subsequently, the verified finite element model was used for parameter
analysis. The influence of thermal parameters on thermal behavior was discussed, and an
effective thermal control method was proposed. Jin et al. [12] took a cable-stayed bridge
with a steel box girder as an example to discuss the influence of temperature on the beam
deflection at different time scales. Results show that the temperature difference of the
beam, as well as the temperature gradient, will lead to a large deflection. In general, it
could be concluded from the abovementioned investigations that the characteristics of
the thermal stress of the main tower induced by the temperature variation differ from
each other, mainly depending on the appearance and geometry. However, few studies
are focused on the effect of the temperature field on the thermal stress of the unique gate-
shaped steel-concrete composite main tower of the Nanjing Xinshengwei Yangtze River
Bridge (i.e., the engineering background of the present study), which is with a main span
of 1760 m. Therefore, it is necessary to comprehensively investigate the characteristics of
the thermal stress of the main tower of the Nanjing Xinshengwei Yangtze River Bridge.

In this paper, by selecting the Nanjing Xinshengwei Yangtze River Bridge as the
engineering background, the analysis of the effect of the temperature field on the thermal
stress of the main tower structure was carried out to investigate the effect of the solar
temperature field within 24 h. The difference in the temperature between the inner and outer
walls of the tower and its variation trend were analyzed. The temperature difference stress
of the tower wall under the most unfavorable temperature difference was calculated, and
the variation trend of the stress and deflection of each column segment caused by the overall
rising and cooling was also calculated. Conclusions could provide a significant reference
value for the construction and operation of the main tower of similar bridge structures.

2. Engineering Background

Nanjing Xinshengwei Yangtze River Bridge is a double-tower steel box girder suspen-
sion bridge with a span of 580 m + 1760 m + 580 m. The ratio of main span to main cable
span is 1/9, ranking the first in China and the second in the world among similar bridges.
The stiffening beam is closed with a flat and streamlined integral steel box girder. The
main cable adopts a prefabricated parallel high-strength steel wire strand structure (PPWS).
Each main cable is composed of 169 strands, and each share is composed of 127 galvanized
aluminum alloy high-strength steel wires with a diameter of 5.4 mm. The elevation layout
and in-site construction images are given in Figures 1 and 2.

The main tower is a double-limb door-shaped reinforced concrete tower with a full
height of 263.8 m, which is composed of upper, middle and lower columns, upper and
lower beams, and top saddle. The transverse center spacing between the two columns is
27.7 m at the top of the tower and 42.7 m at the bottom of the tower. Its structure diagram
and onsite construction images are given in Figures 3 and 4.
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3. Finite Element Modeling of the Main Tower
3.1. Development of the Solid Model

A finite element (FE) model simulating the main tower of Nanjing Xinshengwei
Yangtze River Bridge was developed by using MIDAS FEA v4.0, as shown in Figure 5,
where X, Y, and Z direction is horizontal, longitudinal and vertical, respectively. In this
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model, the chamfered part of the contact area between the main tower column and the
upper and lower beams, the prestressed steel bars in the beams, and the constraints between
the temporary transverse struts and the concrete tower columns are considered in detail.
However, in the modeling process, the influence of ordinary structural steel bars is not
taken into account for the convenience of calculation. To develop the FE model, 3D solid
units were adopted to simulate the concrete column, as well as the upper and lower
beams. Meanwhile, 1D line units were adopted to simulate the temporary cross braces and
prestressed steel bundles.
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3.2. Meshing of the FE Model

In this model, the concrete entity of the main tower is meshed by 4-node and 4-dihedral
primary units. Meanwhile, since the main tower is composed of different components and
there are many chamfers in the contact area between the beam and the tower column, the
meshed entity technology is adopted by segmenting cutting. To avoid the phenomenon
of non-automatic coupling of contact node elements in the grid division of entities with
different sections, it is necessary to use the entity difference set operation of Boolean
operation in advance for mutual printing of contact surfaces. The meshing size is a key
parameter in finite element modeling. For determining the meshing size to be adopted in
the present study, mesh sensitivity analysis was conducted by employing the meshing size
of 1.0 m, 0.5 m and 0.2 m, respectively. The thermal stresses on the outer surface of east
tower wall at 3:00, 6:00, 9:00, 12:00, 15:00 and 18:00 were extracted, as listed in Table 1. It
can be seen from Table 1 that the results corresponding to a meshing size of 1.0 m, 0.5 m
and 0.2 m show minor difference. Therefore, for improving the computing efficiency, a
meshing size of 1.0 m was adopted in the present study.
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Table 1. Thermal stresses corresponding to different meshing sizes (MPa).

