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Abstract: In order to improve the hydraulic performance of a submersible well pump, steady and
transient simulations were carried out based on ANSYS CFX software. The head and efficiency of
the submersible well pump under standard operating conditions were taken as the optimization
objectives, and the impeller outlet placement angle, outlet width, and vane wrap angle were selected
as the optimization variables using the Plackett-Burman experimental design method. The RBF
neural network training samples were constructed using the uniform experimental design method to
build a hydraulic performance prediction model for the submersible well pump, and a multi-objective
particle swarm optimization was used to solve the model and obtain the Pareto optimal solution
set. Using the head and efficiency of the initial model as the boundary, the Pareto optimal solution
and the corresponding structural parameters are sought. After the optimization, the head of the
individual with the better head is increased by about 2.65 m, and the efficiency of the individual
with the better efficiency is increased by about 2.3 percentage points compared with that of the initial
model. The pressure gradient in the impeller flow channel is more obvious, the work capacity is
significantly improved, the vortex area of the spatial guide vane is smaller, the flow line is more
regular, and the pressure pulsation amplitude at the inlet and outlet of the impeller and the spatial
guide vane is significantly reduced.

Keywords: RBF neural network; hydraulic performance prediction models; particle swarm optimization;
pareto optimal solution; pressure pulsation amplitude

1. Introduction

With the application and development of numerical simulation and optimal design
techniques in the field of pump research, the performance of submersible well pumps
has been improved to a certain extent, but it still cannot meet the needs on some specific
occasions due to certain limitations on efficiency and the pump head. The impeller, as
the core hydraulic component of well submersible pumps, has an important influence
on the hydraulic performance of the pump. For this reason, it is of great research signifi-
cance to develop the optimal design of impeller hydraulics to improve the comprehensive
performance of submersible well pumps.

At present, scholars at home and abroad have applied approximate prediction models
and intelligent optimization algorithms to some pump models to optimize the design and
improve the performance of the pump. Zhang et al. [1] investigated the hydrodynamic
characteristics of a single-stage centrifugal pump with an induced wheel at the inlet and
a radial guide vane (RGV) at the outlet subjected to the changing law of timing effects
and found that there exists an optimal position that can both increase the pump head
and efficiency and reduce the intensity of pressure pulsation. Lai et al. [2], in order to
investigate the timing effects of centrifugal pumps, based on the k-omega shear stress
transport model for 3D numerical calculations, found that the optimum diffuser installation
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angle is 25 degrees when the total pressure loss and radial force acting on the impeller
are the smallest. Tan et al. [3] investigated the timing effect of the impeller in a five-stage
centrifugal pump and the superposition effect between the pump stages induced by the
timing effect and found that the head and efficiency of the pump did not vary much, while
the vibration frequency and amplitude varied considerably. Gu et al. [4] conducted an
investigation of the vane diffuser relative to the circumference of the circular housing
at different timing positions, and based on the minimum entropy generation theory of
computational fluid dynamics, the flow loss visualization method was used to describe
the losses caused by the timing positions. Yuan Shouqi et al. [5] used the IS50-32-160 low
specific speed pump as a research model and adopted an optimization method combining
a Kriging approximation model and a genetic algorithm to optimize the main structural
parameters of the impeller, which not only improved the efficiency but also reduced the
intensity of the pressure pulsation of the pump. Lei Mingchuan [6] combined artificial
networks with genetic algorithms to design a multi-objective optimization method for
the impeller of a mixed-flow pump, which improved the external characteristics of the
pump and effectively curbed the humping phenomenon of the external characteristics
curve. Wang Chunlin et al. [7] took a high specific speed pump as the research object and
combined a neural network and optimization algorithm to optimize the head and efficiency
of the pump and improve its hydraulic performance. Zhao Weiguo et al. [8] optimized
the efficiency of a centrifugal pump under standard conditions based on a neural network
and genetic algorithm. The results showed that the efficiency of the centrifugal pump
under standard conditions increased by 4.41 percentage points and the head increased by
2.63 m. Reasonable design improvements were also made to the worm casing to address
the problem of insignificant improvement in the remaining operating conditions. Liao
Fu et al. [9] used the pump head, efficiency, and cavitation margin as the optimization
objectives and applied genetic algorithms to solve them, making improvements to the
previous design methods for low specific speed centrifugal pumps while also providing a
reference basis for subsequent designs. Jiang Wenzhi et al. [10] combined the BP neural
network genetic algorithm to optimize the centrifugal pump and improve the hydraulic
performance of the pump. Wang Chunlin et al. [11] applied a neural network and the
NSGA-II genetic algorithm to slurry pumps to achieve the optimal design of efficiency as
well as the high efficiency zone of this pump. Tao Ran et al. [12] optimized the vane inlet
and outlet angles based on a genetic algorithm with efficiency as the optimization objective,
which led to a 4.5 percentage point increase in pump efficiency and a significant expansion
of the high efficiency zone, as well as a 0.83 m increase in the pump head. Li Qimin
et al. [13] optimized a fuel pump using a genetic algorithm combined with an adaptive
weighting method, with impeller structural parameters as the optimization variables and
volumetric efficiency and outlet flow rate as the optimization objectives, which resulted in
a 3.9 percentage point increase in outlet flow rate and a 0.53 percentage point increase in
volumetric efficiency. Wang Chunlin et al. [14] took a double-vane sewage pump as the
research object and used a combination of neural network and particle swarm optimization
to optimize the design, and after experimental verification, the optimized pump head
efficiency was improved to some extent. Dong Min et al. [15] took a model of a low specific
speed pump as the research object, with the stability of the operating process, anti-cavitation
performance, and energy loss as the optimization targets, and used a genetic algorithm
to calculate the solution. After optimization, the pump pressure pulsation amplitude
was reduced, and the stability improved to some extent. Ye Daoxing et al. [16] used a
cyclone pump as the research object, with the width of the non-vane cavity, the number
of vanes, and the vane outlet width as the optimization variables and the efficiency and
vane surface shear stress as the optimization objectives. They used a genetic algorithm
and Kriging model to calculate the solution, which improved efficiency and reduced the
average vane shear stress. Tong Zheming et al. [17] selected three optimization variables,
namely impeller outlet width, diameter, and angle, and combined the Latin hypercube
sampling method, BP neural network, and NSGA-III algorithm to optimize a model of a
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low specific speed centrifugal pump with pump head and efficiency as the optimization
objectives. Jiang Bingxiao et al. [18] optimized the geometric parameters of the vane profile
of a centrifugal pump based on an intelligent algorithm, and the numerical simulation
and experimental values of pump head efficiency were improved after optimization. Hao
Zongrui et al. [19] studied a water jet propulsion pump with lift resistance ratio and
pressure as the optimization objectives and carried out optimization based on an improved
particle swarm optimization algorithm, after which the lift resistance ratio was improved by
14.7 percentage points and the minimum pressure was increased by 20%. Wang Mengcheng
et al. [20] took a mixed-flow pump as the optimization object, selected the vane load
as the optimization variable, 0.7 times the standard operating condition to 1.1 times the
standard operating condition high efficiency zone as the optimization objective, and used
the Kriging approximation model and NSGA-II algorithm for optimization. However, most
of the optimization is carried out by a genetic algorithm, and there is less research on the
application of neural network prediction models combined with multi-objective particle
swarm optimization to the optimal design of submersible well pumps.

