
Citation: Lai, R.; Zhao, G.; He, Y.;

Hou, Z. A Robust Sharding-Enabled

Blockchain with Efficient Hashgraph

Mechanism for MANETs. Appl. Sci.

2023, 13, 8726. https://doi.org/

10.3390/app13158726

Academic Editor: Gianluca Lax

Received: 21 June 2023

Revised: 23 July 2023

Accepted: 23 July 2023

Published: 28 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

A Robust Sharding-Enabled Blockchain with Efficient
Hashgraph Mechanism for MANETs
Ruilin Lai *, Gansen Zhao, Yale He and Zhihao Hou

School of Computer Science, South China Normal University, Guangzhou 510631, China;
gzhao@m.scnu.edu.cn (G.Z.) heyale@m.scnu.edu.cn (Y.H.); houzhihao@m.scnu.edu.cn (Z.H.)
* Correspondence: 2020010184@m.scnu.edu.cn

Abstract: Blockchain establishes security and trust in mobile ad hoc networks (MANETs). Due to the
decentralized and opportunistic communication characteristics of MANETs, hashgraph consensus is
more applicable to the MANET-based blockchain. Sharding scales the consensus further through
disjoint nodes in multiple shards simultaneously updating ledgers. However, the dynamic addition
and deletion of nodes in a shard pose challenges regarding robustness and efficiency. Particularly, the
shard is vulnerable to Sybil attacks and targeted attacks, and dishonest gossip reduces the efficiency
of hashgraph consensus. Therefore, we proposed a behavior-based sharding hashgraph scheme. First,
dishonest behaviors of nodes are recorded in a decentralized blacklist. Gossip information is sent
to a reliable neighbor, and gossip information from another reliable neighbor is received. Second, a
tree-assisted inter-sharding consensus is proposed to prevent Sybil attacks. The combination of shard
recovery and reconfiguration based on node state is devised to prevent targeted attacks. Finally, we
conducted the performance evaluation including security analysis and experimental evaluation to
reveal the security and efficiency of the proposed scheme.

Keywords: blockchain; MANET; hashgraph; sharding; reputation

1. Introduction

Blockchain has attracted widespread attention from all over the world [1] because of
its capability of establishing trust in a decentralized manner. Distributed ledger technology
makes the recorded transactions immutable, transparent and traceable, such that the
blockchain is applied to some IoT (Internet of Things) scenarios, e.g., VANET (vehicular ad
hoc network) [2], UAS (unmanned aerial system) [3] and MCS (Mobile CrowdSensing) [4].
A mobile ad hoc network (MANET) is established autonomously by mobile devices without
relying on any infrastructure, and the mobile devices communicate in wireless multi-
hop mode [5]. The MANET is decentralized in communications. The integration of
blockchain and MANET improves both MANET security and blockchain adaptability.
Nowadays, the blockchain is explored to build on MANETs [6–9], and its applications
involve incentive data collection [10], secure resources sharing [11–13], and an expansion of
cryptocurrency [14,15]. A MANET-based blockchain is geographically closer to end users
than the blockchain based on edge computing, so it is envisioned to provide more safety
and privacy protection.

Hashgraph [16] is more applicable to the MANET-based blockchain compared with
current popular consensus mechanisms. Since Proof-of-X, PBFT (Practical Byzantine Fault
Tolerance) [17] and RAFT [18] require one miner/leader for transactions collection and
block generation, they conflict with the decentralized characteristics of the MANET in
communications, reducing the security and efficiency of the blockchain. In other words,
it is hard to select a reliable miner/leader which has the minimum transmission delay
to all other nodes in a dynamic network. The PoW (Proof of Work) [19] aggravates the
computational burdens of the nodes with limited resources. Under opportunistic commu-
nications incurred by node mobility, the collection of vote messages in the PBFT or RAFT is

Appl. Sci. 2023, 13, 8726. https://doi.org/10.3390/app13158726 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13158726
https://doi.org/10.3390/app13158726
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app13158726
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13158726?type=check_update&version=1

Appl. Sci. 2023, 13, 8726 2 of 22

in low rates, resulting in latency of the blockchain update. Even worse, the communication
complexity O(n2) of the PBFT takes up a lot of network resources. Fortunately, hashgraph
has the capacity of supporting the dynamic nature of MANETs. It is because: (i) neighbor
nodes in the MANET are dynamically changed, while the leaderless and asynchronous
operations of hashgraph avoid the overhead of route discovery and construction, e.g., the
route from a miner/leader to other nodes. So, hashgraph mitigates the latency caused by
neighborhood changes. (ii) When network partition occasionally occurs in the MANET,
an isolated group of nodes can continue to perform virtual voting in hashgraph. Once the
network merges, votes are counted to confirm events. (iii) The wireless communication
resources of the MANET are limited, while gossip about gossip and the virtual voting
mechanisms of hashgraph make each gossip contain votes for multiple received gossips,
without extra votes transmission, improving the transmission efficiency of voting messages.
Intuitively, by abstracting the physical network topology [20], the communication links
of the above consensus protocols form the logical topologies of blockchain networks in
Figure 1. Hashgraph, which is the mesh network without a leader, is similar to the MANET.

RAFT
network

PBFT/PoW
network

hashgraph
network

leader node/miner normal node

Figure 1. Logical topologies of blockchain networks with different consensus protocols.

Sharding technology scales the blockchain effectively through the parallel execution
of multiple shards. The blockchain nodes and the distributed ledger are divided into
shards. Two critical components of the sharding protocol are defined as intra-sharding and
inter-sharding consensus [21,22]. Within a shard, nodes are responsible for updating trans-
actions to the local ledger via the intra-sharding consensus. The inter-sharding consensus
guarantees the atomicity and consistency of cross-shard transactions. The atomicity means
the cross-shard transaction is committed and aborted atomically, and the consistency is
that the transaction is either updated to the ledgers of all involved shards or not updated.
Furthermore, if each shard is constructed by nodes with geographical proximity, it not only
improves communication efficiency in the intra-sharding consensus but also reduces the
number of cross-shard transactions related to geographic information.

Nevertheless, the dynamic addition and deletion of nodes make shards more vul-
nerable to being compromised, which is the motivation of our work. Reputation-based
asynchronous consensus in VANETs alleviates these attacks to some extent [23,24]. Since
we only consider the movement of nodes, the VANET is regarded as one kind of MANET.
In Zhang et al. [23], nodes whose reputation values are lower than a given threshold are
regarded as malicious ones, and the consensus threshold is calculated based on the number
of malicious nodes within a shard. After a block is generated through PoW resolution,
nodes add their signatures into the block for validation and propagate it to neighbor nodes.
Only when the number of attached validation signatures of the block is larger than the
consensus threshold is the block sent to a nearby RSU (Road Side Unit) for synchronizing
to other nodes. Thus, even though malicious nodes come into a shard, the consensus
threshold increases and the attack cost rises accordingly. In Wang et al. [24], nodes with
high reputation values are randomly selected into a hashgraph committee, becoming a
primary and primary candidates. In the process of hashgraph consensus, the primary packs
validated events into a block. Then, the block is confirmed by accounting nodes based on

Appl. Sci. 2023, 13, 8726 3 of 22

the majority, and it is recorded in the chain. The members of the hashgraph committee
are fixed, while newcomers become accounting nodes dynamically. Since the primary and
primary candidates are authenticated by a certificate authority and their voting weights are
related to reputation scores, the Sybil attack can be prevented.

Therefore, we propose a behavior-based sharding hashgraph for nodes dynamically
joining and leaving a shard in MANETs. However, it needs to overcome the challenges of
robust shards and efficient hashgraph consensus. Robustness. The reputation of nodes
should not be centrally managed by a third party, e.g., a trust authority [23] or a certificate
authority [24]. It is because the single point is potential risks. Moreover, if a shard is
compromised, a recovery mechanism is necessary to restore the transactions generated by
honest nodes in the blockchain. Efficiency. The transmission delay is relatively high in
MANETs due to dynamic changes of neighbor nodes [25]. Dishonest gossip, which is used
to propagate false gossip or not to propagate received gossip to neighbors, aggravates the
latency of blockchain updates.

In order to address the above challenges, our contribution is as follows:

• A sharding hashgraph framework with a blacklist is proposed for the MANET-based
blockchain. In each shard, the blacklist records the dishonest consensus activities of
nodes in a decentralized manner. With the assistance of the blacklist, gossip infor-
mation is sent to a reliable neighbor, and gossip information from another reliable
neighbor is received first. It improves the efficiency of gossip about gossip in hash-
graph consensus.

• A tree-assisted inter-sharding consensus is proposed to prevent Sybil attacks. A
tree, treeje, whose root is the participation request of a node, is constructed by all
involved shards. Based on treeje, the requester with enough reputation values is
allowed to join the shard, and its reputation values cannot be reused in other shards.
Furthermore, transactions of the requester can be updated to the graph, and the
requester propagates gossip information first. Once the requester is allowed to join
the shard, its updated transactions can be used directly, and previous virtual voting is
counted in hashgraph consensus. Hence, the requester can participate in activities of
the shard without waiting.

