
Citation: Wang, Z.; Zheng, F.; Liu, M.

Identical Parallel Machine

Scheduling Considering Workload

Smoothness Index. Appl. Sci. 2023, 13,

8720. https://doi.org/10.3390/

app13158720

Academic Editor: Kuo-Ching Ying

Received: 3 July 2023

Revised: 25 July 2023

Accepted: 26 July 2023

Published: 28 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Identical Parallel Machine Scheduling Considering Workload
Smoothness Index
Zhaojie Wang 1,* , Feifeng Zheng 1 and Ming Liu 2

1 Glorious Sun School of Business and Management, Donghua University, Shanghai 200051, China;
ffzheng@dhu.edu.cn

2 School of Economics and Management, Tongji University, Shanghai 200092, China; mingliu@tongji.edu.cn
* Correspondence: 1189194@mail.dhu.edu.cn

Abstract: Workload balance is significant in the manufacturing industry. However, on the one
hand, some existing specific criteria cannot achieve the minimization workload imbalance of parallel
machines. On the other hand, there are few algorithms in existing studies that can effectively solve the
parallel machine scheduling problem with the objective of minimizing workload imbalance. Inspired
by this, we investigate an identical parallel machine scheduling problem with the objective of the
minimum workload smoothness index. We first establish a mathematical model for the considered
problem and then linearize its objective function. We prove the NP-hardness of the problem by
reducing the PARTITION problem to it, and we provide both the upper bound and lower bound of
the studied problem. An efficient genetic algorithm and an improved list scheduling algorithm are
also proposed to efficiently address the considered problem. The numerical results demonstrate the
effectiveness of the proposed methods.

Keywords: smoothness; workload; mixed integer programming model; heuristic algorithms

1. Introduction

Parallel machine scheduling systems have been extensively applied in various produc-
tion and manufacturing industries [1]. In parallel machine scheduling, it generally contains
two decision issues, i.e., sequencing and job assignment [2,3]. Various optimization objec-
tives, including the makespan and the total completion time, have been well addressed
in previous studies [4–7]. In addition to the above classical objectives, workload balance
between the machines together with the corresponding operators is also a major aspect of
decision making in manufacturing industry [8–10]. It contributes to reducing the idleness
and work-in-process and removing bottlenecks [8,11]. Minimum imbalance is actually
beneficial for minimizing the inventory of finished goods [12].

The solutions with the classical minimum objective of the makespan or the total
completion time may induce the workload balance between the parallel machines to a large
extent. However, the above solutions cannot guarantee their optimality when we aim to
minimize the imbalance of workloads between the machines. Therefore, some previous
works have investigated other specific criteria to measure the workload imbalance, such as
the Average Relative Percentage of Imbalance (ARPI) [12], Total Imbalance (TB) [13] and
even Total Workload [14].

In this work, we introduce the workload smoothness index (SI) to the identical parallel
machine scheduling problem. The index of SI was introduced by Moodie and Young [15]
to measure the balance level of workloads between the neighboring workstations in an
assembly line environment. To our best knowledge, this is the first study to introduce
SI as an optimization objective into parallel machine scheduling problems. We observe
that SI may generate a better solution in terms of the workload balance between the
parallel machines, comparing with ARPI, TB and some other measurements. We first
present the formulae of the above indices and then give two examples to illustrate their

Appl. Sci. 2023, 13, 8720. https://doi.org/10.3390/app13158720 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13158720
https://doi.org/10.3390/app13158720
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5295-1794
https://orcid.org/0000-0003-3190-5008
https://doi.org/10.3390/app13158720
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13158720?type=check_update&version=1

Appl. Sci. 2023, 13, 8720 2 of 17

performance difference. The indices are given by SI =
√

∑i∈M(Wmax −Wi)2, ARPI = 1
m ·

(∑i∈M
Wmax−Wi

Wmax
) and TB = ∑i∈M |∑i∈MWi

m −Wi|, where Wmax is the maximum workload
or the makespan, Wi is the workload of machine i, and M is the set of machines. In
Example 1, there are f ive jobs J1, J2, J3, J4, J5 to be processed on f our parallel machines.
The corresponding processing times of the jobs are 1, 2, 3, 6 and 8, respectively. For both
problems Pm||Cmax and Pm||ARPI, all the three solutions shown in Figure 1a–c are optimal
with the minimum objective value of Cmax = Wmax = 8 and ARPI = 1

