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Abstract: Marine plankton communities play a vital role in global carbon and nutrient cycles. Ensur-
ing the robustness of these intricate ecosystems is critical for sustainable environmental management.
In this paper, we apply complex network analysis to assess plankton community resilience against
disturbances. We construct ecological interaction networks and simulate disruptions using four
attack strategies targeting vertices and edges. Our multi-indicator evaluation scheme provides a
more nuanced measure of robustness compared to single metrics. Our experiments revealed varying
vulnerabilities across networks. Targeted attacks caused abrupt collapse, while random failures
led to gradual decline. Identifying critical species and linkages is key to guiding protection efforts.
Overall, plankton networks proved fragile, especially against deliberate attacks on central hubs.
In our simulations, betweenness-based attacks were the most destructive. The multi-indicator ro-
bustness coefficient achieved better performance than individual metrics, with under 3% variance.
This network methodology reveals hidden topological vulnerabilities and complements traditional
plankton research. The quantitative insights provided in this paper can support marine conservation
and governance.

Keywords: marine plankton; interaction; complex networks; multi-indicator weighted; robustness
analysis

1. Introduction

Marine plankton play a crucial role in sustaining and balancing the health of marine
food webs, making them essential for the sustainability of environmental technologies [1,2].
They exhibit diverse species, abundant populations, and wide distribution. Their contri-
butions include the production of nutrients and oxygen, which are vital for maintaining
ecosystem health. Additionally, they facilitate the decomposition and cycling of organic
matter within water bodies. Marine plankton serve as valuable biological indicators, en-
abling the monitoring of ecological changes and ecosystem health [3]. Ensuring the stability
of plankton communities is of the utmost importance, as it supports biogeochemical cycles
and enables the proper functioning of marine ecosystems [4]. A decline in plankton abun-
dance can have far-reaching consequences, disrupting the entire food web and negatively
impacting the health of fish, marine mammals, and other marine populations. Conversely,
rapid increases in phytoplankton populations can result in harmful algal blooms such as
red tides, which pose risks to both humans and marine life. Moreover, the decomposition
of these blooms consumes large amounts of oxygen, leading to the formation of underwa-
ter hypoxic zones [5]. Through study of the resilience of marine plankton communities
against environmental disturbances and human activities, we can gain insights that can
help to improve and restore marine ecosystems. This knowledge can inform actions such
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as implementing sustainable harvest practices, utilizing biological controls, and adopting
strategies to mitigate harmful algal blooms.

Recent studies have investigated the potential relationship between environmental
changes and plankton stability. Gökçe et al. [6] developed an oxygen–plankton diffusion
model that incorporated a time delay parameter, enabling analysis of the stability of the
coexistence equilibrium of dissolved oxygen concentration and plankton density, and the
detection of Hopf bifurcations. While facilitating numerical simulations, this comes at the
expense of a rapidly decreasing solution speed with increasing parameters. Vallina et al. [7]
examined how phytoplankton functional diversity influences ecosystem productivity and
stability under fluctuating environments. They discovered that phytoplankton communities
with greater functional diversity exhibited higher and more stable ecosystem productivity.
On the other hand, they found that the positive influence of biodiversity on ecosystem
function depended primarily on the type of environmental gradient. Thakur et al. [8]
developed a nutrient–plankton interaction model to investigate the effects of phytoplankton
toxin release on other plants. Their study analyzed the local stability conditions of the time-
delayed system and determined critical parameter values for the influence of toxin release
delay on phytoplankton community stability. Morozov et al. [9] constructed a generalized
integral–differential equation-based plankton model. They proposed a method of finding
the equilibrium boundary of ecosystem stability by incorporating both nutrient levels in
the water body and zooplankton predatory behavior. A key advantage of their technique is
the small deviation range in predicting outcomes for normal water bodies (no more than
20%); however, a different modeling approach is required for atypical environments such
as red tide outbreaks.