The research and analysis of pump performance optimization mainly include the
following: studying the impact of a single factor on pump performance; optimizing the
theoretical formula of pump performance; applying experimental design methods to opti-
mize pump performance; combining experimental design and an approximate prediction
model [21]; and using intelligent optimization algorithms to directly search for the opti-
mal computational solution. The experimental design method can analyze the degree of
influence of the optimization parameters on the optimization target [22]; the approximate
prediction model can reflect the relationship between the optimization parameters and
the optimization target with high accuracy, mainly using an artificial neural network, the
response surface method [23], the Kriging model, etc.; and the intelligent optimization
algorithm can seek the optimal solution with high accuracy and efficiency. Based on the
above analysis methods, this paper takes the 200QJ20 submersible well pump as the re-
search object, establishes the performance prediction model of the submersible well pump
through the RBF neural network, and uses the multi-objective particle swarm optimization
algorithm to obtain the Pareto optimal solution set. The external characteristic data of
the initial model is used as the boundary to find the best solution for the pump head
and efficiency. The improvement of this research method provides a basis and reference
for improving the hydraulic performance of the submersible well pump, improving its
efficiency, and developing new pump models.

2. Numerical Simulation
2.1. Governing Equation

Regardless of the complexity of the fluid flow in the pump, the basic laws of physics
must be obeyed, of which the laws of conservation of mass, momentum, and energy are
the three most basic conservation laws in fluid flow problems.

(1) The continuity equation

The continuity equation, also called the mass conservation equation, has the following
specific expression:

∂ρ

∂t
+

∂(ρui)

∂t
= 0 (1)

where ui is the fluid velocity component and ρ is the fluid density (kg/m3).
For steady flow, the above equation can be replaced by:

∂(ρui)

∂t
= 0 (2)

For incompressible fluids, the equation can be changed to:

∂ui
∂xi

= 0 (3)
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where xi is the coordinate component and i = 1, 2, 3.

(2) Momentum equation

The momentum equation, namely the N-S equation, for incompressible viscous fluids
has a specific expression as follows:

∂ui
∂t

+ uj
∂ui
∂xj

= Fi −
1
ρ

∂P
∂xi

+ υ
∂2ui

∂xi∂xj
(4)

where uj is the fluid velocity component, xj is the coordinate component, j = 1, 2, 3, Fi is the
mass force (N), P is the pressure (Pa), ρ is the fluid density (kg/m3), and υ is the kinematic
viscosity coefficient.

(3) Energy conservation equation

The law of conservation of energy states that the total amount of energy always remains
the same, regardless of how it changes during the process of transfer and conversion. For
incompressible fluids, the specific expression is as follows:

D
Dt

(
1
2

uiui) = uiFxi +
1
ρ

∂(mjiui)

∂xj
− 1

ρ

∂(pui)

∂xj
+

p
ρ

∂ui
∂xj
−

mij

ρ

∂ui
∂xj

(5)

where mij is the viscous stress tensor.
For a fluid microcluster per unit volume, the specific expression for the increment of

internal energy per unit time is:

De
Dt

= q− 1
ρ

∂qi
∂xi

+
Φ
ρ
− p

υ

∂ui
∂xi

(6)

where e is the internal energy per unit mass, q is the heat gained per unit of volume, qi is
the thermal energy per unit of time volume, and Φ is the dissipation function, which can
be expressed as Φ = mji

∂ui
∂xj

.
From this, the energy equation for an incompressible viscous fluid is given by:

D
Dt

(e +
1
2

uiui) = Q + uiFxi −
1
ρ

∂qi
∂xi

+
1
ρ

∂(mjiui)

∂xj
− 1

ρ

∂(pui)

∂xj
(7)

2.2. The Selection of the Realizable k-ε

Turbulence models are commonly used to describe the changing laws of fluid flow
within a submersible well pump and can be divided into Reynolds stress models and eddy
viscosity models. The eddy viscosity model can be subdivided into a zero-equation model,
a one-equation model, and a two-equation model. The two-equation models are more
mature and well developed, and the common two-equation models include the standard
k-ε model, the RNG k-ε model, and the Realizable k-ε model. As the Realizable k-ε model
satisfies the constraints on Reynolds stress, its advantage is its ability to predict planar and
circular jet diffusion effects more accurately. Moreover, it also performs well for rotating
flows, boundary layer flows with strong inverse pressure gradients, flow separation, and
secondary flows. Therefore, the Realizable k-ε model is used in this paper for simulation
calculations. Its specific expression is shown in the following equation:

∂(ρk)
∂t

+
∂(ρkµi)

∂xi
=

∂

∂xj
[(µ +

µt

στ
)

∂k
∂xj

] + Gk − ρε (8)

µt and Cµ can be calculated using the following formula:

µt = ρCµ
k2

ε
(9)
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Cµ =
1

A0 + AsU∗k/ε
(10)

where A0 = 4.0, As =
√

6 cos φ, φ = 1
3 cos−1(

√
6W), W =

EijEijkEkj√
(EijEij)

, Eij = 1
2 (

∂µi
∂xj

+
∂µj
∂xj

),

U∗ =
√

EijEij + ΩijΩij, Ωij = Ωij − 2εijkωk, and Ωij = Ωij − εijkωk.

