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Abstract: In real-world scenarios, the number of phishing and benign emails is usually imbalanced,
leading to traditional machine learning or deep learning algorithms being biased towards benign
emails and misclassifying phishing emails. Few studies take measures to address the imbalance
between them, which significantly threatens people’s financial and information security. To mitigate
the impact of imbalance on the model and enhance the detection performance of phishing emails,
this paper proposes two new algorithms with undersampling: the Fisher–Markov-based phishing
ensemble detection (FMPED) method and the Fisher–Markov–Markov-based phishing ensemble
detection (FMMPED) method. The algorithms first remove benign emails in overlapping areas,
then undersample the remaining benign emails, and finally, combine the retained benign emails
with phishing emails into a new training set, using ensemble learning algorithms for training and
classification. Experimental results have demonstrated that the proposed algorithms outperform
other machine learning and deep learning algorithms, achieving an F1-score of 0.9945, an accuracy of
0.9945, an AUC of 0.9828, and a G-mean of 0.9827.

Keywords: phishing emails detection; imbalance; undersampling

1. Introduction

Humans are often perceived as the weakest link in cybersecurity defense, particularly
due to social engineering attacks, such as phishing emails. Phishing emails often involve
impersonating a trustworthy entity and utilizing urgency or emotional manipulation tactics
to make the message appear authentic. The goal is to trick victims into providing sensitive
information or clicking on attachments or links that can lead to further attacks. Phishing
emails tend to target specific groups of people or exploit critical moments in time in reality,
which only account for a small percentage. For example, since the outbreak of the novel
coronavirus in late 2019, attackers have been exploiting people’s fears by sending phishing
emails that are closely related to COVID-19. As the COVID-19 pandemic has spread, people
have become less sensitive to it, and phishing emails related to COVID-19 are no longer
as common [1]. Before holidays, such as the traditional Mid-Autumn Festival in China,
attackers take advantage of people’s greed by posing as organizations and sending phishing
emails claiming to offer free mooncakes, which are notoriously rare throughout the year [2].
Therefore, the proportion of benign emails to phishing emails is unbalanced in reality.

Phishing emails are also a significant method used by advanced persistent threats
(APTs). Currently, over 80% of reported APT attacks involve phishing emails. According to
the 2022 China Corporate Email Security Study, corporate email users in China received
42.59 billion phishing emails in 2022, an increase of 24.5% from 34.22 billion phishing emails
in 2021 [3]. According to the Global Email Threat Report for 2022, the average number of
phishing email attacks per 1000 email addresses worldwide was 299.27 per month, which
represents a 12.36% increase from the previous year [4]. Recently, the cybersecurity firm

Appl. Sci. 2023, 13, 8756. https://doi.org/10.3390/app13158756 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13158756
https://doi.org/10.3390/app13158756
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0005-1856-1484
https://orcid.org/0000-0003-2843-4225
https://doi.org/10.3390/app13158756
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13158756?type=check_update&version=2


Appl. Sci. 2023, 13, 8756 2 of 19

Cofense released the 2023 Email Security Report, which revealed a 569 percent surge in
malicious email attacks in 2022 [5]. Therefore, there is an urgent need for an effective
method to detect phishing emails.

With the emergence of machine learning (ML) and deep learning (DL) in recent years,
numerous researchers have utilized them for detecting phishing emails. The steps can
be summarized as follows: (1) selecting and extracting features; (2) choosing a machine
learning classifier model; (3) training and testing the model. Email features generally fall
into one of two categories: the email’s contents and the email’s body text. The former
contains the structural properties of the email, while the latter contains the semantic features
of the email body. The common ML and DL algorithms used to detect phishing emails
include support vector machine (SVM) [6–11], naïve Bayes (NB) [6,12–14], decision tree
(DT) [10,11,15–19], logistic regression (LR) [6,7,10], etc.

Although these algorithms have achieved good results in the field of detecting phish-
ing emails, there are many limitations in the experimental design process [20–23], as follows:
(1) Relying only on text-based features or content-based features may not provide com-
prehensive information; (2) The dataset used is outdated; (3) Using balanced datasets
that do not match real-world scenarios; (4) Evaluation metrics are not comprehensive
enough. Bountakas et al. propose HELPHED, which addresses the aforementioned issues
and obtains satisfactory results [23]. Although they used imbalanced datasets and the
experimental design was closer to real scenarios, they did not take any measures to address
the imbalance between benign and phishing emails, which may have hindered the model
performance and generalization ability. To investigate the impact of the imbalance between
benign and phishing emails on the classifier performance and improve the detection rate of
phishing emails, this paper presents the following contributions:

• To mitigate the impact of unbalanced datasets on classifier performance, two novel
algorithms based on undersampling are proposed: FMPED and FMMPED. These
algorithms differ in their approach to undersampling benign emails;

• To improve classification performance, we use an ensemble learning approach for
handling the hybrid features of emails, which combines decision tree (DT) and support
vector machine (SVM) as basic classifiers to train content-based features and text-based
features respectively;

• To simulate real-life scenarios, the ratio of benign emails to phishing emails of the
dataset used in this article is almost 10:1. In order to conduct a more comprehensive
evaluation of the classifier performance, we utilize a variety of evaluation metrics that
apply to an unbalanced dataset, including the F1-score, accuracy, AUC, G-mean, and
Matthews correlation coefficient (MCC).

The structure of the remainder of this paper is as follows. In Section 2, we introduce re-
search related to detecting phishing emails. In Section 3, we provide a detailed explanation
of the entire process for detecting phishing emails using our method. In Section 4, detailed
descriptions of the proposed algorithms FMPED and FMMPED are provided. In Section 5,
we present the experiment results and discussion. In Section 6, we will summarize the
main points of this paper and provide insights into future work.