In summary, traditional research schemes tend to discuss problems by building com-
plex mathematical models with high solution accuracy. However, setting their many
parameters can become unwieldy when multiple influential factors are involved. In con-
trast, complex network modeling and analysis can simplify highly complex systems to
help grasp the essence of a problem, offering an effective methodology for studying such
systems. The robustness of a complex network refers to how network performance changes
under perturbations. and can serve as a key indicator of complex system reliability [10–12].

The network perspective on plankton stability reveals fragilities and connectivity
patterns overlooked by traditional methods. Mapping these vulnerabilities enables preven-
tive interventions to bolster resilience. Pinpointing keystone species and critical habitat
linkages, for instance, can guide ecosystem conservation approaches. Simulating disrup-
tion scenarios quantifies robustness in a dynamic context and provides early warning of
imminent regime shifts. Comparing network topologies exposes those designs that are
most resilient against failures. These findings allow improvements to be implemented prior
to collapse. For example, adding modularity with redundancies to the power grid can help
to prevent large-scale blackouts. Increasing heterogeneity in cropland landscapes slows
transmission of crop diseases. Thus, maintaining network robustness is critical for man-
agers of natural ecosystems, physical infrastructure, supply chains, and human systems.
Network approaches transition the analysis from simple dyadic ties to complex system
interdependencies. The related methodologies reveal fragilities that are concealed when
studying components in isolation. Quantifying network robustness can aid governance by
enhancing robustness.

The utility of complex network robustness analysis has been demonstrated across
many terrestrial and marine environments. Applications include studying pollination
networks [13], trophic interactions in food webs [14], and symbiotic relationships between
species [15]. Important discoveries have been made regarding ecosystem stability in forests,
coral reefs, and animal gut microbiomes [16]. However, complex network robustness analy-
sis has not been applied to study zooplankton communities. Extending robustness analysis
to illuminate zooplankton community dynamics would similarly enhance understanding
of this vital biome. The resulting insights can inform conservation strategies to protect
marine ecosystems facing growing environmental pressures.
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In this paper, we argue that analyzing the robustness of complex ecological networks
has become an extremely valuable tool for comprehending the stability and resilience
of natural communities. Applying complex network approaches to study interactions
between zooplankton species can provide unique insights unavailable with traditional
methods [17]. In a community, robustness refers to the ability to maintain characteristic
behavior under influences such as species extinction and environmental disturbance [18].
Viewing zooplankton communities as complex networks allows critical species that con-
tribute disproportionately to overall ecosystem stability to be identified. The loss of these
highly connected “hub” species can precipitate catastrophic collapse. In addition, network
analysis allows us to model how perturbations might propagate through the system.

In order to effectively evaluate marine plankton community resilience, this paper
provides insight into different network structures’ roles and patterns of robustness devel-
opment. Specifically, plankton data are used to construct interaction networks of plankton
communities. Various network attack strategies are then selected to simulate different types
of network damage. We propose a multi-indicator weighted evaluation scheme, namely, the
robustness coefficient, to analyze plankton community robustness across diverse network
structures under simulated network damage scenarios. For this purpose, we selected three
exemplary biological communities for robustness analysis based on continuous plankton
recorder monitoring data. These communities exhibit different levels of biomass and inter-
action. Moreover, by comparing the robustness coefficient with other existing robustness
evaluation metrics and analyzing the standard deviations, our comparative experiments
provide additional evidence that using a weighted combination of multiple metrics (our
proposed robustness coefficient) results in better performance than reliance on any single
metric alone.

2. Materials and Methods
2.1. Materials

The data in this paper were obtained from the Australian Integrated Marine Observing
System (IMOS) continuous plankton recorder (CPR) data. These plankton data are classified
by genus and the time range is from January, 2009 to September 2022. We analyzed data
from three marine plankton communities, with descriptive statistics shown in Table 1.

Table 1. Statistical data on each plankton community.

Plankton Community ID Number of the Genus Average Biomass (mg/m3)

a 62 29,872.03
b 62 12,055.91
c 63 76,150.55

2.2. Methodology

The methodology in this paper consists of two main parts: (1) constructing complex
networks using marine plankton community data, and (2) conducting a robustness analysis
based on complex network theory, which includes selecting network attack strategies and
developing network robustness evaluation schemes. Figure 1 shows the flow chart.