∂(ρε)

∂t
+

∂(ρεµi)

∂xi
=

∂

∂xj
[(µ +

µt

σε
)

∂ε

∂xj
] + ρC1EεGk − ρC2

ε2

k +
√

υε
(11)

where σk = 1.0, στ = 1.2, C2 = 1.9, C1 = max(0.43, η
η+5 ), η = 2(EijEij)

1/2 k
ε , and

Eij =
1
2 (

∂µi
∂xj

+
∂µj
∂xi

).

2.3. Geometric Model

The basic hydraulic design parameters of a multi-stage 200QJ20 submersible well
pump are: rated flow Qd = 20 m3/h; single-stage head Hs = 13.5 m; rotational speed
n = 2850 r/min; specific rotation ns = 110.09. The number of impeller blades on the original
model pump is Z1 = 6. The six blades are evenly distributed in the direction of the suction
port; the blades rotate counterclockwise; and the surface of the flow channel is smooth.
Blade inlet thickness is 2 mm, and blade outlet thickness is 2.5 mm. The original pump
space guide vane number is Z2 = 5, and the blade is a twisted vane. Based on CFturbo2020
software for submersible well pump inlet and outlet sections, impellers, and space guide
vane components, establish a fluid calculation domain model. The length of the inlet and
outlet sections was set to 4 times the inlet and outlet diameters in order to allow the fluid to
develop fully. The inlet of the first stage of the multi-stage submersible pump for wells uses
non-pre-rotating flow, and the inlet after the second stage uses rotating flow, so the internal
flow pattern of the second stage can represent the subsequent flow patterns. Considering
the computer numerical simulation solution time, a two-stage submersible pump model is
established in the paper for analysis. The computational domain model obtained from the
assembly is shown in Figure 1.
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2.4. Meshing and Irrelevance Analysis

Mesh delineation is the basis for subsequent simulation calculations, and the quality
of the mesh will have a direct impact on the simulation results. Unstructured meshes are
more randomly distributed, simple and fast to generate, flexible, and can be adapted to a
variety of complex geometries, but there is also the problem of poor quality local meshing,
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resulting in poor overall mesh quality, large quantities, and a long computational solution
time. The structured mesh requires a block topology of the model, which will lead to a more
complex and time-consuming mesh division, but considering its regular node distribution,
it can better save computational solution time and achieve convergence accuracy faster.
Therefore, this paper adopts the structured meshing method for meshing. Figures 2 and 3
show the meshing results.
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In order to reduce the influence of the number of grids on the accuracy of the calcu-
lation, a grid-independent analysis was carried out, as shown in Table 1. The head and
efficiency of Program2 are taken as unit 1, and the head and efficiency of all other Programs
are compared with Program2. When the number of grids in the full flow channel reaches
4 million, the head and efficiency tend to stabilize, and the relative head error between
Program 3 and Program 4 is 0.25% and the relative efficiency error is 0.17%. In view of
the computer configuration and calculation time, the division of Program 3 was finally
determined as the standard for dividing all models. The following describes the different
quality metrics of this model: The average aspect ratio refers to the average of the aspect
ratios of all the grid cells in the whole model. In this model, the mean aspect ratio is 1.91,
which indicates that most of the grid cells have relatively close aspect ratios and that the
overall shape of the grid is more balanced. The mean warping factor indicates the degree
of deformation of the shape of the grid cells. In this model, the average warping factor is
0.002, which indicates that most of the grid cells are relatively well shaped with no obvious
deformation or distortion. The maximum top angle, which refers to the largest angle in the
grid cell, ranges from 60◦ to 130◦. This indicates that the grid cells are reasonably shaped,
with no angles that are too sharp or too flat. The tilt, which is used to assess the degree of
deformation of the grid cells, ranges from 0 to 0.75. More than 80% of the grid cells have
tilts less than 0.5, which indicates that most of the cells are relatively stable and do not
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deform excessively. The orthogonality coefficient is used to measure the perpendicularity
of the grid lines to their neighbors and has an average value of 0.89. The fact that more than
83% of the cells have orthogonality coefficients greater than 0.75 indicates that the majority
of the cells have good orthogonality, and the grid lines are relatively perpendicular. Taken
together, the division of Program 3 seems to perform better in most of the quality indicators
when computer configuration and computation time are considered and can be used as a
criterion for dividing all models.

Table 1. Grid independence analysis.

Program Number Number of Full
Runner Grids (pc) Relative Head Relative Efficiency

1 1,103,596 1.0152 1.0123
2 2,563,487 1.0000 1.0000
3 4,016,349 0.9956 0.9963
4 5,538,964 0.9931 0.9946

2.5. Resolving Schemes

The numerical calculations are based on ANSYS CFX18.0, and the settings are made
in the CFX pre-processing module. The settings for the steady calculation are as follows:
impeller speed is set to 2850 r/min, inlet is set to one atmosphere, outlet is mass flow,
flow rate is 20 L/min, fluid density is 998.2 kg/m3, dynamic viscosity is 1.003 × 10−3

Pa·s, interaction surface is set to “Frozen Rotor”, overall turbulence intensity is 5%, and
convergence accuracy is 10−4. For transient calculations, the interaction surface is changed
to “Transient Rotor Stator” and the total time is set to 0.10526316 s with a time step of
0.0002339 s (one step every 4◦), and the results are output every five time steps in order to
stabilize the transient calculation. Once completed, the results of the last cycle were used
for data analysis.

2.6. Monitoring Point Setup

In order to analyze the pattern of pressure pulsation changes, monitoring points Y1
and Y2 are arranged in the secondary impeller runners near the central position of the inlet
and outlet area, and monitoring points Y3 and Y4 are arranged in the secondary space
guide runners near the central position of the inlet and outlet area, as shown in Figure 4.
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To make the calculation more practical and general, the dimensionless pressure pulsa-
tion coefficient CP is introduced and calculated as follows:

CP =
p− p
1
2 ρu22

(12)
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where p indicates the pressure value at the position of the monitoring point at a certain
moment, p indicates the average value of the pressure at the monitoring point during a
cycle, ρ indicates the density of the medium conveyed by the pump, and u2 indicates the
impeller outlet circumferential velocity.