Size
Time

3:00 6:00 9:00 12:00 15:00 18:00

1.0 m 0.48076 −0.18956 −1.40343 −2.39181 −2.48554 −1.5524
0.5 m 0.47976 −0.19056 −1.40443 −2.39281 −2.48654 −1.5534
0.2 m 0.47966 −0.19066 −1.40453 −2.39291 −2.48664 −1.5535

The size of the solid grid units on both sides of the tower columns, as well as on the
upper and lower beams, is set to be 1 m. In general, there are 266,500 concrete 3D units.

Since the transverse prestressed steel bundle is arranged in a curved direction, the
B-spline curve is generated by using the function of “defining line”, and the reinforcement
in the solid unit is selected at the same time. The common node combined with embed-
ded constraint and adaptive comparison line grid division method is used to ensure the
common force between reinforcement and concrete in the model calculation. The gener-
ated prestressed steel beam grid elements are all one-dimensional low-order line elements
(regardless of the influence of curvature on friction), and the number is 88,868, as shown
in Figure 6. The temporary cross bracing is built with one-dimensional, two-node beam
elements. For adaptive grid division, there are 230 beam elements and 45 rigid connection
elements at both ends of the temporary cross-bracing, as shown in Figure 7. The grid
division diagram of the tower column and the lower beam is shown in Figure 8. There
are 157,950 nodes and 355,643 units in the full tower multi-scale model. The conduction
differential equation governing the calculation of finite element model could be expressed
by Equation (1) [13]:

λ

(
∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2

)
= ρc

∂T
∂t

(1)

where λ is the coefficient of thermal conductivity; c is the specific heat; ρ is the density; T is
the temperature; and t is time.
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As the thin-walled concrete tower is constrained, the thermal stress will be generated
due to the influence of temperature change. The equilibrium equation to determine the
thermal stress could be determined by Equation (2) [13]:

εx =
1
E
[
σx − ν(σy + σz)

]
+ α∆T

εy =
1
E
[
σy − ν(σx + σz)

]
+ α∆T

εz =
1
E
[
σz − ν(σx + σy)

]
+ α∆T

(2)

where σx, σy, and σz is the stress component along x, y, and z-axis, respectively; εx, εy, and
εz is the corresponding strain component; E is the elastic modulus; ν is the Poisson’s ratio;
α is the coefficient of thermal expansion; and ∆T is the temperature change.

3.3. Boundary Conditions

In the modeling process of the main tower, the constraint conditions can be divided
into two categories: (1) constraints corresponding to the main tower; and (2) external
construction constraints. External construction constraints refer to the contact between
the prestressed steel bundle in the upper and lower beams of the main tower and the
concrete entity, as well as the connection constraints between the two ends of the temporary
transverse braces and the two sides of the tower wall during construction [14]. The types of
constraints are summarized in Table 2. As listed in Table 1, the nodes at the bottom of the
main tower were constrained, i.e., the displacements and rotation along X-, Y- and Z-axis
were set to be zero. The prestressed steel bundles and concrete were embedded together,
i.e., the elements in the model of the steel bundle and concrete shared the same node at the
interface. In terms of the boundary conditions of the temporary cross braces, the nodes at
the interface between the temporary cross braces and the tower columns were fixed, i.e.,
different elements adopted the same node at the interface. The diagram of the physical
boundary conditions was plotted in Figure 9. In terms of the heat conducting boundary
conditions, the governing equation could be expressed by Equation (3) [13]:

λ
∂T
∂n

+ (hc + hr)(T − Ta) = 0 (3)

where n is the normal direction of the boundary surface; hc is the convective heat transfer
coefficient; hr is the radiation heat transfer coefficient; and Ta is the temperature of the air
around the outer interface.

The governing equation for determining the thermal stress could be expressed by
Equation (4) [13]: 

σxl + τxym + τxzn = 0
σym + τyxl + τyzn = 0
σzn + τzxl + τzym = 0

(4)

where τxy, τxz, τyx, τyz, τzx and τzy are the stress component; l, m and n are the component
of the surface unit normal vector in all directions.