2.2.1. Complex Network Construction

This paper explores the application of complex network theory to model marine
plankton community structures [19]. The resulting networks, referred to as marine plankton
interaction networks, provide a comprehensive representation of the complex interactions
between different plankton species within the marine ecosystem. The network consists of
vertices and edges, where the vertices represent plankton community organisms and the
edges represent interactions between them.
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Figure 1. The approach to robustness analysis described in this paper consists of three essential
components. First, the construction of a complex network relies on derived edge relationships.
Second, attack strategies include two types of attacks, namely, random and deliberate. Finally, a
robustness assessment scheme is derived from multi-indicator weighting.

The marine plankton interaction network can be represented as an undirected weighted
network G = (V, E), where V = v1, v2, v3, . . . , vn constitutes the set of vertices, n denotes
the number of vertices, E = e1, e2, e3, . . . , em constitutes the set of edges, and m represents
the number of edges for any edge e =< u, v >∈ E, where u, v ∈ V and u 6= v

The Spearman rank correlation coefficient (Spearman coefficient) is a statistical mea-
sure used to calculate the correlation degree between two variables. It is commonly used in
marine biology to determine the correlation between different plankton types. Suppose
that two variables X and Y represent two plankton abundance datasets, each with h obser-
vations; Xi and Yi denote the ith values of X and Y (1 ≤ i ≤ H), respectively. We sort both
X and Y in ascending or descending order, yielding the two variables x and y. The element
xi is the rank of Xi in X, while yi is the rank of Yi in Y. The Spearman rank correlation
coefficient between X and Y can be obtained by the following formula:

rs = ρx,y =
∑h

i=1(xi − x̄)(yi − ȳ)√
∑h

i (xi − x̄)2 ∑h
i (yi − ȳ)2

(1)

where x̄ = 1
h ∑h

i=1 xi is the mean value of x and ȳ = 1
h ∑h

i=1 yi is the mean value of y.
In the marine plankton interaction network defined in this paper, each plankton type

is represented as a network vertex. Edge weights are determined by the Spearman rank
correlation coefficient between two vertices X and Y. No edges exist between X and Y if
the p-value is <0.05. The weights wXY of edges < X, Y > between vertices X and Y are
defined as follows:

wXY =
∣∣ρx,y

∣∣ (2)

In addition, this paper proposes that the shortest path between vertices i and j has
path weights dij, defined as follows:

dij =
wviv1 + wv1v2 + · · ·+ wvt−1vt + wvtvj

t + 1
(3)
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where v1, v2, . . . , vt are the vertices on the shortest path between i and j.
Complex networks often possess intricate structures and numerous relationships,

making their detailed structural modeling a challenge. Network structural characteristics
are often used to concisely describe networks effectively. In this section, three common
network metrics, namely, the average degree, average path length, and network diameter,
are utilized to describe the overall topology of the marine plankton interaction network.

(1) Average degree: the degree of a vertex describes its connectivity, referring to its
associated edge number; the higher the degree, the stronger its connection to other vertices.
The average degree of network G is K(G), defined as the average of all vertex degrees:

K(G) =
∑n

i=1 k(vi)

n
(4)

where k(vi) denotes the degree of vertex i, or the number of connected edges.
(2) Average path length: in network theory, the path length describes the distance

between two vertices, i.e., the minimum edge number a vertex passes through to reach
another. A shorter path length indicates higher efficiency and greater information dissemi-
nation, while a smaller path length between two vertices indicates higher efficiency. The
average path length of network G, denoted L(G), is

L(G) =
∑n

i=1 ∑n
j=1 lij

n(n− 1)
, i 6= j (5)

where lij is the minimum edge number between vertices i and j and n is the vertex number
of network G.

(3) Network diameter: a network’s diameter refers to the maximum distance between
any two vertices, and is used to measure its efficiency and information transfer speed; more
specifically, the network diameter refers to the worst link path length. The diameter of
network G, denoted D(G), is

D(G) = Max
(
lij
)
. (6)

2.2.2. Attack Strategies

Robustness analysis aims to analyze network performance under various attacks [20].
Network attacks can simulate removing members based on different strategies [21].