4 · (∑
4
i=1

8−Wi
8) = 3/8,

respectively. For problem Pm||TB, however, only the two solutions in Figure 1b,c are
optimal with the minimum objective value of TB = ∑4

i=1 |
∑i∈MWi

4 −Wi| = 8. For the
considered problem Pm||SI in this work, we observe that only solution Figure 1b is optimal

with the corresponding objective value of SI =
√

∑4
i=1(8−Wi)2 =

√
54, while the other

two solutions in Figure 1a,c are of the objective values of SI =
√

74 and SI =
√

62,
respectively. That is, the job assignment in Figure 1b has the best workload balance among
the three solutions.

M1

M2

M3

J4

J3

J2

J1M4

J5

(a) optimal solution 1 (b) optimal solution 2

(c) optimal solution 3

0 1 2 3 4 5 6 7 8

M1

M2

M3

J4

J3

J2J1M4

J5

0 1 2 3 4 5 6 7 8

M1

M2

M3

J4

J3 J2

J1M4

J5

0 1 2 3 4 5 6 7 8

Figure 1. Illustration of three optimal solutions to Example 1 for problems Pm||Cmax and Pm||ARPI.

In the above example, we find that the solution in Figure 1b is also the only opti-
mal schedule for problem Pm||MWD where MWD = maxi∈M

Wmax−Wi
Wmax

. The following
Example 2, however, reveals that index SI also better guarantees workload balance than
MWD. In Example 2, there are six jobs with processing times 15, 9, 9, 7, 6, and 5 to be
processed on f our machines. Figure 2 reports two optimal solutions to problem Pm||MWD,
while the solution in Figure 2a outperforms that in Figure 2b for problem Pm||SI. The
corresponding values of SI are equal to

√
41 and

√
45, respectively. That is, the solution in

Figure 2a has better workload balance than that in Figure 2b.
By the above two examples, we believe that although the smoothness index (SI) is

currently used in assembly line processing systems in previous studies, it is the most feasible
index to measure the workload balance in identical parallel machine scheduling compared
with other existing criteria. Motivated by this, we investigate the identical parallel machine
scheduling problem with the objective of minimizing the workload smoothness index, i.e.,
the Pm||SI problem. The main contributions of this study are as follows.

(1) We introduce smoothness index to identical parallel machine scheduling and prove
the NP-hardness of the considered problem.

Appl. Sci. 2023, 13, 8720 3 of 17

(2) A mathematical model with a minimizing smoothness index is established, and both
upper and lower bounds are provided.

(3) To quickly find high-quality feasible solutions, an efficient genetic algorithm and
an improved list scheduling algorithm are proposed. Numerical experiments show
that the proposed genetic algorithm can output high-quality feasible solutions for
small-scale instances. For large-scale instances, the proposed improved list scheduling
algorithm outperforms the list scheduling algorithm based on LPT, SPT, and RPT
rules. Please refer to Section 6 for specific details.

M1

M2

M3

J2

J4

M4

J1

(a) optimal solution 1

J6

J5

J3

(b) optimal solution 2

M1

M2

M3

J2

J4

M4

J1

J5

J6

J3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 2. Illustration of two optimal solutions to Example 2 for problem Pm||MWD.

The remainder of this paper is organized as follows. Section 2 reviews previous
studies on the parallel machine workload balancing problem and smoothness index in
the assembly line environment. Section 3 builds a mathematical model for the considered
problem and linearizes its objective function. We prove the NP-hardness of the Pm||SI
problem and present both upper and lower bounds in Section 4. Section 5 proposes a genetic
algorithm and an improved list scheduling algorithm to solve the considered problem. We
also conduct numerical experiments to evaluate the performance of proposed heuristic
algorithms in Section 6. Finally, Section 7 concludes this work.

2. Literature Review

Many previous studies have paid attention to the issue of workload balance in parallel
machine scheduling, and various measures other than SI have been adopted to evaluate
the qualities of solutions. On the other hand, researchers have also adopted the index of
SI to evaluate solution qualities in the assembly line balancing problem. In the following,
we review the related literature in two aspects: the parallel machine workload balancing
problem and smoothness index in the assembly line environment.