• The combination of shard recovery and reconfiguration based on node state is pro-
posed to prevent targeted attacks. Based on node state changes and treeje, a compro-
mised shard can be determined by other shards and then is recovered. When node
states are changed frequently in the shard, the shard is reconfigured dynamically
and adaptively.

2. Related Works
2.1. Sharding-Enabled Blockchain

The sharding technology enhances scalability of the blockchain through simultane-
ously maintaining the desired levels of throughput or reducing the storage overhead of the
ledger. Elastico [26] proposed the first sharding-based permissionless blockchain, where
the PoW is used for shard formation and the PBFT is run for intra-sharding consensus.
Monoxide [27] is the first sharding mechanism that adopts asynchronous consensus. In
order to prevent participants from aggregating mining powers in a shard, it allows partici-
pants to solve PoW puzzles at different shards concurrently. The ledger of SharPer [28] is
formed as a DAG (Directed Acyclic Graph), and each cluster maintains only a view of the
ledger. The decentralized flattened protocol is proposed to enable the parallel processing of
cross-shard transactions with involved clusters.

Reputation promotes the robustness and efficiency of the sharding-based blockchain
as well as provides incentives. The reputation can be evaluated based on the consensus
activities of nodes [29–32] or ratings of other nodes [33,34]. Huang et al. [29] presented
the double-chain architecture. It generates the reputation chain via the synchronous BFT
consensus combining collective signing to support the high throughput of the transaction
chain generated via the RAFT. To avoid collusive attacks, each shard should have similar

Appl. Sci. 2023, 13, 8726 4 of 22

total reputation values. Wang et al. [30] integrated the RAFT with the Proof of Behavior
(PoB) and supervisory mechanism for fast blockchains in complex networks. The PoB
facilitates the election of a leader from honest nodes, and the supervisory group monitors
whether a leader is acting honestly or not during a RAFT process. In [31], the trust
concept is integrated into the deep Q network, which optimizes the system throughput
and security level. The trust estimates the network’s malicious probability by monitoring
the inconsistency of block consensus. Zhang et al. [32] proposed the leader to be selected
based on reputation values, several monitors in each committee to supervise the leader’s
behaviors, a referee committee to arbitrate between opposing parties, and a recovery
procedure for the reselection of a leader. It mitigates a major bottleneck of the system
via improving the capability of a leader. Gao et al. [33] adopted the sharding–hashgraph
consensus mechanism to improve the throughput of blockchain networks. The weight of a
node is evaluated according to node status, i.e., its geographic location, reputation values,
etc. With the assistance of the weights, nodes are allocated to multiple shards with good
performance, and their virtual voting enables efficient consensus. Asheralieva et al. [34]
modeled a self-organized shard formation as the reputation-based coalitional game, where
a node selects the best shard to maximize its payoff, and a shard coalition selects the
best nodes to maximize its reputation. However, the above work pays less attention
to inter-sharding consensus and shard reconfiguration, which are major features of the
sharding-based blockchain.

2.2. MANET-Based Blockchain

The consensus mechanism of a MANET-based blockchain needs to satisfy the highly
dynamic nature of nodes. According to the structure of the ledger, the MANET-based
blockchains are classified into the chain and the DAG.

Some works utilize the chain structure for MANET-based blockchains. In order to
incentivize mobile devices to share their computational resources, Rasool et al. [11] intro-
duced a blockchain-based credit system by using Iroha, which is a project of Hyperledger
for lightweight mobile applications. It also realizes reliable data analysis against malicious
devices. Jiao et al. [12] proposed a stability-aware PoW consensus protocol, where the
node with high stability is first selected as a miner. The stability of a node indicates its
mobility in the network, which is calculated by the degree of the node in certain time slots.
Liu et al. [10] introduced a blockchain system for security data collection in MANETs. In
order to avoid forks incurred by network latency, after receiving the first valid block, a
node stops mining and waits a time window for more valid blocks. When the time window
expires, the winner is selected according to the specified rule, i.e., block generation time and
the number of receipts within the block. Long et al. [15] optimized the block propagation in
wireless blockchain networks by the partial engagement of nodes and optimal transmission
routing based on a distributed Steiner tree. However, since the delay of transaction collec-
tion and block propagation is relatively high in MANETs [35], the geographical location of
the miner and its connectivity in the network largely affect the blockchain performance.

Some works utilize the DAG structure for fast MANET-based blockchains. Morales et al. [36]
integrated a blockgraph with RAFT to cope with network partition problems. The structure
of the blockgraph contains multiple branches, and each branch corresponds to a chain of
blocks generated by a network partition. When the network topology of a split, a merge or a
mix occurs, the involved nodes process reconfiguration, leader elections and chain updates
via the RAFT in different partitions. Luo et al. [13] presented a hashgraph-based solution
for common knowledge formation in decentralized swarm robots. Swarm robots within a
group reach consensus via hashgraph, and the ranger robot with powerful capabilities in
communication and mobility establishes the connection among groups. Fu et al. [37] used
hashgraph to support the dynamic changing of consensus subjects and proposed the TEE
(Trusted Execution Environment)-based ’single-use of self-parent’ mechanism to prevent
fork attacks in hashgraph consensus. However, the above blockchains are vulnerable

Appl. Sci. 2023, 13, 8726 5 of 22

to targeted attacks. For example, a partitioned network [36], a ranger robot [13] or the
committee of consensus subjects dynamically joining or exiting [37] becomes the target.

Our work is improved from that of Zhang et al. [23] and Wang et al. [24], which
alleviate targeted attacks incurred by nodes dynamically joining and leaving a shard.
Howevaer, they are faced with the centralized problems of one miner synchronizing blocks
to other nodes and a third party managing the reputation. Also, their infrastructure design
cannot be adopted in MANETs.

3. Preliminary

Hashgraph [16] is a promising consensus mechanism based on DAG, realizing asyn-
chronous byzantine fault tolerance. The decentralization feature of DAG enables hash-
graph to work in a leaderless, asynchronous and parallel manner. Additionally, hashgraph
achieves consensus on the order of transactions through processes: events generation,
gossip about gossip, votes counting and ordering events.

Some concepts and operations of hashgraph are defined:
Event: An event is a data block, whose structure is denoted as (1). timestamp is

the generation time of the event, hashId is the hash value of the event, and txList is the
transactions to be updated. H1 and H2 are the hash values of the node’s previous event
and the received event, respectively.

< timestamp, hashId, txList, H1, H2 > (1)

Gossip about gossip: The event is sent to another node along with received gossip
information and its own previous event.

Absolute Majority: More than 2/3 of all nodes in the network.
Strongly Seeing: Event y strongly sees event x if the paths of y seeing x cover the

absolute majority. For example, from the blue lines in Figure 2, event b1 is strongly visible
to event c3, because c3 finds events a2, b2, c2 and d2 seeing b1.

Created Round: A newly created round starts from event y, when y strongly sees the
events generated by the absolute majority. Event y is named as a witness. For example, in
Figure 2, event c3 strongly sees events b1, c1, d1 and e1, so event c3 creates a new round.

c3

b1 c1 d1 e1

a2 b2
c2

d2

Figure 2. Illustration of strongly seeing in hashgraph.

Famous Witness: x is a famous witness if both x and z are witnesses, and z strongly
sees more than 2/3 of witnesses, each of which also strongly sees x. Famous witnesses are
confirmed by the community, which is proved by [16].

Appl. Sci. 2023, 13, 8726 6 of 22

Event Order: Famous witnesses are sorted according to their received round num-
ber, consensus time and signature XORing. The sequence is consistent among honest
nodes. It means that the order cannot be tampered with unless it is approved by the
absolute majority.

4. Behavior-Based Sharding Hashgraph Framework

In this section, the system model, network model and security problems are introduced.

4.1. System Model

The shards are associated with geographical regions. Disjoint mobile nodes within
each shard maintain a graph via hashgraph consensus in Figure 3. The regions of shards
partially overlap to increase the communication channels among shards. During the
consensus process, dishonest behaviors of nodes are updated to the graph and become a
decentralized blacklist.

Shard1

blacklist

Shard2
Shard3

Shard4
graph2

Node in shard1

Node in shard2

graph1

Figure 3. The system model of sharding hashgraph.

In the consensus layer of hashgraph, three dishonest behaviors are defined as a False
Event (FE), False Free-riding Event (FFE) and Double-spent Event (DE). The False Event has
invalid transactions in its txList. The False Free-riding Event is the event referring to False
Events, meaning that the event generator performs false verification. The Double-spent
Events are defined by (2). If only one of the Double-spent Events becomes famous, a fork
occurs. Proved by [20], at least one honest node can see Double-spent Events. These events
can be found by honest nodes and added into an accusation transaction in (3), where pk
is the public key of the accused node, which is assumed to be its ID. bType is the type
of dishonest behavior, and beH is the hash value of the False Event or False Free-riding
Event, or hash values of Double-spent Events. Thus, honest nodes validate the events with
txa in the following rounds of consensus. txas form the decentralized blacklist of nodes,
recording their dishonest behaviors in consensus.