Attacks are currently divided into random attacks and deliberate attacks [22]. Ran-
dom attacks involve random vertex or edge failures, and can be used to simulate natural
disasters or climate effects. Deliberate attacks involve deliberate vertex or edge failures,
which can simulate human activities or toxic substances that destroy communities. By
using different attack strategies, network robustness can be evaluated from multiple per-
spectives. In this paper, we selected four attack strategies considering possible destruction
of marine plankton communities: two random attacks (random vertex attack [23,24], and
random edge attack [25]) and two deliberate attacks (betweenness centrality attack and
edge betweenness centrality attack [26]).

(1) Random vertex attack: in the random vertex attack strategy, vertices are randomly
deleted from the network [27]. When a vertex is deleted, its connected edges are deleted
accordingly. The attack order qvi of vertex vi is

qvi = Rand(n), 1 ≤ i ≤ n (7)

where n is the network’s vertex number and Rand(n) generates a single random natural
number within [1, n] each time. Rand(n) generates n numbers without repetition.

(2) Random edge attack: in the random edge attack strategy, edges are randomly
deleted from the network [28]. When all edges connected to a vertex are deleted, that vertex
is deleted accordingly [29]. The attack order qei of edge ei is

qei = Rand(m), 1 ≤ i ≤ m (8)
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where m is the network’s edge number and Rand(m) generates a single random natural
number within [1, m] each time. Rand(m) generates m numbers without repetition.

(3) Vertex betweenness centrality attack: this attack strategy sequentially attacks
vertices based on betweenness centrality in order from largest to smallest. Two non-
neighboring connected vertices’ interaction depends mainly on the other vertices along
the path. These vertices act as bridges forthe interaction of edge vertices. The vertex
betweenness centrality vbetp is used to measure these vertices’ importance:

vbetp = ∑
i 6=j 6=p

pathp
ij

pathij
(9)

where pathij is the path number between vertices i and j and pathp
ij is the path number

between vertices i and j passing through vertex p.
(4) Edge betweenness centrality attack: this attack strategy sequentially attacks edges

based on betweenness centrality in order from largest to smallest. If an edge frequently
appears on the path between any two vertices, it is in a relatively central network position
with high betweenness centrality. The betweenness centrality ebetst of edge est is

ebetst = ∑
i 6=j

pathest
ij

pathij
(10)

where pathest
ij is the path number between vertices i and j passing through edge est and

pathij is the path number between vertices i and j.

2.2.3. Robustness Evaluation Scheme

In this paper, we adopt the average vertex connectivity, maximum connectivity com-
ponent, and network efficiency as evaluation indicators, drawing on complex network
theory and plankton community structure. However, these traditional single indicators
present limitations in terms of robustness analysis and measurement. To address this issue,
we introduce a novel multi-indicator weighted robustness evaluation scheme.

(1) Average vertex connectivity: vertex connectivity measures the ability of network
vertices to remain connected after deleting some number of vertices [30] based on con-
nectivity [31]. In marine plankton communities, a plankton type’s steady-state biomass is
closely related to the nutrients it can uptake. If a plankton type feeds only on one food type,
any sharp population decline risks severe harm, as a reduction in food availability threatens
this food source. Feeding on varied foods reduces this risk, as loss of one food source can
be replaced with others. From an energy transfer perspective, fewer bioenergy sources are
easily lost through disturbance and destruction. Community stability is often related to
interaction diversity, and vertex connectivity measures a similar network property.