2. Related Work

There are various methods for detecting phishing emails, including blacklist-based,
machine learning, deep learning, natural language processing, and combinations of these
techniques. We compile a list of recent studies on machine learning-based phishing email
detection methods that have used both balanced and unbalanced datasets. Due to the fact
that our subsequent work is based on [23], we also provide a detailed introduction to it.

2.1. Works Based on Balanced Datasets

Dutta et al., focused on designing a model for phishing email detection and classifica-
tion using biogeography-based optimization with deep learning [24]. The dataset used in
this article is sourced from the CLAIR dataset [25], which comprises 3685 phishing emails
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and 4894 legitimate emails. The ratio of legitimate emails to phishing emails is 1.3:1. How-
ever, it is important to note that the dataset is quite old, dating back to 2008, and therefore
may have limited relevance to current trends in email phishing. Magdy et al. proposed a
three-classifier system based on deep learning to classify emails into legitimate, spam, and
phishing categories based on content characteristics in the dataset [26]. The dataset used in
the experiment consisted of 2758 legitimate emails and 2432 phishing emails, which is a
ratio of almost 1:1.

Alhogail et al., proposed a model for classifying phishing emails that combines graph
convolutional network (GCN) and natural language processing techniques [27]. The dataset
used in the experiment is the fraud dataset [25], which includes 3685 phishing emails and
4894 legitimate emails. Two-thirds of the dataset was used for training. The remaining data
are for testing purposes. The accuracy of detecting phishing emails in this dataset is 98.2%,
with a false-positive rate of only 0.015.

Somesha et al., proposed a method for classifying phishing emails using a combination
of word embedding and machine learning algorithms [28]. They used three datasets for
the experiment, one of which was a balanced dataset containing 6295 benign emails and
9135 phishing emails, resulting in an accuracy of 99.5%. Valecha et al. [29] proposed a
model for detecting phishing emails that utilizes Word2vec [30] and four machine learning
classifiers, which takes into account gain and loss clues present in the emails. The dataset
included 19,153 legitimate emails and 17,902 phishing emails. It achieved the highest
accuracy for gain (96.52%), loss (96.16%), and a combined accuracy of 95.97%. It is evident
that the datasets used in the mentioned work are close to balance or outdated, which is far
from the actual scenario.

2.2. Work Based on Unbalanced Datasets

Bountakas et al., combined text-based and content-based email features, utilizing
ensemble learning methods to classify emails [23]. One of the highlights of this paper
is that it considers the actual situation and the development trend of phishing emails,
constructing a more practical and closer to real-world scenario imbalanced dataset con-
taining 32,051 benign emails and 3460 phishing emails. Fatima et al. collected 10,500
benign emails and 10,500 phishing emails as an initial dataset [31]. They then adjusted
the ratio of benign emails to phishing emails from 1:1 to 1:10 to create an imbalanced test
set and achieved an F1-score of 99.6% on an extremely unbalanced (1:10) ratio. Mehdi
Gholampour et al. [32] developed an adversarial dataset using various legitimate text
attack techniques. The dataset comprised 5092 legitimate emails and 568 phishing emails.
It retrained phishing email detection models using this adversarial dataset. Results showed
that the accuracy and F1-score of the models improved with subsequent attacks. It can be
observed that although these experimental designs used imbalanced datasets that are closer
to real-world scenarios, no measures were taken to reduce the impact of the imbalance on
the classification performance.

2.3. Bountakas’ HELPHED

From the input of the original email to the categorization of the final output email,
HELPHED, a phishing email detection model proposed by Bountakas et al. [23], consists of
six stages: the email parsing stage (S1), the content-based feature extraction stage (S2), the
preprocessing stage (S3), the text-based feature extraction stage (S4), the feature selection
stage (S5), and the ensemble classification stage (S6). The frame diagram of HELPHED is
depicted in Figure 1.
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Figure 1. HELPHED architecture.

In Stage S1, the header and the body fields of an email are split and parsed to a vector
structure, and they are associated with the respective email class according to the collection
from which it originated (e.g., phishing or benign). Then, the content-based features of
the message are extracted in the S2 phase, which includes several parts of the emails,
such as body, syntax, header, and URL features. Subsequently, the texts are transformed
into lowercase; the special characters, stopwords, and punctuation marks are deleted; the
hyperlinks are converted to a consistent string; and the lemmatization process is employed
in Stage S3. Later, Stage S4 utilizes the Word2vec method [30] to automatically extract the
textual features. The innovation in this phase is that both content-based and text-based
features are extracted and merged into a robust hybrid feature set for the detection of the
newer sophisticated phishing emails. Then, the redundant features that are identified by
the mutual Information method are excluded from the hybrid feature set. In this way,
only the most informative features will be used in the classification stage. Finally, Stage S6
deploys the selected hybrid features, which offer a comprehensive representation of emails
to feed the ensemble learning algorithms for the detection of phishing emails by predicting
the email class (namely phishing or benign). The classification algorithms involved in Stage
6 include stacking ensemble learning (SEL) and soft-voting ensemble learning (SVEL). SEL
comprises two tiers, where Tier 1 employs the DT and KNN algorithms to perform the
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initial classification, and Tier 2 employs the MLP algorithm to detect whether an email is
phishing or benign based on the classification results of Tier 1. SVEL employs DT and KNN
algorithms for the initial classification in Tier 1, and a voting function is used to judge the
class in Tier 2. In our work, we have improved SVEL with an undersampling strategy and
provide a detailed description in Section 3.

3. Framework

In this section, we will provide a detailed introduction to the proposed algorithms for
classifying phishing emails. The proposed algorithms utilize a combination of undersam-
pling strategy and ensemble learning to enhance performance. Similar to HELPPED, the
proposed algorithms have six phases, which include parsing the email (Step 1), extracting
content features (Step 2), preprocessing and extracting textual features (Step 3), selecting
features (Step 4), undersampling the dataset (Step 5), and ensemble learning classification
(Step 6). It follows the framework illustrated in Figure 2.