< eventi, eventj > (2)

s.t.∃x ∈ eventi.txList, ∃y ∈ eventj.txList

x and y are conflicting

eventi and eventj are generated by the same node

txa = {pk, beH, bType, timestamp} (3)

s.t.bType = FE|FFE|DE

In the transmission layer of hashgraph, nodes are required to propagate received
gossip information. Two propagation behaviors of nodes are defined as a Empty Event and
Non-empty Event. An Empty Event is the event where txList = null. A Non-empty Event is
the event where txList 6= null, meaning the involved transactions are also generated in the

Appl. Sci. 2023, 13, 8726 7 of 22

event. First, according to a given time scale, e.g., a week, the Empty Events and Non-empty
Events are divided into recent events and past events in the graph. Second, the network
connectivity is formally described as a vector {eNum, gNum}, where eNum is the number
of generated events and gNum is the number of event generators. According to a given
standard network connectivity, {δ, ∆}, if eNum < δ & gNum < ∆, the network connectivity
is poor. If eNum > δ & gNum > ∆, the network connectivity is good. Otherwise, if
eNum ≤ δ || gNum ≥ ∆, or eNum ≥ δ || gNum ≤ ∆, the network connectivity is normal.
Third, denote the nodes without transactions in the blacklist as hNodes. hNodes have not
engaged in dishonest behaviors. According to the graph, the Empty Events generated
by hNodes are counted as eN1, eN2, eN3, eN4, eN5 and eN6, and the Non-empty Events
generated by hNodes are counted as nN1, nN2, nN3, nN4, nN5 and nN6 in Table 1. For
example, in the past network with good connectivity, the node generated 5 Empty Events
and 11 Non-empty Events. In the recent network with poor connectivity, the node also
generated 1 Empty Events and 11 Non-empty Events. So, for this node, eN5 = 5, nN5 = 15,
eN1 = 1, nN1 = 11, and other parameters are 0. Thus, Table 1 counts the honest propagation
behaviors of hNodes.

Table 1. The classification of honest Empty Events and Non-empty Events based on their generation
time and network connectivity.

Poor Network Connectivity Good Network Connectivity Normal Network Connectivity

Recent events eN1, nN1 eN2, nN2 eN3, nN3
Past events eN4, nN4 eN5, nN5 eN6, nN6

According to Table 1, the propagation behaviors of a candidate receiver and a candidate
sender are evaluated. On one hand, provided that a node intends to send an event to
one of its neighbors, in order to select a reliable neighbor to forward the event in time,
the reputation value of each neighbor (candidate receiver) is calculated in a weighted
Formula (4). α1 and α2 represent the weights of recent events and past events, respectively.
α1 + α2 = 1 and α1 > α2 make recent events more influential. Events will be sent to the
receiver with high rRep. On the other hand, provided that a node receives requests from its
multiple neighbors, it needs to choose one of them as a sender. In order to receive valid
events and improve communication efficiency in the network, the reputation value of each
neighbor (candidate sender) is calculated in (5). β is a given value to control the weight
of a Empty Event and Non-empty Event, β ∈ (0.5, 1]. Since an Empty Event is only to
relay gossip information, its generation should be associated with the network connectivity.
Particularly, when the network connectivity is poor, e.g., nodes moving frequently, more
Empty Events are conducive to event propagation. So, the weight of an Empty Event is β,
while that of a Non-empty Event is (1− β). When the network connectivity is good, fewer
Empty Events can cut down the number of repeated events transmitted, mitigating the
channel competition and reducing network resource overhead. So, the weight of an Empty
Event is (1− β), while that of a Non-empty Event is β. Events from the sender with a high
sRep will be received. Note that in order to broadcast an event, the sender and receiver of a
node are different.

rRep = α1 ∗ (eN1 + eN2 + eN3 + nN1 + nN2 + nN3) + α2 ∗ (eN4 + eN5 + eN6 + nN4 + nN5 + nN6) (4)

sRep = α1 ∗ [(β · eN1 + (1− β) · nN1) + (β · nN2 + (1− β) · eN2) + (0.5 · eN3 + 0.5 · nN3)]

+α2 ∗ [(β · eN4 + (1− β1) · nN4) + (β · nN5 + (1− β) · eN5) + (0.5 · eN6 + 0.5 · nN6)]
(5)

Therefore, the hashgraph mechanism with a blacklist brings some benefits: (i) the
nodes with dishonest behaviors are found and can be punished in a decentralized manner,
e.g., the node appearing in the blacklist frequently is not allowed to participate in a shard.
The accused behaviors are traceable and auditable in case of a dispute. Rational nodes are

Appl. Sci. 2023, 13, 8726 8 of 22

encouraged to work honestly. (ii) Nodes intend to transmit events continuously, because
the nodes with smaller rRep or sRep cannot receive events or send events without difficulty.
The problem of dishonest gossip, that the gossip information contains False Events, False
Free-riding Events and Double-spent Events, is alleviated. It reduces the transmission
delay of events and improves the efficiency of hashgraph consensus.

4.2. Network Model

The network model is built on the mobile ad hoc network, which is also called a
wireless multi-hop network without infrastructures. In the network, neighbor shards are
two shards that have at least one pair of neighbor nodes. Since nodes within a shard are in
geographical proximity, there are more neighbor nodes and multiple communication paths
between every two nodes. Hence, the transmission delay in a shard is less. Nevertheless,
due to opportunistic communications caused by node mobility, neighbor nodes change
over time, leading to changes of neighbor shards. Hence, the connection channels between
shards are not always reliable, and the communication among them has a certain delay.

4.3. Security Problem

However, the dynamic shards caused by nodes dynamically joining or exiting incur
some security problems.

• Sybil attack. A malicious node intends to create multiple identities to participate in
shards, or an identity is used in multiple shards. Intuitively, only when the identity is
validated by multiple shards is the node allowed to join a shard. Nevertheless, under
unstable communications among shards, high transmission delay makes the node
spend a long time waiting for identity authentication.

• Targeted attack. Malicious nodes intend to control a specified shard by compromising
honest nodes or joining the shard. When the number of malicious nodes exceeds the
fault tolerance of the shard, it is corrupted. Intuitively, the reconfiguration of shards in
a small epoch can alleviate the targeted attack. Nevertheless, it results in the frequent
interruption of services during shard reconfiguration, reducing the performance of
the system.

5. Asynchronous Intra-Sharding and Inter-Sharding Consensus

In this section, the principle of tree-assisted inter-sharding consensus and the work
process of a dynamic shard are discussed.

5.1. Principle of Tree-Assisted Inter-Sharding Consensus

The basic requirement of inter-sharding consensus is to guarantee the consistency and
atomicity of a cross-shard transaction. The principle of the tree-assisted inter-sharding
consensus is that cross-shard transactions are updated first and then confirmed so that
eventual consistency is achieved. Since a tree is proposed to include the cross-shard
transaction and its related transactions, the atomicity of the cross-shard transaction can
also be guaranteed. The details of this principle are described as follows.

• A cross-shard transaction is generated and updated to the graph of the local shard
and sent to involved shards.

• Transactions related to the cross-shard transaction are generated and updated by
involved shards in parallel. They refer to the cross-shard transaction and are sent to
other involved shards, constructing the tree globally.

• When the cross-shard transaction is used, the number of child nodes of the cross-
shard transaction and their validity are checked. Only if the cross-shard transaction is
validated by all involved shards is it confirmed. Otherwise, if a given time is expired,
the cross-shard transaction is revoked by a newly updated transaction, and the event
containing the cross-shard transaction is determined to be a False Event and added
into the blacklist.

Appl. Sci. 2023, 13, 8726 9 of 22

Thus, the efficiency of updating valid cross-shard transactions is improved. Its update
time is only related to the delay of consensus in a local shard. The inter-sharding consensus
is suitable to the MANET, since the communication between shards is opportunistic. In
addition, the generation of cross-shard transactions is accountable.

5.2. Work Process of a Dynamic Shard

A dynamic shard is incurred by the addition and deletion of nodes. In addition to
the tree-assisted inter-sharding consensus, hashgraph consensus is also used to update
transactions first before confirming them. The asynchronous intra-sharding and inter-
sharding consensus empower the security and efficiency of a dynamic shard via four steps:

Step 1: Request of an accounting node.
When a node enters the geographical range of a shard, it can request to become an

accounting node by submitting a cross-shard joined transaction in (6). sig() is a signature
function, sk is the secret key of the requester, and ts is the generation time of cTxj. Denote
the shard in this application as target shard whose ID is sId. H is the hash value of cTxj,
and preH is the hash value of the requester’s previous valid transaction.

cTxj = sig(sk, ts, sId, H, preH, beSet) (6)

s.t.beSet = {be1, be2, be3, ...} (7)

be =< eH, preH, jTs, eTs, jSId, nBL >

In (7), each element in beSet records the historical behaviors of the requester after given
the timestamp ts0. Since these records are only updated when cTxj is approved, each be has
a relevant pair of cTxj and the cross-shard exited transaction. jTs and eTs are the generation
time of cTxj and the cross-shard exited transaction, respectively. eTs > jTs > ts0. jSId is
the ID of the shard related to the behaivors be, and nBL is the number of the accusation
transactions with timestamp ∈ [jTs, eTs]. eH is the hash value of the cross-shard exited
transaction, and preH = cTxj.preH.