3. Comparison of Theoretical Simulation and Performance Tests
3.1. Test Platform Construction

In order to verify the reasonableness and accuracy of the model and simulation
parameter settings, the submersible well pump performance experimental test platform was
built, and the test principle is shown in Figure 5. It mainly includes the CYB type intelligent
pressure transmitter, the LDTH type DN400 electromagnetic flow meter (accuracy ± 0.3%),
the ZDLM type electric control valve, and the 381LS type electronic electric actuator.
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Pump performance test schematic diagram. (1) Computer; (2) data acquisition in-
strument; (3) distribution cabinet; (4) DN400 electromagnetic flow meter; (5) ZDLM type
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electric motor.

3.2. Comparative Analysis of Theoretical Simulations and Performance Experiments

Usually, in fluid simulation, the selection of working conditions near the rated flow
rate for simulation can improve the calculation accuracy and stability of the results. The
common practice is to select a range of rated flow, which is usually simulated between 0.6
and 1.4 times the standard condition. Figure 6 shows the comparison between the numerical
simulation’s external characteristics and the experimental external characteristics curve.
Since the model is a two-stage model and the experimental model is a six-stage model, the
two-stage data obtained from the simulation needs to be converted to a six-stage model.
Under standard working conditions, the experimental test head and efficiency are basically
consistent with the results of the numerical simulation. The simulated head is slightly
lower than the experimental head, and the maximum error does not exceed 3%. At the
same time, the simulated efficiency is slightly higher than the experimental efficiency, and
the maximum error does not exceed 3.4%. This shows that the simulation results can
completely replace the experimental test results and can predict the actual performance
of the submersible well pump, which provides a basis for further simulation. The main
reasons for the errors between simulation and experimental tests are that one is influenced
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by the configuration of the computer and amount of meshing, and the other is influenced
by the simplification of the simulation model.
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4. Multi-Objective Optimization
4.1. Significance Analysis of Influencing Factors

There are many geometric parameters affecting the hydraulic performance of sub-
mersible pumps for wells, including the import and export placement angle, import and
export diameter, outlet width, vane wrap angle, timing position, and other influencing
factors. The impeller inlet and outlet diameters will have an impact on the assembly of
the space guide vane and the radial dimensions of the submersible well pump, so they
are not considered target parameters for this design optimization. The Plackett-Burman
experimental design module of Design Expert 12.0 software was used to perform signifi-
cance analysis on the impeller inlet and outlet placement angles, outlet width, blade wrap
angle, and timing position. A multiple of 0.8 of the original model variable parameters was
taken as the low level (−1), and a multiple of 1.2 of the original model variable parameters
was taken as the high level (+1). For the temporal position, no rotation of the secondary
impeller relative to the first impeller (i.e., 0◦ rotation of the secondary impeller) was taken
as the low level (−1), and one-half rotation of the secondary impeller by one-half of the
blade angle (i.e., 30◦ rotation of the secondary impeller) was taken as the high level (+1). Six
sets of dummy factors, X6, X7, X8, X9, X10, and X11, were added as error analysis. Table 2
shows the names and level settings of the influencing factors. Twelve sets of tests were
required, and the distribution of the high- and low-level arrangements of the influencing
factors is shown in Table 3.

Table 2. Influencing factors and levels.

Variables Parameter Name Unit Low Level High Level

X1 Imported placement angle β1 /◦ 17 26
X2 Exit placement angle β2 /◦ 21 32
X3 Outlet width b2 /mm 8 12
X4 Blade wrap angle ϕ /◦ 77 116
X5 Impeller timing position /◦ 0 30

X6~X11 Virtual factors — — —
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Table 3. Plackett-Burman experimental design permutation distribution.

Serial
Number

Imported
Placement
Angle β1

Exit
Placement
Angle β2

Outlet
Width b2

Blade Wrap
Angle ϕ

Impeller
Timing
Position

1 1 −1 1 1 1
2 −1 1 1 −1 1
3 1 −1 −1 −1 1
4 −1 −1 −1 −1 −1
5 −1 −1 1 −1 1
6 −1 −1 −1 1 −1
7 1 1 −1 1 1
8 1 −1 1 1 −1
9 −1 1 −1 1 1

10 −1 1 1 1 −1
11 1 1 1 −1 −1
12 1 1 −1 −1 −1

According to the Plackett-Burman experimental design, the distribution order of the
high and low levels of each influencing factor was arranged, and the specific values of
the high and low levels corresponding to each influencing factor were substituted into
Table 3. The 12 sets of structural parameters and a model of the 12 sets of submersible well
pumps were created in CFturbo software. The model was imported into ANSYS19.2 CFX
software for 12 sets of simulations, and the corresponding head and efficiency for each set
of solutions were obtained as shown in Table 4.

Table 4. Plackett-Burman experimental design and numerical simulation results.

Serial
Number

Imported
Placement
Angle β1

Exit Placement
Angle β2

Outlet
Width b2

Blade Wrap
Angle ϕ

Impeller Timing
Position Lift Efficiency

1 26 21 12 116 30 24.6248 77.9006
2 17 32 12 77 30 26.8351 68.1091
3 26 21 8 77 30 22.3482 75.5079
4 17 21 8 77 0 22.7505 75.1389
5 17 21 12 77 30 25.7977 69.4718
6 17 21 8 116 0 20.1328 78.2832
7 26 32 8 116 30 20.9667 77.3769
8 26 21 12 116 0 24.4402 77.9071
9 17 32 8 116 30 21.5795 76.9954

10 17 32 12 116 0 25.5931 75.923
11 26 32 12 77 0 27.0253 68.0776
12 26 32 8 77 0 23.176 74.292

Table 5 demonstrates the degree of influence of the main geometric parameters on the
head. As can be seen from the table, the percentages of the sum of squares of the outlet
settling angle β2, outlet width b2, and blade wrap angle ϕ are 2.15%, 45.48%, and 9.36%,
respectively, much greater than the percentages of the sum of squares of the inlet settling
angle β1 and impeller timing position of 0.001% and 0.0777%, respectively. A positive
coefficient assessment indicates that this influence is positively correlated with the results,
while a negative coefficient assessment indicates that this influence is negatively correlated
with the results. A higher coefficient assessment indicates that the factor has a greater
influence on the results, while a lower coefficient assessment indicates that the factor has
a smaller influence on the results. The positive coefficients for outlet angle β2 and outlet
width b2 indicate a positive effect on the pump head, with outlet width b2 having a greater
effect on the pump head than outlet angle β2. The negative coefficients for inlet angle β1,
blade wrap angle ϕ, and impeller timing position indicate a negative effect on the pump
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head, with blade wrap angle ϕ having the greatest effect on the pump head, followed by
impeller timing position and inlet angle β1 having the least effect. The standard error of
each influencing factor is 0.1078. The p-value represents the possibility that each factor
has no influence on the head, so the smaller the p-value, the more significant the influence.
When p < 0.05, it was a significant influence factor. From the p-value of each factor, it can be
seen that the outlet placement angle β2, outlet width b2, and blade wrap angle ϕ are the
significant influencing factors of the head.