In network G, the vertex connectivity rmij between vertices i and j denotes the min-
imum vertex number needed to disconnect vertices i and j. Then, the average vertex
connectivity AC is

AC =
∑i,j∈V rmi,j

(n
2)

, i 6= j. (11)

Generally, higher AC indicates better network robustness. To eliminate dimensional
influence on the robustness analysis, the value can be normalized as follows:

AC
′
=

AC−min(AC)
max(AC)−min(AC)

. (12)

(2) Maximum connected component: the maximum connected component refers to
the largest subnetwork formed by vertices and edges. In robustness analysis, it reflects a
network’s damage degree [32]. When the removed vertex or edge ratio reaches a critical
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value, the maximum connected component changes [33]. Plankton interactions play a
critical role in shaping community characteristics and functions. However, disrupting
plankton interaction clusters and hindering material transfer between them significantly
changes characteristic functions, leading to collapse of the original plankton community.
The maximum connected component change effectively reflects the network structure’s
tolerance to attack, providing a good evaluation of the network cluster structure.

In network G, the initial vertex number is N. After attack, the largest connected
subnetwork’s vertex number is N′. Then, the largest connected component’s relative
value is

MP =
N
′

N
(13)

Here, MP reflects the network structure’s tolerance degree to attacks. To eliminate
dimensional influence on the robustness analysis, the values can be normalized as follows:

MP
′
=

MP−min(MP)
max(MP)−min(MP)

. (14)

(3) Network efficiency: network efficiency refers to the efficiency of information
exchange throughout the network [34,35]. Energy transfer between plankton often involves
losses. The narrower the energy transfer path between any two plankton, the less conducive
it is to gaining energy and the more prone it is to being disconnected under disturbances
and destruction. In contrast, a wide path is clearly more conducive to maintaining the
community in its steady state. Given the shortest path weight dst in network G, the network
efficiency NE is

NE =
∑s,t∈V dst

(n
2)

, s 6= t. (15)

Generally, a higher NE indicates better network robustness. To eliminate dimensional
influence, the value can be normalized as follows:

NE
′
=

NE−min(NE)
max(NE)−min(NE)

(16)

(4) Robustness coefficient: three indicators (average vertex connectivity, maximum
connected component, and network efficiency) have been introduced above. Below, we
propose a multi-indicator weighted robustness evaluation scheme, called the robustness
coefficient, by balancing the weights of these three indicators.

First, let the robustness coefficient be

R = f
(

AC
′
, MP

′
, NE

′)
, (17)

where AC′, MP′, NE′ represents the three normalized indicators in the robustness evalua-
tion and f denotes the algorithm.

Next, calculate the indicators rk(k = 1, 2, 3; r1 = AC
′
, r2 = MP

′
, r3 = NE

′
) when the

marine plankton interaction network is destroyed. For each indicator, we obtain a changed
dataset ∆rk = {∆rk1 , ∆rk2 , ∆rk3 , . . . , ∆rkt−1 , ∆rkt} of quantity t. Now, compute the data mean

∆rk =
∑t

i=1 ∆rki
n

, k = 1, 2, 3. (18)

Next, calculate the indicator variation variance

S2
k =

∑t
i=1
(
∆rki
− ¯∆rk

)2

t
, k = 1, 2, 3. (19)
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Repeat the experimental steps P times to calculate the mean variance S2
k . Then,

determine each indicator’s weight in the robustness coefficient using S2
k , as follows:

wk =
∑3

k=1 S2
k

S2
k

, k = 1, 2, 3 (20)

Using the normalization method (w′1 + w′2 + w′3 = 1),

w
′
k =

wk

∑3
k=1 wk

, k = 1, 2, 3. (21)

The robustness coefficient can now be summarized as follows:

R =
3

∑
k=1

w′k
rk −min(rk)

max(rk)−min(rk)
. (22)

3. Results
3.1. Network Construction

Take the examples of three plankton communities a, b, and c. We can calculate the corre-
lation coefficients among organisms in communities a, b, and c and construct corresponding
networks according to the network construction scheme, as shown in Figures 2–4.

The results of characterization and comparison of the structural properties of plankton
interaction networks constructed from the three plankton communities (a, b, c) are shown
in Table 2. All three networks have similar vertex numbers, while their edge numbers differ.
Network b has substantially fewer edges compared to networks a and c, while networks a
and c have comparable edge numbers. Additionally, network b has an average degree of
only 5.55, indicating a sparse connection density.