Table 2. Constraints of the finite element model.

Constraint Object Constraint Type

Bottom of the main tower All nodes and units are constrained
Prestressed steel beam with concrete embedment

Temporary cross braces and tower walls Multi-point rigid connection
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4. Determination of the Calculation Parameters of the Temperature Field
4.1. Environmental Parameters of the Main Tower

In the simulation analysis of the temperature field effect of the main tower, the en-
vironmental parameters to be determined mainly include the geographical location of
the main tower and the surrounding air temperature, which is the advanced condition to
analyze the temperature distribution and heat conduction characteristics of the main tower.
According to the investigation, the main tower of Nanjing Xinshengwei Yangtze River
Bridge is located in Qixia District in Nanjing City. The geographical latitude is 32.14◦ north
latitude and 118.89◦ east longitude. The climate belongs to the subtropical monsoon humid
climate zone, and the annual average temperature is 15.14 ◦C throughout the year. In this
paper, the average annual temperature of Nanjing is valued at 15.14 ◦C to determine the air
temperature around the main tower.

4.2. Atmosphere and Solar Radiation Temperature Parameters around the Main Tower

The atmospheric temperature changes with the solar radiation temperature, which
mainly affects the convective heat transfer when the inner and outer walls of the main
tower contact with the air, resulting in different humidity distribution on the section of the
main tower [15]. The greater the daily variation of atmospheric temperature and humidity
around the main tower, the greater the temperature difference between the inner and
outer walls of the column section. In the process of analyzing the temperature field of
the main tower, the time node interpolation method and the sine function are mainly
used for numerical simulation to determine the temperature field distribution of the tower
wall. Many scholars have found through investigation that there is an obvious diurnal
variation law of atmospheric temperature and solar radiation temperature in China, that
is, the temperature is lowest between 6 a.m. and 8 a.m., then gradually rises, reaches the
highest point between 12 a.m. and 3 p.m., and then gradually drops. The variation law is
similar to a sine function. Therefore, the sine function is used in this paper to describe the
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diurnal variation of atmosphere and solar radiation temperature around the main tower, as
expressed by Equation (5) [13]:

F(t) = Tsin
π

12(t + t0)
+ T0 (5)

where T for air and solar radiation temperature range (◦C); T0 for air and sunshine average
temperature (◦C); t0 for maximum and minimum air and solar radiation temperature
time delay.

As the main tower box room will not be affected by sunlight and almost no air
convection exists, the temperature is relatively stable. Therefore, the indoor temperature
of the main tower chamber was taken as the daily average atmospheric temperature
for simulation.

4.3. Thermal Parameters of Concrete

In the analysis of the temperature field effect of the main tower, the basic thermal
parameters of concrete should be determined first. The main tower of Nanjing Xinshengwei
Yangtze River Bridge is cast and formed by concrete typed C60 in the whole process. The
values of weight density, elastic modulus, Poisson’s ratio, coefficient of thermal expansion,
heat conductivity, specific heat capacity, and heat source coefficient [13] are shown in
Table 3.

Table 3. Basic thermal parameters of the concrete typed C60 [13].

Weight
Density
(kN/m3)

Modulus of
Elasticity

(MPa)

Poisson’s
Ratio

Coefficient of
Thermal Expansion

(1/◦C)

Thermal
Conductivity

(W/m)

Specific Heat
Capacity
(J/kg·◦C)

Heat Source
Coefficient

26 3.60 × 104 0.2 1 × 10−5 2.7 1176 1

4.4. Convection Heat Transfer Parameters

The convective heat transfer between the main tower surface and the air is a compli-
cated heat conduction phenomenon. The efficiency of convective heat transfer depends
on many factors, such as ambient air temperature, wind speed, humidity, etc., so the re-
lationship between them is usually determined through tests or empirical formulas [16].
In this way, the heat transfer between the surface of the main tower and the air can be
more accurately calculated to analyze and predict the temperature field effect and heat con-
duction characteristics of the main tower [17]. Among the many influencing factors, wind
speed is the most dominant influencing factor. As the wind speed (direction) is constantly
changing, the higher the wind speed level is, the higher the heat transfer efficiency will
be. Therefore, wind speed is generally used to determine the coefficient of convective heat
transfer in the simulation calculation of the temperature field [18]. However, unified value
corresponding to the convective heat transfer coefficient is inaccessible. Different values
might be employed by different scholars, e.g., the values adopted by Zhang et al. [13], Dai
et al. [19], Zhang et al. [20] and Larsson et al. [21] are listed in Table 4.