Nodes in target shard check the records form a hash link to prevent the behavior
records from decoupling, which is explained in the Performance Evaluation section. If cTxj

is approved, it is sent to the involved shards.
Meanwhile, the requester downloads validated events and shard information in target

shard. For example, shard information contains the geographical range and the member IDs
of the shard. It acts as a relay to propagate gossip information via events with txList = null,
and it generates transactions for data sharing. It is worthwhile to note that these transactions
can not be used until cTxj is confirmed. Behaviors of the requester are accountable, because
the False Event of cTxj and False Free-riding Events can be recorded in the blacklist.

Step 2: 1st validation of the request. Nodes in involved shards check whether the behavior
records of cTxj are correct.

In an involved shard, cTxj is verified via the smart contract (see Algorithm 1). In line 1,
the signature of the requester, and whether the requester is working in a shard, are checked.
In line 4, |beS| is the number of elements in beS, and |eSet| is the number of elements in eSet.
In lines 5–7, according to the graph, behavior records in beS are checked. Particularly, for
each be, if the cross-shard exited transaction does not exist, or the hash value of the previous
cross-shard joined transaction, the joined timestamp, the exited timestamp, or the number
of accusation transactions is incorrect, False is returned. In line 8, joined transaction txj is
generated to validate cTxj, where H is the hash value of txj, jH = cTxj.H, ISId is the ID of
the involved shard, sId is the ID of the target shard, sId = cTxj.sId, and ts is the generation
time of txj.

Appl. Sci. 2023, 13, 8726 10 of 22

Algorithm 1 cTxj is verified in an involved shard.

Input: cTxj, the graph in the involved shard
Output: txj or False

1: if the signature of the requester is valid && there is a latest cross-shard joined transaction
before a latest cross-shard exited transaction of the requester then

2: Get beS = {be|be ∈ cTxj.beSet && be.jSId is the ID of the shard}
3: Retrieve the set of requester’s cross-shard joined transactions, jSet, and set of re-

quester’s cross-shard existed transactions, eSet, from local graph
4: if |beS| = |eSet| then
5: for each be in beS do
6: Get an element cTx′e which H = be.eH from eSet
7: Get an element cTx′j which H = cTx′e.preH from jSet
8: if cTx′e not exist || cTx′j.preH 6= be.preH || cTx′j.ts 6= be.jTs || cTx′e.ts 6=

be.eTs || be.nBl is wrong then return False
9: Generate txj = < H, jH, ISId, sId, ts >

10: else return False
11: else return False

Then, txj is added to an event, updated to the graph, and sent to other involved shards
and target shard. In this way, a two-layer tree, treeje, is constructed in these shards. For
example, in Figure 4, treeje is composed of cTxj, txj

2 and txj
3. cTxj is the root, and txj

2 and

txj
3 are the first validation of cTxj.

shard A shard B shard C

tx2j
tx3j

cTxe

inChain in
shard A

treeje

Block
H

preH
root

timestampTransaction
H

preH
ctl
ts

HBlock

Transaction
H

preH
sId

beSet
ts

cTxj

Transaction Block

Figure 4. The structure of treeje and inChain.

Step 3: 2nd validation of the request. Nodes in the target shard check whether the
reputation values of the requester are greater than a given threshold.

In the target shard, when the unconfirmed transactions of the requester are used, the
second verification of cTxj is processed via the smart contract (see Algorithm 2). In line 8,
the reputation value of a requester is calculated via a sigmoid function. α is set to larger
than 1 in order to make the weight of recent behaviors on reputation evaluation greater
than that of the past. λ and ε are preset values. If rep of the requester is more than threshold
th1, the requester becomes an accounting node of the target shard.

Otherwise, if a given time is expired, a cross-shard exited transaction named cTxe is
generated in line 11, where H is the hash value of cTxe, preH = cTxj.H, ts is the generation

Appl. Sci. 2023, 13, 8726 11 of 22

time of cTxe, and HBlock = null, which is discussed later. ctl is a list of the requester’s
generated transactions since cTxj is submitted, which will be invalid. cTxe is sent to
involved shards. In addition, txa is generated in line 12 and added into the blacklist of the
target shard.

Algorithm 2 cTxj is verified in target shard.

Input: treeje

Output: True , or (cTxe, txa)
1: Get the root of treeje, cTxj

2: Get children of cTxj in treeje, cSet
3: Retrieve IDs idSet of involved shards from cTxj.beSet
4: if ∀id ∈ idSet && id = cSet.txj.ISId then
5: Sequence elements in cTxj.beSet according to bei.preH = bek.eH and bek as the

previous one of bei
6: for Each be in cTxj.beSet in ascending order do
7: duration = be.eTs− be.jTs
8: rep = α · rep + (be.jTs+be.eTs)/2

1+e−λ·(duration/be.nBL−ε)

9: if rep > th1 then return True
10: if a given time is expired then
11: Generate cTxe = < H, preH, ctl, ts, HBlock >
12: Generate txa with pk as the public key of the request & beH = cTxj.H & bType = FE

according to (3)

Red vertexes in Figure 4 present the tree structure of root cTxj in inter-sharding
consensus. After cTxj is updated to the graph in shard A, it is sent to involved shards, i.e.,
shards B and C. Nodes in the involved shards verify the behavior records of the requester
in parallel (see Algorithm 1). If the records are correct, involved shards send txj

2 and txj
3

to shard A, referring to cTxj. In shard A, only if all involved shards validate cTxj and the
reputation value of the node is larger than threshold th1 are the behavior records in cTxj

valid; otherwise, cTxe is generated, referring to cTxj (see Algorithm 2). Hence, only two
rounds of intra-sharding consensus are required to validate behavior records. In addition,
when cTxj is validated, the requester’s previous votes in gossip are counted in the graph.
In this way, the requester does not need to wait for its consensus activities, and its updated
transactions can be used directly. Hence, the efficiency of a requester participating in a
shard is improved.

Step 4: The requester leaves a shard.
In hashgraph consensus, a chain named inChain is built for event retrieval and shard

security. Confirmed events are ordered and packaged into a block, and then the block is
updated to inChain in every preset period, e.g., 10 received rounds of hashgraph or 10 min.
The block structure in inChain is < H, preH, root, timestamp >. Specifically, H is the hash
value of the block, preH refers to the previous valid block, root is a root of the Merkel Hash
Tree whose leaves are confirmed events, and timestamp is the generation time of the block.
For example, shard A’s inChain is depicted in Figure 4.

When an accounting node leaves a shard normally, cTxe is generated in (8), where
ctl = null and HBlock refer to the latest block of inChain. Once cTxe is confirmed in
target shard, it is sent to involved shards.

cTxe =< H, preH, ctl, ts, HBlock > (8)

6. Shard Recovery and Reconfiguration

With the assistance of cTxe, the compromised shard can be recovered by other shards.
To help readers clearly understand the scheme, suppose that at most, one shard is corrupted
in a time. When the shard is found to be corrupted, a node within it sends a request of shard

Appl. Sci. 2023, 13, 8726 12 of 22

recovery to two shards along with its local inChain denoted by chainA′. The latest trusted
block of inChain is denoted by ltBlock and determined based on the majority principle.
For example, shards D and E are requested to recover shard A, because the two latest
cTxes generated from shard A are kept in shards D and E. According to cTxes, the latest
blocks of chainA′ in shards D and E are D1 and E1, respectively. Shard A confirms the
latest block in chainA′ as A1. ltBlock is generated in three cases in Figure 5. Particularly,
ltBlock = A1 for case1, ltBlock = E1 for case2, and ltBlock = D1 for case3. In case2,
shard A is determined to be corrupted, because it does not agree with E1 confirmed by the
other two shards.

D1Case2: E1A1

E1Case1: A1D1

A1Case3: D1E1

Figure 5. Three cases of a latest block in chainA′ determined by the majority principle of shards A, D
and E.