S2 Extracting Content Features

FMPED FMMPED

Benign Phishing

Phishing&Benign Emails S1 Parsing the Email

S3 Preprocessing and Extracting Textual Features

Mutual Information

S4 Selecting Features

S6 Ensemble Learning Classification

S5 Undersampling the Dataset

Content-based 
Features

Text-based 
Features

WordNet

Figure 2. Proposed method framework.
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It can be found that FMPED and FMMPED are primarily used for sampling the
Bountakas HELPHED dataset and training the classifier. Therefore, the preprocessing,
feature selection, and feature extraction of the dataset follow the same rules as HELPHED.
In other words, our first four steps align with the first five steps outlined in the HELPHED
framework mentioned in Section 2.3. The remainder of this section outlines the six steps
mentioned above to illustrate the process of classifying phishing emails.

3.1. Parsing the Email

In Step 1, the header and body of each email are separated and transformed into a
vector structure. These vector structures are stored in two distinct arrays, which are later
combined with an array that represents the email’s category (such as benign or phishing)
to create a joint array.

3.2. Extracting Content Features

The main purpose of Step 2 is to extract content features from the header and body
information in the joint array. Before the advent of NLP technology, the existing phishing
email detection technology relied on email content-based features [33]. Bountakas et al.,
divided email content-based features into four categories, namely, body features, syntactic
functions, headers features, and URL features. Body features mainly refers to the behavioral
features that attackers try to deceive the victim, such as inserting malicious web pages,
malicious files, etc., which include HTML code, HTML forms, scripts, attachments and
image link, etc. Syntactic features mainly extract semantic information that phishing
messages differ from benign messages, such as bad words in the email’s body, the absence of
“RE” in the subject, and the number of characters in the email body. Header features mainly
contain information such as the sender, recipient, and encoding method of the message.
URL features are obtained from the hyperlinks and domain names of the messages and
are used to identify whether they contain malicious hyperlinks and special domain names,
such as IP, number of hyperlinks, number of different href, and so on.

Bountakas et al. created four sets to store labels for the above four features in each
email and then combined these sets into a matrix. The matrix contains labels corresponding
to the above features of each email, as well as the label indicating whether the email is
phishing or benign.

3.3. Preprocessing and Extracting Textual Features

Before extracting the text-based features from the email body, Bountakas et al., pre-
processed the email body, mainly including the following steps: first separate the words
in the email body; convert the words to lowercase; remove all stop words, special char-
acters, punctuation, and HTML elements; replace the hyperlinks in the body with fixed
strings (such as “URL” or “LINK”); tokenize the separated words [27]; split the words
using delimiters; convert the text to a list; and, finally, to reduce the dimensionality of
the email corpus, perform lemmatization and stemming using the WordNet database [34].
After preprocessing the email body text, Bountakas et al. utilized Word2vec’s skip-gram
method [30] to extract a total of 300 text-based features.

3.4. Selecting Features

The purpose of this step is to extract the most informative content-based and text-
based features from the original feature set in order to enhance the accuracy of the classifier
and prevent overfitting. Bountakas et al. proposed a filter-based method called mutual
information (MI) and used it to extract 18 content-based features and 253 text-based features.
The final hybrid feature set consists of a total of 271 features.

3.5. Undersampling the Dataset

The ratio of phishing emails to benign emails in the dataset utilized for this paper is
almost 1:10, with 3465 phishing emails and 32,046 benign emails. This dataset is imbalanced;
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therefore, it is in line with reality. In order to alleviate the impact of imbalanced factors on
classification performance, this paper utilized two proposed undersampling methods to
reduce the number of benign emails and obtain a new training set. The two algorithms
proposed in this paper will be described in detail in Section 4.

3.6. Ensemble Learning Classification

Ensemble learning classifiers can integrate multiple basic machine learning classifiers
and effectively process hybrid features. Specifically, the prediction results from each basic
learning classifier are further fused to make a final classification prediction. This paper
employs a widely recognized ensemble learning technique known as soft-voting ensemble
learning [35]. Soft voting can eliminate the structural sensitivity generated by the base
classifier and reduce the variance of the ensemble. There are several machine learning and
deep learning algorithms that are suitable for the task of classifying phishing emails [20].
In this paper, we utilize the decision tree (DT) algorithm to process content-based features,
while the support vector machine (SVM) is employed to process text-based features. It
is worth noting that Bountakas et al. utilized the k-nearest neighbor (KNN) algorithm
to analyze text-based features. This article uses the SVM algorithm instead of the KNN
algorithm. The specific algorithm process will be detailed in Section 4.

4. Hybrid Ensemble Learning with Data Undersampling

The related works show that there have been many studies on phishing email clas-
sification. Some studies do not consider real-world scenarios and train their models on
balanced datasets. Other studies, however, use imbalanced datasets that are closer to
reality. They do not apply any sampling techniques to address class imbalance, leading
to bias towards benign emails and the misclassification of phishing emails, resulting in
significant losses. To investigate the impact of the imbalance between benign and phishing
emails on the classifier performance and improve the detection rate of phishing emails, two
novel ensemble learning with data undersampling algorithms, FMPED and FMMPED, are
proposed, which are shown in Figures 3 and 4.

4.1. Soft-Voting Ensemble Learning

We choose soft-voting ensemble learning [23] as our ensemble learning method be-
cause of its superior performance. Soft-voting ensemble learning calculates the average
of the output probabilities from two base learners, including decision tree (DT) and k-
nearest neighbor (KNN), to obtain the final classification result, where the DT algorithm is
responsible for handling content-based features, while the KNN algorithm is responsible
for handling text-based features.

KNN predicts the class of a sample by calculating the distance between the sample and
each training sample, then selects the class based on the votes of the k-nearest neighbors,
which can be easily affected by outliers. Therefore, we consider using the SVM algorithm
instead of the KNN algorithm to train text-based features, which is suitable for high-
dimensional feature space problems and has a certain degree of robustness to noise and
outliers.