Table 5. Significant analysis of influencing factors for the pump head.

Factors Sum of Squares
(%)

Coefficient
Assessment

Standard
Error p-Value

Imported placement angle β1 0.0010 −0.0090 0.1078 0.9365
Exit placement angle β2 2.15 0.4235 0.1078 0.0077

Outlet width b2 45.48 1.95 0.1078 <0.0001
Blade wrap angle ϕ 9.36 −0.8830 0.1078 0.0002

Impeller timing position 0.0777 −0.0805 0.1078 0.4834

Table 6 demonstrates the degree of influence of the main geometrical parameters on
efficiency. As can be seen from the table, the percentages of the sum of squares of the exit
resting angle β2, exit width b2, and blade wrap angle ϕ are 15.04%, 34.02%, and 95.14%,
respectively, much greater than the percentages of the sum of squares of the inlet resting
angle β1 and impeller timing position of 4.25% and 1.51%, respectively. The coefficients
of inlet angle β1 and blade cladding angle ϕ are positive, which means that they have a
positive effect on efficiency, i.e., as the inlet angle β1 and blade cladding angle ϕ increase
or decrease, the change in efficiency tends to rise or fall, and the degree of influence of
blade cladding angle ϕ on efficiency is greater than that of inlet angle β1. The coefficients
of outlet angle β2, outlet width b2 and impeller timing position are negative, which means
that they have a negative effect on efficiency, i.e., as the outlet angle β2, outlet width b2,
and impeller timing position increase or decrease, the change in efficiency tends to rise or
fall. As the exit angle β2, exit width b2 and impeller timing position increase or decrease,
the change in efficiency tends to decrease or increase. The exit width b2 has the greatest
influence on efficiency, followed by the exit angle β2, and the impeller timing position is
the smallest. The standard error of each influencing factor is 0.4218, and the p-value of each
factor shows that the exit angle β2, exit width b2, and blade wrap angle ϕ are the significant
influencing factors of the head.

Table 6. Significant analysis of the factors affecting efficiency.

Factors Sum of Squares
(%)

Coefficient
Assessment

Standard
Error p-Value

Imported placement angle β1 4.25 0.5951 0.4218 0.2080
Exit placement angle β2 15.04 −1.12 0.4218 0.0378

Outlet width b2 34.02 −1.68 0.4218 0.0072
Blade wrap angle ϕ 95.14 2.82 0.4218 0.0005

Impeller timing position 1.51 −0.3550 0.4218 0.4322

From the results of the significance analysis of the influencing factors of the pump
head and efficiency, it was determined that the outlet placement angle β2, outlet width
b2, and blade wrap angle ϕ were the optimization parameters. According to the specific
situation of this research model, the optimization parameters are determined as follows:
17 ≤ β2 ≤ 35; 7.8 ≤ b2 ≤ 15; 58 ≤ ϕ ≤ 130.

4.2. Hydraulic Performance Prediction Model

The approximate prediction model uses a small amount of sample data to establish an
approximate function expression by interpolation or fitting mathematical methods, so as
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to carry out follow-up work such as prediction or optimization. The use of approximate
predictive model methods can reduce the number of trials and improve the efficiency of
optimization. Common approximate models include artificial neural networks, response
surface methods, and Kriging models, among which artificial neural networks are widely
used in various prediction-type problems with complex relationships because of their
ability to adapt to complex non-linear relationships [24]. Therefore, in this paper, an
artificial neural network is used to establish a hydraulic performance prediction model
for submersible well pumps. As the research progresses, more than forty types of neural
network models have been developed, among which BP neural networks and RBF neural
networks are widely welcomed by researchers in various fields.

BP neural networks are relatively simple in structure, but they can easily be affected
by local optimal solutions, and the learning efficiency of the network is fixed, which leads
to a large amount of time required to reach convergence criteria. RBF neural networks
have a strong generalization capability, good global approximation capability, are relatively
unaffected by local optimal solutions, and have an efficient and simple structural form as
well as the best approximation performance, so the training speed is faster [25]. Considering
the above analysis, the RBF neural network is therefore used to create the prediction model.

In this paper, a three-factor, 37-level uniform experimental design was used [26]. Based
on ANSYS CFX, 37 groups of models were simulated, and the results were used as training
samples. According to the uniform test design table and its use table, the corresponding
structural parameters are calculated according to the value range of the outlet placement
angle β2, the outlet width b2, and the blade wrap angle ϕ, and then the corresponding head
and efficiency are calculated based on the corresponding structural parameters. The results
are shown in Table 7.

Table 7. Numerical simulation results of external characteristics.

Sample Serial
Number

Exit Placement
Angle β2

Outlet
Width b2

Blade Wrap
Angle ϕ

Lift Efficiency

1 17 9.8 102 22.8017 78.5818
2 17.5 12 74 26.1444 69.28
3 18 14.2 120 26.4369 75.7106
4 18.5 9 92 22.6546 77.6523
5 19 11.2 64 25.2747 66.4328
6 19.5 13.4 110 26.2874 75.0112
7 20 8.2 82 22.5566 75.7508
8 20.5 10.4 128 22.1592 78.9182
9 21 12.6 100 25.939 74.0439
10 21.5 14.8 72 28.869 65.9174
11 22 9.6 118 22.0847 78.8892
12 22.5 11.8 90 25.7813 72.795
13 23 14 62 28.5728 63.9778
14 23.5 8.8 108 22.055 78.5192
15 24 11 80 25.2196 71.7224
16 24.5 13.2 126 25.5187 76.7383
17 25 8 98 22.0859 77.8786
18 25.5 10.2 70 24.7811 68.9254
19 26 12.4 116 25.5758 76.5512
20 26.5 14.6 88 28.426 68.8344
21 27 9.4 60 24.4149 66.6407
22 27.5 11.6 106 25.3771 75.8033
23 28 13.8 78 28.1632 67.3917
24 28.5 8.6 124 21.1633 77.6949
25 29 10.8 96 24.7257 75.1141
26 29.5 13 68 27.7594 66.0542
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Table 7. Cont.