Table 2. Characteristics indicators of the network.

Network ID Number of
Vertices

Number of
Edges

Average
Path Length

Average
Degree

Network
Diameter

a 62 388 12.52 2.05 4
b 62 172 5.55 2.93 5
c 63 333 10.57 2.15 4

−1.0

−0.80

−0.60

−0.40

−0.20

0.0

0.20

0.40

0.60

0.80

1.0

* p<=0.05

Figure 2. The correlation matrix of community a and its network a constructed based on the matrix;
in the correlation matrix, the colors represent the strength of correlation, with * indicating p ≤ 0.05.
In the network, the colors represent the tightness of connections, with red vertices having tighter
connections than blue vertices.
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Figure 3. The correlation matrix of community b and the network b constructed based on the matrix.
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Figure 4. The correlation matrix of community c and the network c constructed based on the matrix.

3.2. Network Robustness Analysis

We performed the plankton interaction network robustness analysis according to the
network attack strategies and robustness evaluation schemes presented in Section 2.2. First,
the number of different plankton types (1, 2, 3, ..., n) by genus was set before starting
the experiment. Then, attacks were carried out in certain proportions following different
attack strategies. During network attacks, both the structure and characteristics of the
network change. To assess the impacts of attacks on the network, we calculated the
robustness evaluation indicators for the network at different attack degrees. Variations in
the robustness evaluation indicators for the three networks under four attack strategies are
shown through the curves in Figures 5–8, and changes in the robustness coefficients are
displayed in Figure 5.

In Figure 6, the evaluation indicators decrease rapidly under random vertex attacks
for all three networks. Although the changes in the indicators differ across networks, their
robustness is similar. This suggests that plankton communities can undergo dangerously
rapid collapse when certain organisms disappear regardless of their community structure.
Furthermore, the maximum connected component of all three networks decreases the most
slowly, followed by the average vertex connectivity, while the network efficiency declines
the fastest. This shows that even though the community remains structurally sound under
random vertex attacks, its function is severely damaged.
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Figure 5. Changes in the robustness coefficient under different attack strategies.
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Figure 6. Changes in indicators under random vertex attack.

In Figure 7, the evaluation indicators perform better under random edge attacks for
all three networks as compared to random vertex attacks. Networks a and c exhibit slow
early stage declines, while network b is slightly less robust than networks a and c; however,
this difference is insignificant. These results suggest that random edge attacks have weaker
destructive power than random vertex attacks. In the early attack stages, networks with
more edges, such as a and c, are less affected. This shows that plankton communities can
resist natural disruptions well, especially highly interconnected communities such as a
and c.

In Figure 8, the evaluation indicators decrease rapidly under vertex betweenness
centrality attacks for all three networks, especially network b. In network b, when the vertex
failure rate reaches 60%, the values of the average vertex connectivity and the network
efficiency both drop to almost 0. At this point, the maximum connected component value is
only about 10% of the original network. This shows that plankton communities can rapidly
collapse under vertex betweenness centrality attacks, and that degradation of function is
inevitable even if community biomass remains high.
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Figure 8. Changes in indicators under vertex betweenness centrality attack.

In Figure 9, the evaluation indicators under edge betweenness centrality attacks
perform better than under vertex betweenness centrality attacks for all three networks.
The maximum connected components and the network efficiency of networks a and c
exhibit show slow decreases, while network b decreases more rapidly, which is likely
related to its having fewer edges. This suggests that more interspecies connections confer
higher plankton community robustness. However, the intensity of damage under edge
betweenness centrality attacks is greater compared to random edge attacks, despite both
attack types targeting edges. This shows that deliberate attacks, whether on vertices or
edges, consistently cause more damage than random failures.