Benign Emails Removing benign emails 
in overlapping areas

Markov UnderSampling New Benign Emails

Phishing Emails

Benign

Phishing

Soft Voting 
Ensemble 
Learning

Figure 3. FMPED diagram.
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Figure 4. FMMPED diagram.

4.2. FMPED Algorithm

Suppose that Dmaj represents the majority class training set, Dmin represents the
minority class training set, and D represents the whole training set. The FMPED algorithm
includes three stages.

D = Dmaj ∪Dmin. (1)

• Stage 1: Remove the overlapping majority class samples.

Liang et al. [36] point out that in imbalanced datasets, the overlapping regions
containing majority and minority samples will cause the obtained classifier to deviate from
the optimal classifier, resulting in a bias toward the majority class samples, thus leading to
misclassification of minority class samples. It is necessary to remove those majority class
samples located in overlapping regions before training. Figure 5 displays the overlapping
area of the unbalanced dataset. Liang et al. [36] use the squared loss function to compute
which majority class samples should be removed and adjust the position of classification
boundary by Fisher linear discrimination (FLD) because it requires no hyperparameters.
This process is repeated until the G-mean of the retained samples becomes smaller.
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Benign emails

Phishing emails

Optimal decision boundary

Actual decision boundary

Figure 5. Overlapping area of unbalanced dataset.

Generally speaking, machine learning methods such as SVM and FLD obtain classifier
hyperplanes that separate the two classes of samples. However, for unbalanced datasets,
the classification hyperplanes obtained by these machine learning methods are likely to lie
in the overlapping regions of the two types of samples. Therefore, unlike [36], the RMCSPV
(removing majority class samples based on predicted value) algorithm removes samples
based on the predicted values. The larger predicted value means the corresponding majority
class sample may be closer to minority class samples. Moreover, samples are removed
from the original majority class sample set, rather than from the set after the previous
removal of each iteration. After removing selected samples, RMCSPV trains a classifier and
calculates the G-mean value. This process ends when the maximum number of iterations
is reached or the G-mean value decreases. This step can be seen as a preprocessing step
before undersampling, so it is not necessary to set the maximum number of iterations to
a large value. In this paper, we set it to 5. The specific process of RMCSPV is stated as
Algorithm 1. All experimental results of RMCSPV are based on θ = 0.005 in this article.
Section 5 will discuss the choice of θ.

Algorithm 1: RMCSPV
Input: Dmaj,Dmin,D, θ

Output: D̂, D̂maj

1 D̂ ← D, k← 1, G0 ← 0;
2 while k ≤ 5 do
3 Get a learning model f by training FLD with D̂, and compute G-mean value

Gk of the set D;
4 if Gk < Gk−1 then
5 break;

6 Remove θ percent of samples from Dmaj according to the ascending order of
the value e− f (x) and denote it as D̂maj. D̂ ← D̂maj ∪Dmin;

• Stage 2: Markov Undersampling

Stage 1 only removes a small fraction of the majority samples in the overlapping region,
and the factor of imbalance still exists. So, we attempt to undersample the majority samples.
Statistical learning theory introduced by Vapnik [37] indicates that the most “important”
samples for classification are samples that are close to the classification hyperplane. So, we
use Markov sampling to undersample the majority samples, such as in [36].

Different from Markov sampling in [36,38], the number of samples to be drawn in
the Markov undersampling (MUS) algorithm changes dynamically, which eliminates the
need for parameter selection. The specific process of the MUS algorithm can be stated as
Algorithm 2. All experimental results of MUS are based on q = 1.3, n̂ = 3, n̄ = 5 in this
article. Section 5 will discuss the choices of q, n̂, n̄.
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Algorithm 2: MUS
Input: Dmaj,Dmin,D, q, n̄, n̂
Output: D̂, D̂maj

1 Let N ← |Dmaj|, j← 1, ñ← 0. Take a sample zj from Dmaj randomly and denote
its index as i;

2 while j ≤ N do
3 i← i + 1 ;
4 if i > N then
5 i← i%N;

6 Draw the sample at index i from Dmaj as z∗;
7 P← e−V( f , z∗)/e−V( f , zj);
8 if ñ > n̂ then
9 P← min{1, qP};

10 if P ≡ 1 and yjy∗ = 1 then
11 P← e−y∗ f /e−yj f ;

12 if P > rand(1) or ñ > n̄ then
13 zj ← z∗, D̂ ← zj, j← j + 1, N

′ ← j, ñ← 0;

14 if z∗ is not accepted then
15 ñ← ñ + 1;

16 Obtain D̂ = {zj}N
′

j=1 ∪ Dmin, D̂maj = Dmaj − {zj}N
′

j=1;

• Stage 3: Training stage

Similar to [23], features are divided into content-based features and text-based features.
Content-based features are trained by DT, and text-based features are trained by linear
SVM. The final classification model is obtained based on two base classifiers, as described
in Section 4.1. All parameters of DT used in this paper are the same as [23] and the penalty
parameter of the SVM is set to 10.

4.3. FMMPED Algorithm

Like the FMPED algorithm, the FMMPED algorithm also contains three stages as
follows.
• Stage 1: Remove the overlapping majority class samples

Different from the RMCSPV algorithm, the RMCSBM (removing majority class samples
based on Markov) method combines FLD and Markov sampling to sample majority class
samples near a classification hyperplane. The main reason is [38] mentions that Markov
sampling can obtain samples near the hyperplane. The specific process of Stage 1 can be
stated as Algorithm 3.