Sample Serial
Number

Exit Placement
Angle β2

Outlet
Width b2

Blade Wrap
Angle ϕ

Lift Efficiency

27 30 7.8 114 20.9093 77.4695
28 30.5 10 86 24.6849 73.2271
29 31 12.2 58 27.6284 63.4781
30 31.5 14.4 104 27.8102 71.8061
31 32 9.2 76 24.5471 72.6405
32 32.5 11.4 122 24.3591 76.2711
33 33 13.6 94 27.5183 70.6124
34 33.5 8.4 66 24.0505 70.2596
35 34 10.6 112 24.1895 76.5615
36 34.5 12.8 84 27.1259 68.3395
37 35 15 130 27.3392 74.5881

In this study, MATLAB2018b software was used to write and simulate the RBF neural
network program, using the newrb function to establish the network topology in the form
shown in the following equation:

net = newrb(P, T, GOAL, SPREAD, MN, DF) (13)

where P is the input matrix of order R × Q; T is the output matrix of order S × Q; GOAL is
the mean square error target (default = 0); SPREAD is the expansion rate of the radial basis
function (default = 1.0); MN is the maximum number of neurons (default Q); and DF is the
number of neurons added between adjacent displays (default = 25). In this paper, GOAL is
set to 0.001, SPREAD is set to 2, and all other default values are used. The training iteration
process is shown in Figure 7. From the diagram, it can be seen that after the iteration to the
eighth step, the error of 0.001 has been met and the training is complete.
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To test the accuracy of the RBF neural network predictions, the sample data was re-
entered into the network as test data for prediction, and the corresponding predicted head
and predicted efficiency were obtained as shown in Figure 8. As can be seen from the graph,
the difference between the CFX calculated values and the RBF neural network predictions
is small, with a maximum error of 1.5% for the pump head and 1.9% for efficiency.
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Three sets of structural parameters are randomly generated to predict and model
simulation calculations, respectively, and then error analysis is carried out. The results
are shown in Table 8. The maximum error for the pump head is 1.38%, and the maximum
error for efficiency is 1.43%, which is within the permissible range of engineering, so the
RBF neural network prediction model can be considered feasible and can be used as an
adaptation function model for the next multi-objective particle swarm optimization.

Table 8. Error analysis of numerical calculation results and prediction model results.

Serial
Number

Exit
Placement
Angle β2

Outlet
Width

b2

Blade
Wrap

Angle ϕ

Lift
Error

Efficiency
ErrorCalculated

Value
Predicted

Value
Calculated

Value
Predicted

Value

1 17 10 102 23.3586 23.0377 −1.38% 76.9654 77.7294 0.99%
2 27.5 12.2 72 26.6137 26.8979 1.07% 66.8634 67.6188 1.13%
3 23 11 98 24.7361 24.601 −0.55% 74.3373 75.3969 1.43%

4.3. Multi-Objective Particle Swarm Optimization Algorithm Optimization

The particle swarm optimization continuously adjusts the particles’ own velocity
towards the extreme value during the computational solution process without setting
empirical parameters as in the genetic algorithm, and the better particle positions in
the swarm algorithm are recorded. Compared with genetic algorithms, particle swarm
optimization can converge faster in most cases [27]. Therefore, particle swarm optimization
is chosen to solve the neural network prediction fitness function model in this paper.

The particle swarm optimization has two core formulas: the velocity formula and the
position formula, as shown in the following equation:

Vd
i = ωvd

i + c1r1(pd
i xd

i ) + c2r2(pd
g − xd

i ) (14)

Xd
i = xd

i + vd
i (15)

where Xi = (x1
i ,x2

i ,. . .,xD
i ) is a solution in D-dimensional space; Pi = (p1

i ,p2
i ,. . .,pD

i ) is the posi-
tion nearest to the optimum among all positions; Pg = (p1

g,p2
g,. . .,pD

g ) is the position nearest
to the optimum among all positions through which all particles pass; Vi = (v1

i ,v2
i ,. . .,vD

i ) is
the velocity of the particle; ω is the inertia weight; c1, c2 is the learning factor; and r1, r2 is
any random number between 0 and 1.
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In this paper, the multi-objective particle swarm optimization is used, based on the
MATLAB software platform for programming simulation, and the sample results of the
RBF neural network training are used as the fitness model for this optimization, with
parameters set as follows: the number of particles is 100, the number of particle reserves is
100, the inertia weight is 0.7298, and both learning factors are 1.49445. After 500 iteration
steps, the results are shown in Figure 9. It can be seen from the figure that the horizontal
coordinate efficiency and the vertical coordinate lift have a mutually exclusive relationship,
and the 100 Pareto optimal solutions obtained constitute a relatively smooth curve. The
optimal solutions are also more evenly distributed, so the solution can be considered correct
and reliable.
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The edge points on both sides of the Pareto front are defined as the head optimum
and the efficiency optimum resulting from the solution. The initial model is simulated
by the CFD method. The optimal head individual is the model at the optimal head point
predicted by the MOPSO algorithm. The optimal efficiency individual is the model at the
optimum efficiency point as predicted by the MOPSO algorithm.

Table 9 shows the comparison of the hydraulic performance of the submersible well
pump before and after optimization. It can be seen from Table 9 that the head of the optimal
individual is 5.1344 m higher than the initial model, but the efficiency is reduced by 14.2099
percentage points. The efficiency of the optimal individual is 4.5793 m lower than the initial
model, but the efficiency is increased by 5.5803 percentage points.

Table 9. Comparison of external characteristics before and after optimization.

Models Lift (m) Efficiency (%)

Initial model 24.2396 75.3835
Individuals with optimum head 29.3740 61.1736

Optimal efficiency individual 19.6603 80.9638

If the head optimum and the efficiency optimum are chosen as the final optimization
results, although there is an increase in the pump head and efficiency, there is also a
significant decrease in efficiency and head. Therefore, two solutions are to be found on the
Pareto front, denoted as head-optimal and efficiency-optimal, such that they each satisfy:
(1) Under the condition that the efficiency is not reduced, the head is improved to the
greatest extent; (2) The efficiency is improved to the greatest extent without reducing the
head. It is easy to see that the two points are the horizontal and vertical coordinates of the
initial model as indicators, and the intersection of these two lines with the Pareto front
curve is the intersection of the vertical and horizontal lines, respectively. This is shown in
Figure 10 below.
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The Pareto solution at the boundary point within the right-angle intersection is defined
as the better point. The higher-head individual is modeled by the structural parameters at
the optimal head point and calculated by the CFD method of simulation. This individual
is the model with the best head point predicted by the MOPSO algorithm. The higher-
efficiency individual is modeled by the structural parameters at the optimal efficiency point
and simulated by the CFD method. This individual is the model with the best efficiency
point predicted by the MOPSO algorithm.