In Figure 5, the robustness coefficient intuitively expresses the overall network ro-
bustness under different attack strategies. Analysis of the robustness coefficients for the
three networks shows that network robustness is greater under random attacks, especially
random edge attacks. In the early and middle attack stages, little damage occurs to any
network. Under random vertex attacks, the rate at which network robustness is degraded is
higher than under random edge attacks, though the rate remains relatively gradual. How-
ever, network robustness decreases rapidly under deliberate attacks, rendering networks
more vulnerable than under random attacks. Deliberate attacks exhibit greater global
impact, are targeted more strategically, and disrupt networks faster than random attacks,
conferring stronger attack capability. Furthermore, in both random and deliberate attacks,
vertex attacks have greater destructive power than edge attacks; this is because the edges
removed in edge attacks often have alternative paths for replacement, while vertex attacks
eliminate both connected edges and alternative paths.
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Figure 9. Change in indicators under edge betweenness centrality attack.

Finally, we specifically investigated the top five genera of planktonic organisms that
exerted the most significant influence on robustness within each network, as visually
represented in Figure 10. The outcomes of our analysis reveal noteworthy findings, as
we observed crucial genera shared among the three networks that exhibited extensive
interconnections. Additionally, we identified distinct variations between the networks,
highlighting unique characteristics and dynamics. The findings of this study possess direct
implications for advancing sustainable technological research, and can offer substantial
assistance in this critical domain.
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Figure 10. The top five genera of planktonic organisms with significant impacts on network robustness.

4. Discussion

This paper has applied complex network analysis to assess the robustness of marine
plankton communities, providing insights relevant to sustainable environmental technol-
ogy. Our findings reveal how different attack strategies impact network topology and
performance. Several key points warrant further discussion.

4.1. Ecological Significance of the Results

The results preented in this paper demonstrate that plankton interaction networks
exhibit varying robustness to disturbances. Identifying crucial hub genera and critical
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linkages can guide protection efforts for at-risk marine environments. However, connec-
tivity alone does not determine robustness. Even highly interconnected networks such as
community c proved vulnerable to targeted attacks on central vertices. This highlights the
complex interplay of structure, dynamics, and perturbations in ecological network analysis.

4.2. Methodological Advantages

Network approaches offer distinct advantages over traditional techniques for studying
community robustness. Representing communities as networks enables the modeling of
component interdependencies. Dynamic simulations can assess responses to perturbations
in a way that is impossible with static methods. Moreover, our proposed multi-indicator
weighted evaluation provides a more nuanced appraisal of robustness than single metrics
such as connectivity.

Comparing our network-based approach to existing plankton community robustness
assessment methods reveals many advantages of our method. Specifically, our technique
can be compared to the plankton population dynamics model developed by Cropp et al. [36].
The Cropp model uses a series of nonlinear equations to simulate fluctuations in plankton
biomass under various environmental conditions. Compared to the Cropp model, our
network approach has the following strengths:

- It captures the intricate relationships between plankton types, rather than treating
genera in isolation, helping to assess robustness at the ecosystem scale;

- It can simulate community dynamics during response to perturbations through differ-
ent attack strategies;

- Its computational efficiency allows rapid investigation of multiple scenarios;
- The proposed multi-metric evaluation enables more nuanced measurement of robust-

ness;
- Visual network representations provide intuitive understanding of topological vul-

nerabilities.

However, the Cropp model has more detailed biological characterizations of individual
genera and their behaviors. Thus, the network technique offers higher-level robustness
assessments that complement the individual-based modeling insights. In the future, an
integrated framework combining both approaches may provide a more comprehensive
perspective on plankton community resilience. While no single technique can provide
all the answers, network analysis reveals community-scale phenomena that reductionist
approaches cannot. Further synergistic application of systems and traditional methods can
advance our understanding of these vital marine ecosystems.

In addition, we computed the standard deviation between the multi-metric weighted
evaluation indicators we proposed and the single metrics, demonstrating that our multi-
metric approach has better stability across the evaluation indicators compared to relying
on any individual metric. A single metric may be susceptible to noise, and may fail to
capture key aspects of ecosystem dynamics. In contrast, a composite indicator based on
multiple metrics helps to smooth over variability in individual measurements and integrate
diverse aspects of stability. The lower standard deviation that we obtained verifies that
our multi-metric technique yields more consistent evaluations of plankton community
robustness.