In case1 or case3, the reputation evaluation of shard A is based on the changes in
honest/dishonest behaviors of nodes over time. p indicates the period between the time
of the last sharding configuration and the timestamp of ltBlock. According to the events
with timestamp ∈ p, the reputation values of shard A are calculated via a sigmoid function
in (9), where λ and ε as preset values control the range of the fast growth interval of the
formula. I is the node whose events are included in the blacklist, and SD is the standard
deviation of honest/dishonest behaviors of the node. In (10), p is divided into T time slots.
In each time slot, r is the ratio of the number of times the node’s events are included in the
blacklist (nNBL) and the number of confirmed events (nEvent). u is the average of r in T.

shRepp =
1

1 + e−λ·(1/ ∑i∈I SDi−ε)
(9)

s.t.SD =

√
∑T

t=1(rt − u)2

T
r = nNBL/nEvent (10)

u = ∑T
t=1 rt/T

For example, if a list of r of the node is setR1 = {0, 0, 0.5, 0.5}, the node is more
likely to have been compromised, because its generated events start to be included in the
blacklist in the last two time slots. If a list of r of the node is setR2 = {0.5, 0.5, 0, 0}, the
node is more likely to launch on/off attacks, because it starts to work honestly or does
not have any behaviors in the last two time slots. In Figure 6, the reputation values of
shards whose nodes have setR1, setR2 and setR3 = {0.1, 0.2, 0.3, 0.4} are presented. The
reputation values of the first two shards are the same, which are smaller than that of the
third shard. It is because the changes of nodes’ honest/dishonest behaviors in the first
two shards are more frequent. In other words, they have more potential security risks. In
addition, the reputation value of the shard decreases when more nodes in the shard change
honest/dishonest behaviors.

Appl. Sci. 2023, 13, 8726 13 of 22

5 10 15 20 25 30 35 40

The number of nodes within a shard

0

0.2

0.4

0.6

0.8

1

R
e

p
u

ta
ti
o

n
 v

a
lu

e
s
 o

f
a

 s
h

a
rd

shard1 with setR1

shard2 with setR2

shard3 with setR3

5 10 15 20 25 30 35 40

The number of nodes within a shard

0

0.2

0.4

0.6

0.8

1

R
e

p
u

ta
ti
o

n
 v

a
lu

e
s
 o

f
a

 s
h

a
rd

shard1 with setR1

shard2 with setR2

shard3 with setR3

5 10 15 20 25 30 35 40

The number of nodes within a shard

0

0.2

0.4

0.6

0.8

1

R
e

p
u

ta
ti
o

n
 v

a
lu

e
s
 o

f
a

 s
h

a
rd

shard1 with setR1

shard2 with setR2

shard3 with setR3

Figure 6. According to (9), λ = 10 and ε = 0.5. The lists of r of nodes in shard1, shard2 and shard3
are {0, 0, 0.5, 0.5}, {0.5, 0.5, 0, 0} and {0.1, 0.2, 0.3, 0.4}, respectively. Hence, T = 4 and u = 0.25. The
reputation values of shard1, shard2 and shard3 are presented with the increase of nodes in the shards.

Denote the chain in shard A as chainA. When the reputation value of shard A is less
than threshold th2, shard D and E replay the transactions after the latest trusted block in
chainA. If a false transaction is found by both shard D and E, shard A is determined to be
corrupted. Then, shard A is reconfigured, and the latest block of the chain is set to ltBlock.
In addition, accusation transactions associated to False Events, False Free-riding Events or
Double-spent Events in chainA are generated and added into the blacklist of shard A. Thus,
as long as one node within a shard is honest, the shard can be recovered and its security
is guaranteed.

The algorithm of shard recovery is presented in Algorithm 3. The input is cTxes,
chainA′ is provided by a requester, and chainA is retrieved from shard A.

Algorithm 3 Recovery of Shard A by shard D and E.
Input: cTxes, chainA′, chainA
Output: Recovery of Shard A

For a node within shard A
1: The node sends chainA′ to shard D and E to accuse shard A of being corrupted

For shards A, D and E
2: According to cTxes, the lastest trusted block, ltBlock, is confirmed through the majority

principle

For both shards D and E
3: if ltBlock is agreed by shard A then
4: Calculate the reputation value of shard A, shRep, according to (9)
5: if shRep < th2 then
6: Verify transactions after ltBlock in chainA
7: if any false transaction found in chainA then
8: Shard A is reconfigured
9: ltBlock is the latest block of the chain in shard A

10: else
11: Shard A is reconfigured
12: ltBlock is the latest block of the chain in shard A

Appl. Sci. 2023, 13, 8726 14 of 22

Moreover, an adaptive shard reconfiguration is devised. Compared to a fixed epoch
widely used in traditional shard reconfiguration, e.g., Elastico [26] and Monoxide [27], the
dynamic shard reconfiguration is based on the shard reputation in (9). That is, when the
reputation value of a shard is less than th3, the3 < th2, the shard is reconfigured by the
shuffling of nodes. The nodes with more events included in the blacklist are removed from
the shard.

7. Performance Evaluation

In this section, security analysis and experimental evaluation are discussed.

7.1. Security Analysis

The attack prevention and properties of the proposed scheme are analyzed as follows.

• Sybil attack

The Sybil attack is resisted through the historical behavior records of nodes and inter-
sharding consensus. The node applies to join a shard by submitting its historical behavior
records. Only if the records are validated by all involved shards, and the reputation
value calculated from these records is greater than threshold th1, is the node allowed
to participate in the consensus of the shard and data sharing in the shard. th1 can be
{rep|rep.rank = 2/3}. It means when the reputation values of nodes within the shard are
sorted in descending order, rep is ranked as 2/3 of all values.

Theorem 1. The behavior records of the node in involved shards cannot be reused to generate
multiple identities.

Proof. In line 11 of Algorithm 2 and (8), a cross-shard exited transaction, cTxe, is generated,
where preH = cTxj.H. cTxe refers to cTxj. cTxj and cTxe are sent to involved shards.
It means when the node is removed from a shard, its cTxe is updated to the graphs of
all involved shards, referring to cTxj. In other words, if there is not a latest cross-shard
exited transaction after a latest cross-shard joined transaction of the requester in involved
shards, the requester is working in a shard. The state of the requester becomes working,
and honest nodes are aware of its state. Its behavior records are locked and cannot be used
as sharding requests.

Theorem 2. It is hard to decouple the behavior records of the requester to generate multiple identities
or launch whitewashing attacks.

Proof. First, the behavior records of the requester cannot be decoupled into discontinuous
parts. For a node, its cTxj.preH indicates the hash value of its previous cross-shard exited
transaction. The two transactions belong to different behavior records and may be recorded
in graphs of different shards. The chain of records is defined as (11), where beSet is the
behavior records of the request, bek is the previous behavior record of bei, bei.preH =

cTxj
i .preH, and bek.eH = cTxe

k.H. Each record has a relevant pair of cross-shard joined
transactions and cross-shard exited transactions. Hence, the behavior records are in the chain
structure depicted in Figure 7. In (12), bek is determined to be the previous behavior
record of bei, where be.eTs = cTxe.ts and be0 as a genesis record. Nodes in the target shard
check whether the behavior records in the application meet (11). If it does not meet the
requirement, the participating application is not approved.

{bei|∀bei ∈ beSet & bei.preH = bek.eH} (11)

s.t.{bek|(bek ∈ beSet′ & bek.eTs = max(beSet′.be.eTs)) || bek = be0} (12)

{beSet′|beSet′ ⊂ beSet & beSet′.be.eTs < bei.eTs}

Appl. Sci. 2023, 13, 8726 15 of 22

preHpreH preH
cTxke

beibek

cTxij cTxiecTxkj
preHpreH

Figure 7. The chain structure of behavior records and transactions.

Second, the records of the requester within a shard can not be decoupled. The behavior
records that are valid and include all records of the requester in the shard are defined as
(13), where CTXe and CTX j are the set of cross-shard exited transactions and cross-shard joined
transactions of the requester in the shard. f 1 means that beSetv.be.nBl is the number of
the accusation transactions with timestamp ∈ [beSetv.be.jTs, beSetv.be.eTs]. Nodes in an
involved shard check whether the behavior records in the application meet (13). If they do
not meet the requirement, the participating application is not approved.

{beSetv|beSetv ⊆ beSet & ∀cTxe ∈ CTXe & beSetv.be.eH = cTxe.H &

beSetv.be.eTs = cTxe.ts & cTxj ∈ CTX j & cTxj.H = cTxe.preH & (13)

beSetv.be.jTs = cTxj.ts & f 1}

Third, the behavior records of the requester cannot be decoupled to create multiple
identities involving one shard. Different applications uploaded by the requester are defined
as cTxj

k.sign = cTxj
g.sign, where cTxj

k and cTxj
g are current applications, cTxj

k 6= cTxj
g, and

sign is the signature of the generator. Nodes in a shard check the applications. If they meet
the definition, the participating applications are not approved.

• Targeted attack

The targeted attack related to shards is resisted through shard recovery and recon-
figuration. First, when the malicious nodes exceed 2/3 of all nodes, if a shard is being
corrupted, as long as there is one honest node in the shard, the shard can be restored by
other shards. In addition, in order to prevent malicious nodes from frequently accusing a
shard and consuming its available resources, shard recovery proceeds only if the reputation
value of the shard is less than threshold th2. Second, when the reputation value of a shard
is less than the threshold th3, th3 < th2, the shard is reconfigured. th2 and th3 can be
proportional to avgHF, avgSR and f re. avgHF is the average failure rate of hardware
deployed in nodes. avgSR is the average of the smallest x reputation values of shards, e.g.,
x = 4. f re is the frequency of nodes entering and leaving the shard.