The structural parameters corresponding to the higher head and higher efficiency are
modeled and simulated by CFD calculations according to the obtained higher head and
higher efficiency, and the structural parameters are shown in Table 10. From the table, it
can be seen that whether it is to increase the head or improve the efficiency, it is necessary
to reduce the outlet angle and increase the outlet width and blade wrap angle.

Table 10. Comparison of structural parameters before and after optimization.

Structural Parameters Exit Placement
Angle β2

Outlet Width b2 Blade Wrap Angle ϕ

Initial model 27 10 97
Individuals with better head 17 15 122

Individuals with better
efficiency 17 13 130

The individuals with the best head or best efficiency were compared with the head
and efficiency of the initial model, as shown in Table 11. From the table, it can be seen that
the selected individuals with the best head or best efficiency satisfy the maximum increase
in head without a decrease in efficiency and the maximum increase in efficiency without a
decrease in head, respectively. The individual with the best head has an increase of 2.653
m compared to the initial model head and a decrease of about 0.6 percentage points in
efficiency, which is a small and acceptable decrease in efficiency. The individual with the
best efficiency has an increase of about 0.6 m compared to the initial model head and an
increase of about 2.3 percentage points in efficiency.

Table 11. Comparison of external characteristics before and after optimization.

Models Lift (m) Efficiency (%)

Initial model 24.2396 75.3835
Individuals with better head 26.8926 74.7845

Individuals with better efficiency 24.8755 77.6431
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5. Analysis of Results
5.1. External Characterization

The five working conditions of the initial model, the individual with a better head and
the individual with better efficiency from 0.6 times to 1.4 times of the standard condition,
are simulated, respectively, and the external characteristics before and after optimization
are shown in Figure 11. It can be seen from the diagram that under standard working
conditions, the head of the individual with a better head reaches about 26.9 m. At low flow
rates or at standard flow rates, the heads of the higher-efficiency individuals are higher than
those of the initial model, but at 1.2 times the standard operating conditions, the heads of the
higher-efficiency individuals are similar to those of the initial model. The efficiency of the
better individual was improved at the low flow rate, the standard operating conditions, and
the 1.2 times standard operating conditions, and only at the 1.4 times standard operating
conditions was the efficiency of the better individual slightly lower than the efficiency
of the higher-head individual, and at the standard operating conditions, the efficiency of
the better individual reached 77.64%. The efficiency of the higher-head individual was
comparable to the initial model at both low flow and standard conditions but was higher
than the initial model at high flow conditions. In order to further investigate the internal
causes of the external characteristics, a pressure and velocity flowline analysis is carried
out using the secondary impeller at standard operating conditions and the secondary space
guide vane as an example.
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5.2. Pressure Distribution Analysis

Figure 12 shows the pressure expansion distribution cloud diagram of the middle
section of the secondary impeller and the secondary space guide vane before and after
optimization. The pressure in the impeller inlet area is the lowest, with a minimum static
pressure of 188.4 KPa, and the pressure in the impeller flow path to the impeller outlet area
gradually increases due to the work performed by the impeller rotation and flows through
the space guide vane to reach a maximum static pressure of 394.3 KPa. In the impeller
inlet area, the low pressure area of the higher-head individual is reduced compared to
that of the initial model and is only distributed in a block shape near the blade inlet. The
impeller inlet area of the more efficient individual has a more uniform low-pressure area
than the initial model. Compared to the initial model, the impeller work capacity of the
higher-head and higher-efficiency individuals is significantly increased, and the pressure
gradient in the impeller flow path is more obvious, with the most obvious pressure gradient
distribution for the higher-head individual and the second most obvious for the higher-
efficiency individual. In the area of the spatial guide vane, the working surface of the guide
vane is facing the incoming media conveyed by the impeller, and the impulse causes a strip
of high pressure to be generated close to the working surface. The pressure distribution
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in the spatial guide vane area is more uniform for the higher-head and higher-efficiency
individuals than in the initial model, and the pressure values in the spatial guide vane
area are highest for the higher-head individual. The yellow area of the spatial guide vane
of the more efficient individual is significantly larger than the yellow area of the spatial
guide vane of the initial model, which is one of the fundamental reasons why the head of
the more efficient individual does not decrease. The yellow area of the spatial guide vane
of the more efficient individual is significantly more uniform than the yellow area of the
spatial guide vane of the initial model, which is also one of the fundamental reasons for the
increased efficiency of the more efficient individual.
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5.3. Velocity Flow Line Analysis

Figure 13 is the distribution map of the middle section velocity streamline of the sec-
ondary impeller and the secondary space guide vane before and after optimization. In the
impeller inlet area, the initial model, the higher-head individual, and the higher-efficiency
individual all show varying degrees of divergence, with the higher-head individual show-
ing the most severe divergence, followed by the initial model, and the higher-efficiency
individual showing a more uniform and smooth flow line. Each impeller blade has a small
part of the low speed zone close to the working surface, which results in a pressure differ-
ence between the impeller blade and the working surface at the corresponding position. In
the spatial guide vane area, the guide vane working surface diverts the impeller conveying
medium, the flow line is uniform, and the direction is consistent with the direction of
the guide vane blade. Due to the media off-flow, the back of the guide vane blade forms
a vortex area to varying degrees. Compared to the initial model, the vortex area of the
individual with the better head and the individual with the better efficiency is relatively
small, and the vortex area flow line is relatively more regular.
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Figure 13. Unfold diagram of the velocity streamline in the middle section of the secondary impeller
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5.4. Pressure Pulsation Analysis

Figure 14 shows the pressure pulsation characteristics at the Y1 monitoring point set at
the secondary impeller inlet for the three models before and after optimization. Figure 14a
shows the time domain distribution of the pressure pulsation at point Y1. Due to the strong
dynamic and static interference effects, five wave peaks appear in one cycle, which are equal
to the number of guide vanes. The peaks and troughs of the time domain characteristics of
the pressure pulsation for the three models before and after optimization correspond to
each other, which indicates that the optimization has not affected the phase values of the
pressure pulsation.
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Figure 14b shows the frequency domain distribution of pressure pulsation at the
Y1 monitoring point. The dominant frequency of pressure pulsation before and after
optimization is around the doubled guide vane frequency, so the dynamic interference
effect is dominant. After optimization, the magnitude of pressure pulsation at the inlet of
the secondary impeller is significantly lower for the individual with the better head and
the individual with the better efficiency. The pressure pulsation of the individual with the
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better head was reduced by 46.7% compared to the initial individual, and the pressure
pulsation of the individual with the better efficiency was reduced by 59.9% compared to
the initial individual.