The calculated variation in the standard deviation for the evaluation indicators under
the four attack strategies is shown Table 3. The standard deviation values in Table 3 show
that the proposed multi-indicator weighting evaluation scheme, that is, the robustness
coefficient, achieves more stable measurement than the other evaluation indicators under
different attack strategies. The maximum standard deviation value is 0.33 and the minimum
is 0.32, fluctuating by only about 3%, which is significantly less than the other evaluation
indicators. In addition, the average standard deviation is the lowest among the different
evaluation indicators.
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Table 3. Comparison of the standard deviation of the evaluation indicators under different at-
tack strategies.

Name Average Vertex
Connectivity

Maximum
Connected

Component
Network Efficiency Robustness

Coefficient (Ours)

Random vertex attack 0.33 0.33 0.33 0.33
Random edge attack 0.34 0.30 0.35 0.32

Vertex betweenness centrality attack 0.33 0.36 0.34 0.33
Edge betweenness centrality attack 0.34 0.31 0.35 0.32

Mean standard deviation 0.335 0.325 0.343 0.325

Overall, based on the differences in the trend lines and standard deviations of the
different indicators, the robustness coefficient proposed in this paper demonstrates better
stability and reliability.

4.3. Limitations

While this study presents several valuable contributions, it has certain limitations that
should be acknowledged.

First, while the plankton dataset encompasses a broad scope, it primarily considers
the relationships between plankton, and does not include all relevant genera and species.
In addition, it does not account for the influence of varying external biotic factors.

Second, the simulated attack experiments make a number of simplifying assumptions,
and may not fully reflect real-world complexity.

In light of these limitations, the findings presented in this paper should be interpreted
as indicative rather than definitive. Within this delimited scope, however, these findings
make a valuable contribution that can inform future research. The complex systems
approach holds significant potential advantages for elucidating ecosystem dynamics.

4.4. Future Research Directions

While the network modeling approach presented in this paper represents an important
initial foray towards the application of complex systems techniques to elucidate plankton
community stability, there remain ample opportunities to expand upon this foundation
and augment the utility of these methods.

One potential area for future work is incorporating additional biological detail into
the network construction process, for instance, by weighting edges based on the strength
of trophic interactions or distinguishing between symbiotic and competitive relationships.
This could reveal how network topology is related to underlying population dynamics.

More sophisticated simulation studies could be conducted as well, such as modeling
cascading extinctions or evaluating different recovery and restoration interventions. Transi-
tioning from descriptive robustness analyses to utilizing network models predictively is a
critical next frontier.

By capitalizing on these future opportunities, network analysis of plankton com-
munities can mature into an established methodology that provides critical support for
evidence-based ocean management and sustainable environmental technologies. The
present study provides a solid initial foundation to enable progress toward this goal.

5. Conclusions

This paper has demonstrated the application of complex network analysis to evaluate
the robustness of marine plankton communities, providing a novel systems perspective
relevant to sustainable environmental technology.

Our findings reveal that plankton interaction networks exhibit varying vulnerabilities
to disturbances depending on topological structure. Random failures of vertices or links
result in slower degradation than targeted attacks on central hubs. This highlights the need
to identify and protect crucial species that sustain ecosystem connectivity. The proposed
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multi-indicator evaluation scheme enables more comprehensive robustness assessment
than reliance on single metrics. By capturing multiple aspects of network performance,
the proposed robustness coefficient offers a more nuanced and stable characterization.
The presented network modeling approach enables plankton community dynamics to be
studied under real-world disruption scenarios that are difficult to replicate experimentally.
This approach contributes quantitative insights that can complement field studies, allowing
for a more complete understanding.

While this work has limitations in terms of the dataset scope and model assumptions,
it represents an important step in applying complex systems techniques to plankton ecol-
ogy. Extensions could include incorporating broader biological data and environmental
variables into network construction and analysis.

Overall, the present paper demonstrates the utility of network science for investigating
plankton community robustness, and is relevant for conservation and sustainable resource
management. Quantifying fragilities in this vital biome can help to guide wise interventions
for better maintenance of marine ecosystem health.
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