• Stage 2: Markov Undersampling

This process is exactly the same as the MUS algorithm and will not be repeated here.
• Stage 3: Ensemble classifier

The FMMPED algorithm controls the number of undersampling rounds based on the
imbalance ratio. In each round, the sampled majority class samples are combined with the
minority class samples to train a classifier and compute the corresponding weight. If the
sum of all metrics of the newly obtained classifier is higher than that of the previous classi-
fier, it is accepted. Otherwise, it is rejected. Finally, the accepted classifiers corresponding
to weights above the mean are integrated to obtain the final classifier. The specific process
of the FMMPED algorithm can be stated as Algorithm 4. All experimental results of MUS
are based on r1 = 0.15 in this article. Section 5 will discuss the choice of r1.
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Algorithm 3: RMCSBM
Input: Dmaj,Dmin,D, θ, q, n̄, n̂
Output: D̂maj

1 N ← θ ∗ |Dmax|;
2 Get a learning model f by training FLD with D;
3 Let j← 1, ñ← 0. Take a sample zj from Dmaj randomly;
4 while j ≤ N do
5 Draw randomly a sample z∗ from Dmaj;

6 P← e−V( f , z∗)/e−V( f , zj);
7 if ñ > n̂ then
8 P← min{1, qP};
9 if P ≡ 1 and yjy∗ = 1 then

10 P← e−y∗ f /e−yj f ;

11 if P > rand(1) or ñ > n̄ then
12 zj ← z∗, D̂ ← zj, j← j + 1, N

′ ← j, ñ← 0;

13 if z∗ is not accepted then
14 ñ← ñ + 1;

15 Let D̂maj = Dmaj − {zj}N
j=1;

Algorithm 4: FMMPED Algorithm
Input: Dmaj,Dmin,D, r1
Output: f

1 r ← |Dmaj |
|Dmin |

, s← r, o ← 0, f lag← 1, n← 0;

2 while |Dmax| 6= 0 do
3 if f lag == 1 then
4 Put D,Dmaj,Dmin in Algorithm 3, get new Dmaj ← D̂maj;

5 r ← |Dmaj |
|Dmin |

, f lag← 0;

6 if r ≥ r1 ∗ s then
7 Put D,Dmaj,Dmin in Algorithm 2, get D̂ and new Dmaj ← D̂maj;
8 Get a learning model f by training D̂ with Soft-voting ensemble learning,

and calculate sum of F, A, R, G, M with D;
9 if sum ≥ o then

10 n← n + 1, wn ← −0.5 ∗ log((5− sum)/(sum)), fn = f ;
11 o=sum;

12 r ← |Dmaj |
|Dmin |

;

13 Retain n1 models with weights higher than ∑n
1 wn
n ;

14 f = sign(∑n1
1 wn1 ∗ fn1);

5. Experimental Section

In order to verify the effectiveness of the proposed methods, we provide comparative
experiments in this section. Due to insufficient information provided by some studies
such as [39] regarding datasets, experimental settings, features, and machine learning
algorithms, ref. [23] mentions that it is difficult or impossible for others to reproduce their
methods and results. Therefore, this paper chooses to compare with the two new phishing
email classification algorithms: stacking ensemble learning (SEL) and soft-voting ensemble
learning (SVEL) provided in [23]. Additionally, in order to demonstrate the superiority
of the proposed algorithms, this paper also compares them with six excellent machine



Appl. Sci. 2023, 13, 8756 12 of 19

learning algorithms or deep learning algorithms: decision tree (DT), random forest (RF),
logistic regression (LR), Gaussian naïve Bayes (GNB), multilayer perceptron (MLP), and
k-nearest neighbor (KNN) as presented in [23].

5.1. Dataset

Numerous previous studies use datasets that have several limitations, such as not
taking into account the evolution of phishing email attacks but relying on outdated phishing
emails (before 2015) rather than current ones; not considering that, in real life, the number
of benign emails received by institutions is much higher than that of phishing emails, and
the evaluation should be conducted on the unbalanced rather than on the balanced or
nearly balanced dataset; not using different data sources; and lacking generalizability.

To avoid the drawbacks of these studies, ref. [23] created a dataset named HELPHED [40].
This dataset contains samples from the Enron email corpus [41], the SpamAssassin public
corpus [42], the Nazario phishing corpus [43], and the [23] authors mailboxes. HELPHED
merges 28,000 randomly selected emails from the Enron corpus and all benign emails
from the SpamAssassin corpus. After removing duplicate emails, a total of 32,046 benign
email samples are obtained. HELPHED uses all phishing emails in the Nazario phishing
corpus from 2015 to 2020 (i.e., 1472 emails), 1992 emails that appeared before 1995, and
76 phishing emails in the authors’ mailboxes as phishing emails. The imbalance ratio of
HELPHED is close to 1:10, which is more similar to real-world scenarios than the datasets
used in previous studies. To ensure the fairness of experimental results and the closeness
to real-world scenarios, we use the HELPHED dataset in this paper.

5.2. Evaluation Metrics

For traditional balanced datasets, accuracy is the most commonly used evaluation
metric. However, for unbalanced datasets, it would be biased to use accuracy alone to
evaluate. This paper uses multiple evaluation metrics to comprehensively evaluate various
algorithms. Let true positive (TP) represent the number of correctly identified phishing
emails, true negative (TN) represent the number of correctly identified benign emails, false
positive (FP) indicate the number of benign emails misclassified as phishing emails, and
false negative (FN) indicate the number of phishing emails misclassified as benign emails.

• F1-Score: A more robust evaluation metric as it considers both precision and recall
and is particularly useful when dealing with imbalanced datasets.

F1-Score =
2× Precision× Recall

Precision + Recall
, (2)

where Recall = TP
TP+FN is used to measure the proportion of phishing emails that are

correctly identified among all the phishing emails, and Precision = TP
TP+FP indicates

the proportion of emails correctly classified as phishing among all emails classified as
phishing emails.

• Accuracy: The proportion of correctly classified emails with respect to the total number
of emails.

Accuracy =
TP + TN

TP + TN + FP + FN
. (3)

• G-mean: An important metric based on the geometric mean of the majority class
accuracy and minority class accuracy. A higher G-mean value indicates a better
decision boundary.