The security assumption of targeted attacks is a reliable reputation evaluation of
a shard. The reputation value of a shard is calculated based on the changes of hon-
est/dishonest behaviors of nodes within it. Thus, we assume the following: (i) when the
shard is configured, the number of malicious nodes is less than 1/3 of all nodes. (ii) During
the process of a shard being compromised, the honest nodes start to work dishonestly, or
the malicious nodes in turn work honestly.

• Accountability

Nodes are accountable for their consensus behaviors by using a decentralized blacklist.
The dishonest behaviors related to a False Event, False Free-riding Event and Double-spent
Event of nodes can be found in the graph and updated in the blacklist. With the assistance
of the blacklist, the honest gossip behaviors of the node are evaluated, and its reputation
values as a candidate sender, sRep, and reputation values as a candidate receiver, rRep, are
calculated. Events generated from the neighbor nodes with high sRep are received first, and
events are sent to the neighbor nodes with high rRep first. In this way, these nodes have
more opportunities to benefit from data sharing. Furthermore, the nodes whose behaviors
are included in the blacklist are more likely to be rejected for sharding. Particularly, the

Appl. Sci. 2023, 13, 8726 16 of 22

node’s request of joining a new shard is rejected, or it is removed from the shard in the
shuffling of nodes.

• Adaptability

The shard is dynamically adaptive in terms of consensus nodes and reconfiguration
epochs. On one hand, different from traditional hashgraph, nodes can dynamically join
and leave the consensus via cross-shard joined and exited transactions. It means when the
joined transaction is confirmed, honest nodes are aware of the participating node as well as
counting its virtual votes for consensus. It improves the scalability of the consensus. On
the other hand, different from a fixed epoch for shard reconfiguration, nodes of the shard
are shuffled when the reputation value of the shard is less than a threshold. It avoids the
problem of a larger epoch, which makes a shard vulnerable to being compromised, and a
smaller epoch results in the frequent interruption of services during shard reconfiguration.

• Decentralization

The reputation model is decentralized, preventing a Single-Point Failure. The dishon-
est behaviors of nodes are recorded in a decentralized blacklist and utilized to generate
reputation values of nodes or shards through smart contracts. Furthermore, our consensus
is full decentralization because there is no need for a leader.

7.2. Experimental Evaluation
7.2.1. Experimental Setting

Opnet [38] is utilized to simulate the communication of consensus and disclose the
effects of mobility on consensus. It is a popular network simulator of discrete events,
providing a realistic and reliable simulation environment in most network types. Some
models are pre-built in Opnet and easily deployed for MANET simulation, including a
traffic model, statistical model, mobility config, failure config, routing protocol, etc.

The scenario map is 4 km × 4 km. Nodes are identified by their IP address, and
they move in a random direction with a power of 0.05 dB and a speed of 50 m/s. The
number of failure nodes is less than 1/3 of all nodes. Packets are propagated through the
aodv routing protocol in the channel bandwidth of 11 Mb/s without being reassembled
during transmission. The traffic is generated in an exponential distribution. Each simu-
lation under the same condition is replicated ten times, and the average of these 10 data
points is considered.

7.2.2. Experimental Results

• Intra-sharding consensus

Table 2 presents the comparison of the PBFT, traditional hashgraph consensus, the
consensus in Zhang et al. [23], the consensus in Wang et al. [24], and our proposed scheme.
Consensus in [23] is based on PoW. The consensus process in [24] contains two rounds, the
first round of which is realized by a primary and primary candidates based on hashgraph,
and the second round of which is a primary synchronizing macro-block to accounting nodes.
To make the explanation clear, blocks in the PBFT, refs. [23,24], are regarded as events.

Table 2. Comparison among popular consensus and our scheme in MANETs. r1FT is 1/3 of a
primary and primary candidates, and r2FT is 1/2 of a primary and accounting nodes.

Consensus Scheme Consistency Leader-Based Fault Tolerance Neighbors Selection for
Events Propagationn

PBFT Strong Leader less than 1/3 of all nodes Random
traditional hashgraph Eventual Leaderless less than 1/3 of all nodes Random

Zhang et al. [23] Eventual Leader less than 1/2 of all nodes Random
Wang et al. [24] Eventual Leader less than min (r1FT, r2FT) Random

our scheme Eventual Leaderless less than 1/3 of all nodes Selective

Appl. Sci. 2023, 13, 8726 17 of 22

Figure 8 presents the changes of event throughput and traffic throughput with the
increase of consensus nodes. In Figure 8a, our proposed scheme is better than other
schemes, because five nodes generate events in parallel in our scheme, while only one
miner/leader/primary generates events in the PBFT, as shown in Zhang et al. [23] and
Wang et al. [24]. With the increase of consensus nodes, the throughput drops and the gap
between our scheme and another scheme becomes smaller. The reason is that the increasing
events generated by more nodes result in network congestion, especially events in our
scheme growing faster. However, since our scheme adopts sharding technology, the number
of nodes can be controlled effectively. In Figure 8b, traffic information includes events traffic,
control traffic and routing traffic. The performance of our scheme is also better than that in
other schemes. Although the traffic throughput of our scheme is very close to [24] when
the number of nodes is 66, more events in our scheme are generated according to Figure 8a.
In other words, less control traffic and routing traffic are consumed to be associated with
event updates in our scheme, so our communication overhead is efficient. In addition, the
traffic throughput of the PBFT is more than that of [23], while the event throughput of [23]
is better. It is because more synchronous messages are generated in the PBFT, and these
messages lead to a high delay of consensus in opportunistic communications. The PBFT is
not very suitable for mobile consensus in terms of throughput.

(a) The changes of event throughput with the increase
of consensus nodes

(b) The changes of network traffic throughput
with the increase of consensus nodes

Figure 8. The changes of event throughput and network traffic throughput with the increase of
consensus nodes. For example, in our scheme, 46 nodes can achieve fault tolerance for 15 Byzantine
nodes. Zhang et al. [23], Wang et al. [24].

Figure 9 presents the changes in event throughput and traffic throughput with the
increase of event generation interval. In Figure 9a, the event throughput of our scheme is
better than other schemes, because more than one node generates events in our scheme.
After an interval of 1 s, the event throughput of Zhang et al. [23], Wang et al. [24] and the
PBFT are very similar, because there are more available network resources and the same
number of events can be updated in a similar amount of time. Furthermore, the gap of
event throughput between our scheme and another scheme becomes smaller in Figure 9a,
while the gap of traffic throughput between our scheme and another scheme remains stable
after an interval of 2 s in Figure 9b. It is because our scheme uses gossip about gossip
as a propagation method. When the interval of event generation increases, fewer gossip
messages lead to more control traffic being generated. In other words, lower data rates
can reduce the performance of our scheme. In addition, in Figure 9b, the gap between our
scheme and [24] is stable, since both are based on hashgraph.

Appl. Sci. 2023, 13, 8726 18 of 22

(a) The changes of event throughput with the increase
of intervals of event generation

(b) The changes of network traffic throughput with
the increase of intervals of event generation

Figure 9. The changes of event throughput and traffic throughput with the increase of intervals of
event generation in the case of 46 nodes. Zhang et al. [23], Wang et al. [24].

Figure 10 presents the changes in event delay and data dropped rates with the increase
of consensus nodes. In Figure 10a, with the increase of consensus nodes, the changes of
delay are not monotonic. The reason is that the major factors affecting delay include the
number of hops, network congestion, channel competition and the number of isolated
nodes. The increase of nodes has a negative impact on the delay via the first three factors,
while it has a positive impact on the delay via the fourth factor. The delay of our scheme
is better than that of traditional hashgraph, because our scheme selects honest neighbors
to propagate events, and fewer transmitted events mitigate the competition of wireless
channels. For a similar reason, the data dropped rates of our scheme are less than those of
the traditional hashgraph in Figure 10b. In Figure 10b, with the increase of consensus nodes,
data dropped rates increase as well. It is because more data packets are generated to achieve
consensus on an event, and some of them are dropped in opportunistic communications of
the MANET.

(a) The changes of event delay with the increase of
consensus nodes

(b) The changes of data dropped rate with the
increase of consensus nodes

Figure 10. The changes of event delay and data dropped rates with the increase of consensus nodes.

Therefore, our scheme using hashgraph and the blacklist is efficient in a MANET-based
blockchain.

• Inter-sharding consensus

Scenario 1: Two shards are deployed, and each shard contains f our nodes. Node
node100 moves from shard1 to shard2. The cross-shard transactions are generated by nodes
in shards continuously.