Figure 15 shows the pressure pulsation characteristics at the Y2 monitoring point at
the outlet of the secondary impeller for the initial individual model before optimization,
the individual model with the better head after optimization, and the individual model
with the better efficiency after optimization. Compared with Figure 14a, there are still
five peaks in the individual models before and after optimization. The difference is that
the fluctuation of the pressure pulsation coefficient in Figure 15a is significantly larger,
which is the result of the work performed by the impeller rotation. The peak position of
the more efficient individual corresponds to the trough position of the initial individual,
while the phase of the higher-head individual is in between, which indicates that the phase
value of the pressure pulsation at the outlet of the secondary impeller has changed after
optimization.
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As can be seen from the frequency domain characteristics plot in Figure 15b, the
dominant frequency of pressure pulsation before and after optimization is still around
the doubled guide vane frequency, which indicates that dynamic interference is still the
dominant influencing factor. After optimization, the pressure pulsation amplitude of the
individual with the better head is reduced by 21.3% compared to the initial individual, and
the pressure pulsation amplitude of the individual with the better efficiency is reduced by
29% compared to the initial individual.

Figure 16 shows the pressure pulsation characteristics at monitoring point Y3 at the
inlet of the secondary space guide vane for the initial individual model before optimization,
the individual model with the better head after optimization, and the individual model
with the better efficiency after optimization. As can be seen in Figure 16a, the number of
pressure fluctuations at this point becomes six before and after optimization, the same as
the number of impeller blades, again due to strong dynamic interference effects. The peak
and trough positions of the more efficient individual correspond essentially to those of the
initial individual, with the phase of the higher-head individual remaining in between. This
indicates that the optimization has changed the phase value of the pressure pulsation at
the inlet of the secondary space guide vane.
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As can be seen in Figure 16b, the dominant frequency of pressure pulsation before
and after optimization is around the doubled impeller blade frequency. The optimized
individual with the better head has a 20.2% reduction in pressure pulsation amplitude
compared to the initial individual, and the individual with the better efficiency has a 30.2%
reduction in pressure pulsation amplitude compared to the initial individual.

Figure 17 shows the pressure pulsation characteristics at monitoring point Y4 at the
outlet of the secondary spatial guide vane for the three models before and after optimization.
In Figure 17a, the pressure pulsation amplitude at this monitoring point is significantly
reduced compared to the pressure pulsation amplitude at the inlet of the space guide vane,
which is due to the weakening of the pressure pulsation amplitude after the fluid is guided
through the space guide vane. The regularity of the pressure pulsation at this point is
significantly reduced by the effect of multiple dynamic interference couplings.
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As can be seen in Figure 17b, the pressure pulsation amplitude reaches a maximum
around doubling the shaft frequency, which is due to the fact that at the guide vane
outlet, the effect of dynamic interference is weaker and the influence of the shaft frequency
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dominates. The pressure pulsation amplitude of the optimized individual with the better
head increased by 75.9% compared to the initial individual, while the pressure pulsation
amplitude of the individual with the better efficiency decreased by 46.5% compared to
the initial individual. The increase in pressure pulsation for the higher-head individual
compared to the pre-optimized individual is probably due to the influence of multiple
dynamic and static interference couplings at the guide vane outlet and the higher static
pressure energy at the guide vane outlet for the higher-head individual, which is more
strongly influenced by the dynamic and static interference coupling. The pressure pulsation
coefficient for the higher-head individual is approximately 0.02, which is still relatively
small compared to the other locations and is within acceptable limits.

6. Conclusions

(1) Based on the Plackett-Burman experimental design in the professional experimental
design software Design Expert 12.0, it was determined that the impeller outlet settling
angle, outlet width, and blade wrap angle were significant influencing factors. The
difference between the predicted value of the RBF neural network and the calculated
value of the CFX was small, and the maximum error of its head was 1.5% and the
maximum error of its efficiency was 1.9%, i.e., the RBF neural network prediction
model is accurate and reliable.

(2) In this study, the pump performance prediction model of the RBF neural network and
the optimization design method of the multi-objective particle swarm optimization
algorithm are adopted. These improvements enable the research to better fit complex
pump performance models and perform design optimizations considering multiple
optimization objectives. In the optimization process, the search strategy is adjusted in
time to avoid being affected by the local optimal solution. The algorithm can better
explore the design space and find the global optimal solution, thereby improving the
stability and accuracy of the optimization results. Finally, the optimal outlet angle,
outlet width, and blade wrap angle of the individuals with better head and efficiency
were determined to be 17◦, 15 mm, 122◦, and 17◦, 13 mm, 130◦, respectively.

(3) The optimized head has increased by approximately 2.65 meters compared to the
head of the superior individual, and the efficiency has increased by approximately
2.3 percentage points compared to the efficiency of the superior individual. The
pressure gradient in the impeller flow path is more pronounced after optimization,
the work capacity is significantly improved, the spatial guide vortex area is smaller,
and the flow line is more regular. Compared to the initial individual model, the
pressure pulsation in the impeller inlet and outlet and the spatial guide vane inlet of
the higher-head individual is reduced by 46.7%, 21.3%, and 20.2%, respectively, while
the pressure pulsation in the spatial guide vane outlet increases by 75.9%, but the
pressure pulsation coefficient after the increase is still small and within the acceptable
range. The higher-efficiency individual had a 59.9%, 29%, 30.2%, and 46.5% reduction
in pressure pulsation amplitude at the impeller inlet and outlet as well as at the space
guide vane inlet and outlet, respectively.
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