G-mean =

√
TP

TP + FN
× TN

TN + FP
. (4)

• Matthews Correlation Coefficient (MCC): A metric for evaluating binary classification
performance. It combines the information from TP, TN, FP, and FN, making it suitable
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for evaluating the ability of classifiers to handle imbalanced datasets. The MCC score
ranges from −1 to 1, where a score of 1 represents a perfect classifier, 0 represents
a random classifier, and −1 represents a classifier whose predictions are completely
opposite to the true classes.

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
. (5)

• Area Under the ROC Curve (AUC): This term refers to the region of the ROC curve
that is under the curve and is frequently used to assess the effectiveness and quality of
binary classification models.

5.3. Experimental Setup

The experiments were conducted on an Intel(R) Core(TM) i5-2400 CPU @ 3.10 GHz,
3101 Mhz using Python 3.6.

We divided the dataset HELPHED into training set Dtrain and testing set Dtest with
a ratio of 7:3 and 8:2, respectively, and conducted 50 repeated experiments. Specifically,
the training process can be described as follows: (1) For Dtrain, we performed the FMPED
algorithm, the FMMPED algorithm, and 8 other algorithms to obtain 10 classifiers. We then
tested them on the same Dtest. (2) We combined Dtrain and Dtest and randomly split the
combined dataset into a new training set D′train and testing set D

′
test according to a specified

proportion. (3) We performed the above procedures 50 times and calculated the average
and standard deviation of each metric.

5.4. Results for Proposed Algorithms

Based on the experimental results presented in Tables 1 and 2, it is evident that both
FMPED and FMMPED algorithms outperform the other eight previous algorithms in all
evaluation metrics.

Table 1. Experimental results when the ratio of training set to test set is 4:1.

Classifier F1-Score Accuracy AUC G-Mean MCC

DT 98.50 ± 0.39 98.50 ± 0.39 95.36 ± 1.24 95.26 ± 1.28 91.40 ± 2.24
RF 98.75 ± 0.13 98.75 ± 0.13 93.88 ± 0.62 93.68 ± 0.66 92.71 ± 0.76
LR 90.26 ± 0.07 90.26 ± 0.07 50.51 ± 1.02 9.09 ± 5.35 5.82 ± 3.84

GNB 90.25 ± 0.20 90.25 ± 0.20 49.90 ± 0.10 0.44 ± 1.35 1.11 ± 0.70
MLP 98.29 ± 0.80 98.29 ± 0.80 94.83 ± 3.80 96.63 ± 4.18 90.31 ± 4.71
KNN 94.62 ± 0.19 94.62 ± 0.19 77.27 ± 0.80 74.20 ± 1.06 65.69 ± 1.37
SEL 99.09 ± 0.11 99.10 ± 0.11 97.11 ± 0.67 97.07 ± 0.69 94.81 ± 0.70

SVEL 99.33 ± 0.10 99.33 ± 0.10 96.78 ± 0.46 96.72 ± 0.48 96.17 ± 0.58
FMPED 99.42 ± 0.11 99.42 ± 0.11 98.28 ± 0.43 98.27 ± 0.43 96.69 ± 0.65

FMMPED 99.45 ± 0.10 99.45 ± 0.10 98.11 ± 0.36 98.10 ± 0.37 96.87 ± 0.57

Table 2. Experimental results when the ratio of training set to test set is 7:3.

Classifier F1-Score Accuracy AUC G-Mean MCC

DT 98.44 ± 0.39 98.44 ± 0.39 95.26 ± 1.25 95.17 ± 1.30 91.11 ± 2.23
RF 98.68 ± 0.12 98.68 ± 0.12 93.55 ± 0.58 93.33 ± 0.62 92.32 ± 0.70
LR 90.26 ± 0.11 90.26 ± 0.11 50.70 ± 1.72 8.56 ± 8.88 5.31 ± 6.07

GNB 87.74 ± 6.21 87.74 ± 6.21 50.78 ± 2.25 7.56 ± 17.56 0.36 ± 3.58
MLP 98.42 ± 1.20 98.42 ± 1.20 94.76 ± 6.00 94.33 ± 7.68 90.83 ± 8.06
KNN 94.54 ± 0.18 94.54 ± 0.18 76.80 ± 0.78 73.57 ± 1.05 65.02 ± 1.34
SEL 99.09 ± 0.14 99.09 ± 0.14 97.02 ± 0.56 96.99 ± 0.58 94.80 ± 0.75

SVEL 99.32 ± 0.09 99.32 ± 0.09 97.02 ± 0.56 96.99 ± 0.58 96.11 ± 0.52
FMPED 99.36 ± 0.11 99.36 ± 0.11 98.20 ± 0.31 98.19 ± 0.32 96.35 ± 0.61

FMMPED 99.41 ± 0.08 99.41 ± 0.08 97.97 ± 0.30 97.95 ± 0.31 96.62 ± 0.44
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Specifically, when the ratio of the training set to testing set is 4:1, the FMPED algorithm
achieves an improvement of the AUC between 48.38% (GNB) and 1.17% (SEL), an improve-
ment of the G-mean value between 97.83% (GNB) and 1.20% (SEL), and an improvement
of the MCC between 95.58% (GNB) and 0.52% (SVEL). The FMMPED algorithm achieves
an improvement of the AUC between 48.21% (GNB) and 1.00% (SEL), an improvement of
the G-mean value between 97.66% (GNB) and 1.03% (SEL), and an improvement of the
MCC between 95.76% (GNB) and 0.70% (SVEL). When the ratio of training set to testing set
is 7:3, the FMPED algorithm achieves an improvement of the AUC between 47.50% (LR)
and 1.18% (SEL), an improvement of the G-mean value between 90.63% (GNB) and 1.20%
(SEL), and an improvement of the MCC between 95.99% (GNB) and 0.24% (SVEL). The
FMMPED algorithm achieves an improvement of the AUC between 47.27% (GNB) and
0.95% (SEL), an improvement of the G-mean value between 90.39% (GNB) and 0.96%(SEL),
and an improvement of the MCC between 96.26% (GNB) and 0.51% (SVEL).