Table 4. Convective heat transfer coefficient selected by scholars at home and abroad (W/m2·◦C).

Name
Position Roof

Surface
The Outer Surface

of the Web
The Bottom

Surface
The Inner Surface
of the Box Girder

Zhang et al. [13] 14.30 13.30 12.34 9.30
Dai et al. [19] 15.23 / 15.14 10.20

Zhang et al. [18] 11.60 9.60 7.60 5.60
Larsson et al. [20] 11.40 9.50 7.60 5.70

Based on the basic values provided in Table 3, the convection heat transfer coefficients
on the outer surface of the main tower were all 13 W/m2·◦C for simulation in the tempera-
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ture field effect analysis of the main tower. It is noted that, as the Nanjing Xinshengwei
Yangtze River Bridge is under construction and installing sensors in the tower wall is not
permitted, monitoring data for validating the finite element model is unavailable. However,
the modelling method adopted in the present study is the same as the one adopted by
Ren et al. [22], in which the numerical results are compared to the test data of the solar
radiation temperature field of the thin-walled concrete tower. Therefore, it is believed that
the modelling method employed in the present study is feasible and the numerical results
are acceptable.

5. Layout of Points for the Extraction of Temperature

The basic trend of the Nanjing Xinshengwei Yangtze River Bridge is north-south.
When the sun shines directly on the east side of the main tower at sunrise in the morning,
the temperature of the outer tower wall on the east side is higher than that on the west
side of the main tower. With the change of time, the sun moves to the west side of the
main tower in the afternoon, and the east side of the main tower is in a shadow area. The
temperature of the outer tower wall on the west side increases while the temperature on the
east side decreases. Under the influence of the temperature of the solar radiation, the main
tower will produce a temperature field gradient, thus causing temperature deformation.

Therefore, to determine the variation of the temperature field of the tower column
under the most unfavorable high-temperature weather, the temperature difference between
the two sides of the main tower caused by sunshine on one day on 14 August 2022, will
be simulated. The structural detail around the 12th column is complex, as the chamfer,
transverse partition, hole and prestressed steel bundle exist in the connecting part between
the beam and column of the main tower [23]. It is believed that the temperature field
corresponding to the selected 12th column is more sensitive to the solar radiation. If
the 12th column can maintain good structural performance under the most unfavorable
temperature, the whole bridge tower is believed to be within the safe range. Therefore,
the 12th column was selected in the present study. The east, south and west tower walls
are alternately replaced as the sunshine area, while the north tower walls are always the
shadow area, and three temperature measuring points are set on the inner and outer walls.
The layout of points (i.e., A1-A3, B1-B3, C1-C3) for the extraction of temperature is shown
in Figure 10.
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6. Stress Analysis of the Bare Tower Subjected to Solar Radiation Variation
6.1. Temperature Field Heat Conduction Theory

The heat exchange of the main concrete tower is mainly energy transfer, which is
manifested as the temperature change of the inner and outer walls of the tower column.
There are three forms of energy transfer: heat conduction, convection heat transfer, and
heat radiation, which have different characteristics.

1. Heat conduction refers to the heat transfer process between the same substance under
the action of different temperatures. According to Fourier law, the formula of heat
conduction can be expressed by Equation (6) [17]:

Q = −λ
ϕT
ϕX

(6)

On the type of Q for heat flow density (W/m2); λ for the coefficient of thermal
conductivity (W/m2 ◦C); ϕT

ϕX for heat transfer in the direction of the temperature gradient.

2. Convection heat transfer refers to the energy transfer caused by the temperature
difference between the solid surface and the fluid, which can be generally divided into
natural convection and forced convection. During the construction and operation of
the concrete main tower, a convective heat transfer process is usually generated. That
is, energy exchange occurs when the fluid contacts with the tower wall. When the
fluid temperature is high, there is also heat conduction effect on the column, and heat
transfer efficiency will be reduced under the influence of wind speed. Therefore, the
convective heat transfer process is usually described by Newton’s cooling equation,
as expressed by Equation (7) [13]:

Q = K(Tα − Tβ) (7)

On the type of Tα for pillar surface temperature (◦C); Tβ for pillar surrounding fluid
temperature (◦C); K for convective heat transfer coefficient (W/m2 ◦C).