Appl. Sci. 2023, 13, 8726 19 of 22

Figure 11 shows the throughput of cross-shard transactions when node100 dynamically
leaves shard1 and joins shard2. Interval indicates the generation interval of transactions,
and size is the size of transactions. Nodes in shard2 can only receive the transactions be-
tween 1 m 32 s and 2 m 35 s, since node100 arrives at the overlap region of shard1 and shard2
at that time, relaying the transactions. Hence, dynamically joining and leaving shards
contributes to inter-sharding consensus. When the transaction size is larger, its throughput
drops, because node100 has limited resources and becomes the bottleneck. When the gener-
ation interval of transactions increases, the throughput increases as well. Hence, smaller
sizes of cross-shard transactions, more frequency of nodes joining a shard and relatively
fewer cross-shard transactions can improve the throughput of cross-shard transactions.

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00

The timeline(MM:SS)

0

0.5

1

1.5

2

2.5

3

3.5

4

T
h

ro
u

g
h

p
u

t
o

f
tr

a
n

s
a

c
ti
o

n
s
(t

p
s
)

interval=1s, size=3kbits

interval=1s, size=300kbits

interval=2s, size=3kbits

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00

The timeline(MM:SS)

0

0.5

1

1.5

2

2.5

3

3.5

4

T
h

ro
u

g
h

p
u

t
o

f
tr

a
n

s
a

c
ti
o

n
s
(t

p
s
)

interval=1s, size=3kbits

interval=1s, size=300kbits

interval=2s, size=3kbits

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00

The timeline(MM:SS)

0

0.5

1

1.5

2

2.5

3

3.5

4

T
h

ro
u

g
h

p
u

t
o

f
tr

a
n

s
a

c
ti
o

n
s
(t

p
s
)

interval=1s, size=3kbits

interval=1s, size=300kbits

interval=2s, size=3kbits

The timeline(MM:SS)

0

0.5

1

1.5

2

2.5

3

A
v
e

ra
g

e
 t

h
ro

u
g

h
p

u
t
o

f
tr

a
n

s
a

c
ti
o

n
s
(t

p
s
)

interval=1s, size=3kbits

interval=1s, size=300kbits

interval=2s, size=3kbits

The timeline(MM:SS)

0

0.5

1

1.5

2

2.5

3

A
v
e

ra
g

e
 t

h
ro

u
g

h
p

u
t
o

f
tr

a
n

s
a

c
ti
o

n
s
(t

p
s
)

interval=1s, size=3kbits

interval=1s, size=300kbits

interval=2s, size=3kbits

The timeline(MM:SS)

0

0.5

1

1.5

2

2.5

3

A
v
e

ra
g

e
 t

h
ro

u
g

h
p

u
t
o

f
tr

a
n

s
a

c
ti
o

n
s
(t

p
s
)

interval=1s, size=3kbits

interval=1s, size=300kbits

interval=2s, size=3kbits

Figure 11. (Left) subfigure as the throughput of cross-shard transactions when a node dynamically
leaves a shard and joins another shard. (Right) subfigure as the average of the throuput between
01:32 and 02:35 in the (Left) subfigure

Scenario 2: Six shards (shard1, shard2, shard3, shard4, shard5 and shard6) are de-
ployed, and each shard contains 3 nodes. Node node100 moves from shard1 to shard2.
In order to join shard2, node100 generates the request of a cross-shard joined transaction
involving shard2 and shard1, the request involving shard2, shard1 and shard3, the re-
quest involving shard2, shard1, shard3 and shard4, the request involving shard2, shard1,
shard3, shard4 and shard5, or the request involving shard2, shard1, shard3, shard4, shard5
and shard6.

Figure 12 shows the delay of the cross-shard transaction update in the number of
different involved shards. Serial transaction validation means that before the cross-shard
transaction updated, it is validated by involved shards one by one. Parallel transaction
validation means that before the cross-shard transactionis updated, it is validated by related
shards in parallel and then by shard2. The delay of valid cross-shard transactions in our
scheme is better than that in serial transaction validation and parallel transaction validation,
because our scheme is asynchronously tree-assisted and the delay is only related to shard2
node100 joining. Specifically, the update in our scheme is related to one consensus round,
and only when the updated cross-shard joined transaction is used is it validated via the tree.
Hence, we can see that the delay of cross-shard transactions in our scheme remains stable
with the increase of involved shards. If the number of involved shards is six, the average
delay of involved shards is 5387/6 = 897.8 ms, larger than the delay in our scheme of
855 ms, because the former takes the transmission delay among shards into account. Thus,
our scheme is more suitable for opportunistic communications among shards.

Appl. Sci. 2023, 13, 8726 20 of 22

16651665

855

1665

2445

855

1820

3410

855

1844

4399

855

1844

5387

855

2 shards 3 shards 4 shards 5 shards 6 shards

The number of involved shards

0

1000

2000

3000

4000

5000

6000

D
e

la
y
 o

f
tr

a
n

s
a

c
ti
o

n
s
(m

s
)

parallel transactions validation

serial transactions validation

our scheme

16651665

855

1665

2445

855

1820

3410

855

1844

4399

855

1844

5387

855

2 shards 3 shards 4 shards 5 shards 6 shards

The number of involved shards

0

1000

2000

3000

4000

5000

6000

D
e

la
y
 o

f
tr

a
n

s
a

c
ti
o

n
s
(m

s
)

parallel transactions validation

serial transactions validation

our scheme

16651665

855

1665

2445

855

1820

3410

855

1844

4399

855

1844

5387

855

2 shards 3 shards 4 shards 5 shards 6 shards

The number of involved shards

0

1000

2000

3000

4000

5000

6000

D
e

la
y
 o

f
tr

a
n

s
a

c
ti
o

n
s
(m

s
)

parallel transactions validation

serial transactions validation

our scheme

Figure 12. The delay of cross-shard transactions in the number of different involved shards.

8. Conclusions

In this paper, we have presented the behavior-based sharding hashgraph scheme
for MANETs. Dishonest behaviors of nodes are recorded in the decentralized blacklist.
With the assistance of the blacklist, the reputation values of candidate receivers for gossip
information, candidate senders for gossip information, the requester for joining a shard,
and a shard are evaluated. In this way, gossip information is sent to a reliable receiver,
and gossip information from another reliable sender is received. It improves the efficiency
of the hashgraph mechanism. In addition, the tree-assisted inter-sharding consensus is
proposed to prevent Sybil attacks. Only the nodes with enough reputation values are
allowed to participate in activities in a shard and without waiting. It also improves the
efficiency of the node joining a shard. Moreover, the combination of shard recovery and
reconfiguration based on shard reputation is proposed to prevent targeted attacks. The
reputation values of a shard not only resist DDoS (Distributed Denial of Service) attacks of
shard recovery but also improve the efficiency of shard reconfiguration through a dynamic
epoch. Finally, we have shown that our proposed scheme can achieve some security
properties, i.e., accountability, adaptability and decentralization. A lot of experiments are
conducted to simulate the communication of consensus and disclose the effects of mobility
on consensus. The results demonstrate that the proposed scheme is efficient.

In our future work, some real Epuck2.0 robots and an electronic sand table are used
to implement a MANET-based blockchain in practical scenarios. Due to scarce wireless
resources, robots need to compete for transmission channels. The distance between the
communication parties and the interference from nearby robots also weaken the signal,
increasing the latency of events to become famous witnesses. Hence, the hashgraph
mechanism and gossip about gossip need to be improved further.

Author Contributions: Methodology, Y.H.; Software, Z.H.; Writing—original draft, R.L.; Writing—review
& editing, G.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This work is funded by the National Key-Area Research and Development Program of
China (2018YFB1404402), Key-Area Research and Development Program of Guangdong Province(No.
2019B010137003), Guangdong Science & Technology Fund (No. 2016B030305006, No. 2018A07071702,
No. 201804010314), and Guangzhou Science & Technology Fund (No. 201804010314), VeChain
Foundation (No. SCNU2018-01).

Data Availability Statement: The research data are uploaded as an attachment along with the article.

Acknowledgments: I would like to give my heartfelt thanks to all the people who have ever helped
me in this paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2023, 13, 8726 21 of 22

References
1. Salman, T.; Zolanvari, M.; Erbad, A.; Jain, R.; Samaka, M. Security services using blockchains: A state of the art survey. IEEE

Commun. Surv. Tutor. 2018, 21, 858–880.
2. Kang, J.; Yu, R.; Huang, X.; Wu, M.; Maharjan, S.; Xie, S.; Zhang, Y. Blockchain for secure and efficient data sharing in vehicular

edge computing and networks. IEEE Internet Things J. 2018, 6, 4660–4670.
3. Sharma, V.; You, I.; Jayakody, D.N.K.; Reina, D.G.; Choo, K.K.R. Neural-blockchain-based ultrareliable caching for edge-enabled

UAV networks. IEEE Trans. Ind. Inform. 2019, 15, 5723–5736.
4. Feng, W.; Yan, Z. MCS-Chain: Decentralized and trustworthy mobile crowdsourcing based on blockchain. Future Gener. Comput.