5.5. Parameters Experiments

Table 3 presents the experimental results of FMPED for various q with n̄ = 5, n̂ = 3,
θ = 0.005, r1 = 0.15, where q is chosen from (1.1, 1.3, 1.5, 1.7). Table 4 provides the
experimental results of FMPED for various n̄ with q = 1.3, n̂ = 3, θ = 0.005, r1 = 0.15,
where n̄ = 5 is chosen from (5, 10, 15). Table 5 provides the experimental results of FMPED
for various n̂ = 3 with n̄ = 5, q = 1.3, θ = 0.005, r1 = 0.15, where n̂ is chosen from
(1, 2, 3, 4). Table 6 presents the experimental results of FMPED for various θ with n̄ = 5,
n̂ = 3, q = 1.3, r1 = 0.15, where θ is chosen from (0.003, 0.005, 0.007, 0.009). Table 7 presents
the experimental results of FMMPED for various r1 with n̄ = 5, n̂ = 3, q = 1.3, θ = 0.005,
where r1 is chosen from (1.5, 2.0, 2.5, 3.0). Table 3 suggests that considering all metrics,
the algorithm performs best when q = 1.3. Table 4 suggests that considering all metrics,
the algorithm performs best when n̄ = 5. Table 5 suggests that considering all metrics,
the algorithm performs best when n̂ = 3. For θ, Table 6 shows that there is no value that
always achieves the best performance. By considering all the metric values in the two
scenarios, we set θ = 0.005. For r1, by considering all the metric values in the two scenarios,
it can be observed that the best performance is achieved when r1 equals 0.15.

5.6. Discussion of Results

Since the FMPED and FMMPED algorithms are based on the idea of ref. [23], similar
to the SEL and SVEL algorithms, they also use ensemble learning and hybrid features.
Therefore, the FMPED and FMMPED algorithms perform better than the DT, RF, LG,
GNB, MLP, and KNN algorithms that directly train all features. The SEL and SVEL
algorithms proposed in ref. [23] do not take into account the impact of data imbalance on
the model performance and do not perform any processing on the data, which may lead
to the classification model being skewed towards benign emails and thus misclassifying
malicious emails. However, the FMPED and FMMPED algorithms first remove the benign
emails in the overlapping region that mislead for classification and then mitigate the degree
of imbalance by using the undersampling technique to avoid the negative impact of data
imbalance. In addition, when learning text-based features, we use SVM instead of the KNN
algorithm, which has better robustness. Therefore, the FMPED and FMMPED algorithms
perform better than SEL and SVEL. Since the idea of the FMPED algorithm is the same as
that of FMMPED, the overall performances of the two are close to each other, but they are
not exactly the same due to the different measures taken in removing benign emails from
overlapping areas.
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Table 3. Experimental results of FMPED for different q.

Data
q 4:1. 7:3.

1.1 1.3 1.5 1.7 1.1 1.3 1.5 1.7
F1-Score 0.9940 ± 0.0009 0.9940 ± 0.0009 0.9939 ± 0.0010 0.9937 ± 0.0010 0.9939 ± 0.0010 0.9941 ± 0.0008 0.9940 ± 0.0008 0.9939 ± 0.0010
Accuracy 0.9940 ± 0.0009 0.9940 ± 0.0009 0.9939 ± 0.0010 0.9937 ± 0.0010 0.9939 ± 0.0010 0.9941 ± 0.0008 0.9940 ± 0.0008 0.9939 ± 0.0010

AUC 0.9832 ± 0.0032 0.9836 ± 0.0030 0.9832 ± 0.0031 0.9821 ± 0.0032 0.9824 ± 0.0033 0.9930 ± 0.0032 0.9823 ± 0.0030 0.9825 ± 0.0036
G-mean 0.9831 ± 0.0033 0.9835 ± 0.0030 0.9831 ± 0.0031 0.9820 ± 0.0033 0.9823 ± 0.0034 0.9929 ± 0.0032 0.9821 ± 0.0031 0.9825 ± 0.0037

MCC 0.9660 ± 0.0051 0.9662 ± 0.0051 0.9657 ± 0.0057 0.9645 ± 0.0057 0.9656 ± 0.0055 0.9664 ± 0.0048 0.9657 ± 0.0048 0.9655 ± 0.0059

Table 4. Experimental results of FMPED for different n̄.

Data
n̄ 4:1. 7:3.

5 10 15 5 10 15
F1-Score 0.9939 ± 0.0010 0.9934 ± 0.0011 0.9932 ± 0.0012 0.9940 ± 0.0012 0.9936 ± 0.0010 0.9937 ± 0.0011
Accuracy 0.9939 ± 0.0010 0.9934 ± 0.0011 0.9932 ± 0.0012 0.9940 ± 0.0012 0.9936 ± 0.0010 0.9937 ± 0.0011

AUC 0.9827 ± 0.0027 0.9833 ± 0.0030 0.9830 ± 0.0034 0.9831 ± 0.0041 0.9839 ± 0.0037 0.9837 ± 0.0037
G-mean 0.9826 ± 0.0028 0.9833 ± 0.0031 0.9829 ± 0.0034 0.9830 ± 0.0042 0.9838 ± 0.0038 0.9836 ± 0.0038

MCC 0.9655 ± 0.0056 0.9628 ± 0.0060 0.9618 ± 0.0066 0.9659 ± 0.0069 0.9638 ± 0.0058 0.9642 ± 0.0064

Table 5. Experimental results of FMPED for different n̂.

Data
n̂ 4:1. 7:3.