3. Thermal radiation refers to the electromagnetic energy radiated by the object itself
interacting with other objects, resulting in the process of energy transfer and heat
conversion. When the temperature of the main tower is above absolute zero, it emits
thermal radiation, which can be transmitted through vacuum and other media. To
calculate the net heat transfer between objects in the thermal radiation process of the
main tower, the Stefan–Boltzmann equation is generally adopted, as expressed by
Equation (8) [13]:

Q = αη0MiFij

(
T4

i − T4
j

)
(8)

On the type of Mi for pillar i through an area (m2); Ti for pillar i through absolute
temperature (◦C); Tj for pillar j through absolute temperature (◦C); Fij pillar i through to
the j shape factor; η0 to take Stephen–Boltzman constant, take 5.67 × 10−8 ◦C, W/m2; α for
pillar radiation ratio.

6.2. Analysis of Temperature Change at Each Time

The variation values of three temperature measuring points on the inner and outer
walls of 12 columns within a day were extracted, and the variation trend is shown in
Figure 11. As can be seen, the temperature of the outer wall of the four sides of the tower in
the daytime is greater than that of the inner wall, forming a positive temperature difference.
The main reason is that the heat accumulates in the outer wall of the tower due to the
increase of solar radiation and atmospheric temperature in the daytime, while the heat
conduction rate of concrete is slow, and the temperature cannot be transferred to the
inside immediately. During the night, the solar radiation disappears, and the atmospheric
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temperature drops rapidly, so the temperature of the outer tower wall drops. Moreover,
after the heat transfer effect of concrete from outside to inside for a long time during the
day, the temperature of the inner wall will gradually be higher than that of the outer wall,
forming a negative temperature difference. During the whole day, the maximum positive
temperature difference of the east, south, and west tower walls is 18.6 ◦C, 18.1 ◦C and
19.1 ◦C at 14:00, 16:00 and 18:00, while the maximum negative temperature difference of
the east and west tower walls is 2.1 ◦C and 4.7 ◦C at 3:00 and 7:00, respectively. Since the
north tower wall has not been directly exposed to the sun, the main source of its heat is
the heat transfer of the east and west tower walls, so the temperature fluctuation range
of the inner and outer walls is small, the maximum is 0.2 ◦C, and there is no temperature
difference along the wall thickness.
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Figure 11. Temperature variation of each side wall of the tower column at any time.

Therefore, to ensure that the main tower will not be damaged by high temperatures
in future operation and use, cooling measures can be set at the tower wall in the summer
sunshine area, with the focus on the south outer tower wall. The inner wall is not equipped
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with cooling facilities because the temperature difference is small, and the temperature is
consistent with the ambient temperature.

6.3. Analysis of Stress Variation in Temperature Difference at All Times

There are generally two methods for finite element simulation software to calculate
thermal stress in the model, that is, the direct coupling method. To save the calculation
time of the model, the indirect coupling method is mainly adopted to simulate the change
in the thermal stress of the main tower. The specific process is as follows:

1. The general heat transfer conductance analysis of the main tower model is carried out
to obtain the temperature results of the node element at the required position at each
moment;

2. In the construction phase analysis, the heat conduction result is determined as the
thermal load;

3. Extract the corresponding node temperature value as a specific load to apply the
forced temperature boundary conditions;

4. Simultaneously calculate the heat conduction analysis and construction phase analysis,
and check the required temperature difference stress in the post-processing window.