Syst. 2019, 95, 649–666.
5. Bruzgiene, R.; Narbutaite, L.; Adomkus, T. MANET network in internet of things system. Ad Hoc Netw. 2017, 66, 89–114.
6. Morales, D.C.; Velloso, P.; Guerre, A.; Nguyen, T.M.T.; Pujolle, G.; Alagha, K.; Dua, G. Blockgraph proof-of-concept. In

Proceedings of the SIGCOMM’21 Poster and Demo Sessions, Virtual Event, 23–27 August 2021; pp. 82–84.
7. Zhou, S.; Zhang, G.; Meng, X. LocTrust: A local and global consensus-combined trust model in MANETs. Peer-to-Peer Netw. Appl.

2022, 15, 355–368. [CrossRef]
8. Lwin, M.T.; Yim, J.; Ko, Y.B. Blockchain-based lightweight trust management in mobile ad-hoc networks. Sensors 2020, 20, 698.

[PubMed]
9. Ilbeigi, M.; Morteza, A.; Ehsani, R. An infrastructure-less emergency communication system: A blockchain-based framework. J.

Comput. Civ. Eng. 2022, 36, 04021041.
10. Liu, G.; Dong, H.; Yan, Z.; Zhou, X.; Shimizu, S. B4SDC: A blockchain system for security data collection in MANETs. IEEE Trans.

Big Data 2020, 8, 739–752.
11. Rasool, S.; Iqbal, M.; Dagiuklas, T.; Ul-Qayyum, Z.; Li, S. Reliable data analysis through blockchain based crowdsourcing in

mobile ad-hoc cloud. Mob. Netw. Appl. 2020, 25, 153–163.
12. Jiao, Z.; Zhang, B.; Zhang, L.; Liu, M.; Gong, W.; Li, C. A blockchain-based computing architecture for mobile ad hoc cloud. IEEE

Netw. 2020, 34, 140–149.
13. Luo, J.; Shu, X.; Zhai, Y.; Fu, X.; Ding, B.; Xu, J. A Fast and Robust Solution for Common Knowledge Formation in Decentralized

Swarm Robots. J. Intell. Robot. Syst. 2022, 106, 68.
14. Chatzopoulos, D.; Gujar, S.; Faltings, B.; Hui, P. Localcoin: An ad-hoc payment scheme for areas with high connectivity: Poster.

In Proceedings of the 17th ACM International Symposium on Mobile Ad Hoc Networking and Computing, Paderborn, Germany,
5–8 July 2016; pp. 365–366.

15. Long, T.; Qu, S.; Li, Q.; Kang, H.; Fu, L.; Wang, X.; Zhou, C. Efficient block propagation in wireless blockchain networks and its
application in Bitcoin. IEEE Trans. Netw. Sci. Eng. 2021, 8, 3349–3368.

16. Baird, L.; Harmon, M.; Madsen, P. Hedera: A public hashgraph network & governing council. White Pap. 2019, 1, 9–10.
17. Castro, M.; Liskov, B. Practical byzantine fault tolerance. In Proceedings of the OsDI, New Orleans, LA, USA, 22–25 February

1999; Volume 99, pp. 173–186.
18. Ongaro, D.; Ousterhout, J. The raft consensus algorithm. Lect. Notes CS 2015, 190, 2022.
19. Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. SSRN. 2008. Available online: https://ssrn.com/abstract=3440802

(accessed on 10 January 2023).
20. Li, L.; Huang, D.; Zhang, C. An Efficient DAG Blockchain Architecture for IoT. IEEE Internet Things J. 2022, 10, 1286–1296.
21. Hong, Z.; Guo, S.; Li, P. Scaling Blockchain via Layered Sharding. IEEE J. Sel. Areas Commun. 2022, 40, 3575–3588.
22. Huang, H.; Peng, X.; Zhan, J.; Zhang, S.; Lin, Y.; Zheng, Z.; Guo, S. Brokerchain: A cross-shard blockchain protocol for

account/balance-based state sharding. In Proceedings of the IEEE INFOCOM 2022-IEEE Conference on Computer Communica-
tions, Online, 2–5 May 2022; pp. 1968–1977.

23. Zhang, X.; Xia, W.; Cui, Q.; Tao, X.; Liu, R.P. Efficient and Trusted Data Sharing in a Sharding-enabled Vehicular Blockchain. IEEE
Netw. 2022, early access

24. Wang, Y.; Yuan, L.; Jiao, W.; Qiang, Y.; Zhao, J.; Yang, Q.; Li, K. A Fast and Secured Vehicle-to-Vehicle Energy Trading Based on
Blockchain Consensus in the Internet of Electric Vehicles. IEEE Trans. Veh. Technol. 2023, 72, 7827–7843.

25. Benchi, A.; Launay, P.; Guidec, F. Solving consensus in opportunistic networks. In Proceedings of the 16th International
Conference on Distributed Computing and Networking, Goa, India, 4–7 January 2015; pp. 1–10.

26. Luu, L.; Narayanan, V.; Zheng, C.; Baweja, K.; Gilbert, S.; Saxena, P. A secure sharding protocol for open blockchains. In
Proceedings of the 2016 ACM SIGSAC conference on computer and communications security, Vienna, Austria, 24–28 October
2016; pp. 17–30.

27. Wang, J.; Wang, H. Monoxide: Scale out Blockchains with Asynchronous Consensus Zones. In Proceedings of the NSDI, Boston,
MA, USA, 26–28 February 2019; Volume 2019, pp. 95–112.

28. Amiri, M.J.; Agrawal, D.; El Abbadi, A. Sharper: Sharding permissioned blockchains over network clusters. In Proceedings of
the 2021 International Conference on Management of Data, Xi’an, China, 20–25 June 2021; pp. 76–88.

29. Huang, C.; Wang, Z.; Chen, H.; Hu, Q.; Zhang, Q.; Wang, W.; Guan, X. Repchain: A reputation-based secure, fast, and high
incentive blockchain system via sharding. IEEE Internet Things J. 2020, 8, 4291–4304.

30. Wang, L.e.; Bai, Y.; Jiang, Q.; Leung, V.C.; Cai, W.; Li, X. Beh-Raft-Chain: A behavior-based fast blockchain protocol for complex
networks. IEEE Trans. Netw. Sci. Eng. 2020, 8, 1154–1166.

http://doi.org/10.1007/s12083-021-01250-y
http://www.ncbi.nlm.nih.gov/pubmed/32012774
https://ssrn.com/abstract=3440802

Appl. Sci. 2023, 13, 8726 22 of 22

31. Yun, J.; Goh, Y.; Chung, J.M. DQN-based optimization framework for secure sharded blockchain systems. IEEE Internet Things J.
2020, 8, 708–722.

32. Zhang, M.; Li, J.; Chen, Z.; Chen, H.; Deng, X. An efficient and robust committee structure for sharding blockchain. IEEE Trans.
Cloud Comput. 2022, early access.

33. Gao, N.; Huo, R.; Wang, S.; Huang, T.; Liu, Y. Sharding-Hashgraph: A High-Performance Blockchain-Based Framework for
Industrial Internet of Things with Hashgraph Mechanism. IEEE Internet Things J. 2021, 9, 17070–17079.

34. Asheralieva, A.; Niyato, D. Reputation-based coalition formation for secure self-organized and scalable sharding in iot blockchains
with mobile-edge computing. IEEE Internet Things J. 2020, 7, 11830–11850.

35. Zhang, X.; Xia, W.; Wang, X.; Liu, J.; Cui, Q.; Tao, X.; Liu, R.P. The block propagation in blockchain-based vehicular networks.
IEEE Internet Things J. 2021, 9, 8001–8011.

36. Morales, D.C.; Velloso, P.B.; Laubé, A.; Nguyen, T.M.T.; Pujolle, G. A performance evaluation of C4M consensus algorithm. Ann.
Telecommun. 2023, 78, 169–182.

37. Fu, X.; Wang, H.; Shi, P.; Zhang, X. Teegraph: A Blockchain consensus algorithm based on TEE and DAG for data sharing in IoT.
J. Syst. Archit. 2022, 122, 102344.

38. OPNET Network Simulator. Available online: http://opnetprojects.com/opnet-network-simulator/ (accessed on 10
January 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://opnetprojects.com/opnet-network-simulator/

	Introduction
	Related Works
	Sharding-Enabled Blockchain
	MANET-Based Blockchain

	Preliminary
	Behavior-Based Sharding Hashgraph Framework
	System Model
	Network Model
	Security Problem

	Asynchronous Intra-Sharding and Inter-Sharding Consensus
	Principle of Tree-Assisted Inter-Sharding Consensus
	Work Process of a Dynamic Shard

	Shard Recovery and Reconfiguration
	Performance Evaluation
	Security Analysis
	Experimental Evaluation
	Experimental Setting
	Experimental Results

	Conclusions
	References