1 2 3 4 1 2 3 4
F1-Score 0.9938 ± 0.0012 0.9936 ± 0.0010 0.9939 ± 0.0008 0.9939 ± 0.0011 0.9941 ± 0.0010 0.9939 ± 0.0011 0.9941 ± 0.0013 0.9941 ± 0.0009
Accuracy 0.9938 ± 0.0012 0.9936 ± 0.0010 0.9939 ± 0.0008 0.9939 ± 0.0011 0.9941 ± 0.0010 0.9939 ± 0.0011 0.9941 ± 0.0013 0.9941 ± 0.0009

AUC 0.9823 ± 0.0034 0.9817 ± 0.0032 0.9825 ± 0.0030 0.9825 ± 0.0035 0.9834 ± 0.0036 0.9828 ± 0.0037 0.9834 ± 0.0041 0.9830 ± 0.0032
G-mean 0.9822 ± 0.0034 0.9816 ± 0.0033 0.9824 ± 0.0030 0.9824 ± 0.0036 0.9833 ± 0.0036 0.9827 ± 0.0037 0.9833 ± 0.0041 0.9829 ± 0.0033

MCC 0.9649 ± 0.0065 0.9637 ± 0.0055 0.9654 ± 0.0048 0.9654 ± 0.0061 0.9667 ± 0.0058 0.9652 ± 0.0063 0.9667 ± 0.0071 0.9664 ± 0.0052
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Table 6. Experimental results of FMPED for different θ.

Data
θ 4:1. 7:3.

0.009 0.007 0.005 0.003 0.009 0.007 0.005 0.003
F1-Score 0.9937 ± 0.0011 0.9934 ± 0.0013 0.9940 ± 0.0008 0.9935 ± 0.0008 0.9939 ± 0.0007 0.9942 ± 0.0010 0.9942 ± 0.0007 0.9941 ± 0.0010
Accuracy 0.9937 ± 0.0011 0.9934 ± 0.0013 0.9940 ± 0.0008 0.9935 ± 0.0008 0.9939 ± 0.0007 0.9942 ± 0.0010 0.9942 ± 0.0007 0.9941 ± 0.0010

AUC 0.9833 ± 0.0037 0.9822 ± 0.0036 0.9830 ± 0.0039 0.9816 ± 0.0032 0.9812 ± 0.0025 0.9836 ± 0.0021 0.9826 ± 0.0025 0.9837 ± 0.0028
G-mean 0.9833 ± 0.0037 0.9821 ± 0.0037 0.9829 ± 0.0040 0.9815 ± 0.0032 0.9810 ± 0.0025 0.9835 ± 0.0021 0.9825 ± 0.0025 0.9836 ± 0.0028

MCC 0.9646 ± 0.0062 0.9624 ± 0.0073 0.9658 ± 0.0046 0.9632 ± 0.0044 0.9655 ± 0.0039 0.9672 ± 0.0058 0.9673 ± 0.0041 0.9665 ± 0.0054

Table 7. Experimental results of FMMPED for different r1

Data
r1 4:1. 7:3.

1.5 2.0 2.5 3.0 1.5 2.0 2.5 3.0
F1-Score 0.9938 ± 0.0012 0.9942 ± 0.0009 0.9941 ± 0.0009 0.9941 ± 0.0008 0.9941 ± 0.0008 0.9939 ± 0.0010 0.9941 ± 0.0007 0.9941 ± 0.0008
Accuracy 0.9943 ± 0.0008 0.9942 ± 0.0009 0.9941 ± 0.0009 0.9941 ± 0.0008 0.9941 ± 0.0008 0.9939 ± 0.0010 0.9941 ± 0.0007 0.9941 ± 0.0008

AUC 0.9805 ± 0.0035 0.9803 ± 0.0036 0.9794 ± 0.0035 0.9793 ± 0.0037 0.9791 ± 0.0035 0.9785 ± 0.0042 0.9792 ± 0.0032 0.9793 ± 0.0034
G-mean 0.9803 ± 0.0036 0.9802 ± 0.0037 0.9793 ± 0.0035 0.9791 ± 0.0038 0.9789 ± 0.0035 0.9783 ± 0.0043 0.9790 ± 0.0032 0.9791 ± 0.0035

MCC 0.9675 ± 0.0048 0.9670 ± 0.0050 0.9660 ± 0.0051 0.9660 ± 0.0046 0.9663 ± 0.0049 0.9650 ± 0.0059 0.9662 ± 0.0042 0.9663 ± 0.0046
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6. Conclusions

To reduce the impact of data imbalance on classification performance, we introduce
the idea of undersampling benign emails for the soft-voting ensemble learning algorithm
in this paper. We first propose the FMPED algorithm, which removes benign emails in the
overlapping region based on the change of the G-mean value, and the decision boundary
is subsequently adjusted using the FLD algorithm. Then, Markov sampling is used to
selectively receive the retained benign emails. Only the important benign emails that are
close to the hyperplane are sampled. The retained benign emails are merged with the
phishing emails and trained by the soft-voting ensemble learning algorithm to obtain the
final classifier. Based on the inspiration of the FMPED algorithm, we also propose the
FMMPED algorithm, which uses Markov sampling for both removing and undersampling
benign emails. Unlike FMPED, FMMPED determines the number of undersampled rounds
according to the imbalance ratio. The undersampled benign emails are combined with
phishing emails to obtain a classifier, and the weight is computed. If the weight is bigger
than the last received classifier, it is retained. The final prediction for the testing sample
is obtained by integrating the predictions of the retained classifiers with weights above
the mean. Experimental results show that FMPED and FMMPED can obtain satisfactory
results in F1-score, accuracy, AUC, G-mean, and MCC evaluation metrics compared with
other eight phishing email classification algorithms.

There are still some issues to be investigated, such as exploring an undersampling
strategy that applies to all phishing email algorithms and exploring a more effective way of
locating the overlapping regions. All these questions are currently being researched and
investigated.
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