Through calculation, the temperature difference stress of measuring points on each
side of the outer wall and inner wall of the 12th column changes from time to time and
are plotted in Figures 12 and 13, where tensile stress is positive and compressive stress
is negative. As can be seen, during the solar sunshine period from 6:00 to 18:00 in the
daytime, the thermal stress decreases gradually with the increase of the temperature of the
outer tower wall, while during the night, the thermal stress increases with the decrease
of temperature, and the maximum tensile stress is 1.3 MPa at about 23:00. The thermal
stress trend of the inner tower wall is opposite to that of the outer tower wall. During
the period from 6:00 to 18:00 when the temperature of the inner tower wall is lower than
that of the outer tower wall, the thermal stress keeps increasing, and the maximum tensile
stress of the western inner tower wall is 2.7 MPa at 18:00. This phenomenon indicates that
the maximum tensile stress occurs in the inner part of the tower wall under the action of
positive temperature difference. Under the action of negative temperature difference, the
maximum tensile stress will be generated outside the tower wall.
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Figure 12. Time variation of temperature difference stress at measuring points on the outer wall.
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Figure 13. Time variation of temperature difference stress at measuring points on the inner wall.

Figures 14 and 15 show the temperature stress nephogram of the maximum positive
temperature difference at 14:00, 16:00 and 18:00 and the maximum negative temperature
difference at 3:00 and 7:00. Therefore, in further investigation regarding the in-situ monitor-
ing of temperature variation, monitoring data recorded at 3:00, 7:00, 14:00, 16:00 and 18:00
must be noticed.
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As can be seen from Figure 14, under the action of positive temperature difference on
the tower wall, the area of tensile stress is mainly concentrated on the inner tower wall;
the maximum value is located at the corner where the tower wall intersects, and the range
of tensile stress is mainly diffused vertically along the tower wall. The reason could be
attributed to the principle of heat expansion and cold contraction: the temperature of the
outer wall increases due to solar radiation, hence heat expansion is supposed to happen;
however, the outer wall is constrained by the inner wall of which the temperature is less
changed, which leads to the compressive stress in the outer wall and tensile stress in the
inner wall (see Figure 14). At 14:00, 16:00, and 18:00, the stress reaches 2.3 MPa, 2.8 MPa
and 2.7 MPa, respectively, and the local stress is relatively large, which conforms to the
characteristics of short-term rapid change.

As can be seen from Figure 15, under the action of negative temperature difference
on the tower wall, the area of tensile stress is mainly concentrated on the outer tower wall.
The maximum value is located in the upper part of the western outer tower wall, and the
range of tensile stress is mainly diffused along the center of the tower wall to both sides.
The reason could be attributed to the principle of heat expansion and cold contraction:
the temperature of the inner wall is less changed while the temperature of the outer wall
decreases rapidly due to the heat conductivity and lack of solar radiation, which leads to the
compressive stress in the inner wall and tensile stress in the outer wall (see Figure 15). The
stress at 3:00 and 7:00 reaches 0.1 MPa and 1.3 MPa, respectively. The effect of local stress is
less than that of positive temperature difference, and it also conforms to the characteristics
of short-term rapid change.

After calculation, the temperature difference stress generated on the outer and inner
walls of the 12th section tower column meets the standard value of 2.85 MPa for the tensile
strength of C60 concrete specified in the Chinese national standard “Code for Design
of Concrete Structures” (GB 50010-2010) [24]. Therefore, in the actual construction and
maintenance process of a similar main tower in the future, we should mainly consider the
negative effects of positive temperature differences in the day.

7. Conclusions

Based on the Nanjing Xinshengwei Yangtze River Bridge, this paper investigates the
variation law of temperature field and thermal stress of the main tower. The following
conclusions can be drawn.

1. In the daytime, the temperature of the outer wall of the main tower is greater than
that of the inner wall, forming a positive temperature difference. During the night,
the atmospheric temperature drops rapidly. After the heat transfer effect of concrete
from outside to inside for a long time during the day, the temperature of the inner
wall is gradually higher than that of the outer wall, forming a negative temperature
difference.

2. Under the action of positive temperature difference, the distributing area of tensile
stress is mainly concentrated in the inner tower wall. The maximum value is at the
corner of the intersection of the tower wall, and the range of tensile stress is mainly
diffused along the vertical wall.

3. Under the action of negative temperature difference, the distributing area of tensile
stress is mainly concentrated in the outer tower wall. The maximum value is located
in the upper part of the western outer tower wall, and the range of tensile stress is
mainly diffused along the center of the tower wall to both sides.

4. The maximum tensile stresses in the inner and outer tower walls are 2.8 MPa and 1.3
MPa, respectively, which meets the standard value of 2.85 MPa for the tensile strength
of C60 concrete specified in the Chinese national standard.
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