2.1. Parallel Machine Workload Balancing Problem

For the parallel machine workload balancing problem, Rajakumar et al. [11] introduce
the index of total relative percentage of workload imbalances, i.e., RPI = ∑i∈M

Wmax−Wi
Wmax

·

Appl. Sci. 2023, 13, 8720 4 of 17

100%, where Wi is the workload of machine i, and Wmax = max{W1, W2, . . . Wi, . . . , Wm}.
They propose three list scheduling algorithms based on the following rules: Random, SPT
(shortest processing time first), and LPT (longest processing time first). Experimental results
show that the list scheduling algorithm based on the LPT rule outperforms the other two
algorithms. Moon et al. [13] study the workload balancing problem in a semi-automatic
parallel machine shop in which two types of machines are operated by several operators.
The objective is to minimize the imbalance of the workloads among the operators, i.e., to
minimize TB = ∑i∈M |∑i∈MWi

m −Wi|. Ouazene et al. [16] investigate the parallel machine
workload balancing problem with the objective of minimizing the maximum workload
difference between machines, i.e., minimizing MWD = maxi∈M

Wmax−Wi
Wmax

.
Yildirim et al. [17] study the parallel machine workload balancing problem with

sequence-dependent setup times and define the maximum allowable level α of imbalance.
That is, the sum of the processing times and setup times of jobs assigned to machine i,
denoted by W ′ i, has to be within some tolerance. More precisely, W ′ i ≤ 1

m ·W ′total(1 + α)

and W ′ i ≥ 1
m ·W ′total(1− α), where W ′total is sum of the total processing time and the

total setup time of all the jobs. Keskinturk et al. [12] also address the parallel prob-
lem scheduling problem with sequence-dependent setup times, in which the objective
is to minimize the average relative percentage of imbalance (ARPI), i.e., to minimize
ARPI = 1

m · (∑i∈M
Wmax−Wi

Wmax
)× 100%.

Ho et al. [18] introduce a criterion named the normalized sum of squared workload
deviations (NSSWD) to minimize the workload imbalance. They prove that an NSSWD-
optimal schedule is necessarily a makespan-optimal one. Walter and Lawrinenko [19]
explain such a proof is incorrect under the case of m ≥ 3. For solving the problem under
the case of m ≥ 3, Schwerdfeger and Walter [20] propose an algorithm based on a local
search procedure. Theoretically, an NSSWD-optimal schedule is necessarily an SI-optimal
one. However, relatively few studies apply NSWWD to achieve the workload imbalance
minimization. Consequently, the linearization process of NSSWD is relatively unexplored,
which makes the problem difficult to be directly solved by calling commercial solvers.
Moreover, few studies on problem Pm||NSSWD consider the given maximum workload
constraint of machines. Besides, some works consider controllable processing in order to
achieve balanced workloads (i.e., smooth processes) on (neighbor) machines [21,22].

In the above studies, various indices have been proposed to deal with the parallel
machine workload balancing problem. As shown in Example 1 and Example 2, however,
the indices may not guarantee a solution with the best possible balance between the parallel
machines. Therefore, we adopt the smoothness index rather than any of the above indices
as the optimization objective of the considered problem in this study.

2.2. Smoothness Index in the Assembly Line Environment

Moodie and Young [15] are the first to introduce the smoothness index in the assembly
line balancing problem, i.e., SI =

√
∑i∈M(Wmax −Wi)2, where Wmax is the given cycle time

constraint of the assembly line. Kim et al. [23] further present a new heuristic procedure
based on the genetic algorithm for the assembly line balancing problem with the objective
of maximizing the workload smoothness index. Scholl [24] use SI to measure the balance
level of the working time between the workstations of the assembly line. Emde et al. [25]
investigate several objectives to smoothen the workload, and the proposed measures are
systematically tested in a comprehensive computational study. Testing results suggest that
workload smoothing is an essential task in mixed-model assembly lines. Nearchou [26]
proposes a novel method based on PSO to address a simple assembly line balancing problem
(SALBP), minimizing the cycle time and the workload smoothing. Azizoǧlu and İmat [27]
consider the SALBP problem with a fixed number of workstations and prespecified cycle
time. For the objective of minimizing the value of SI, they develop several optimality
properties and bounding mechanisms and then propose an efficient branch-and-bound
algorithm. Finco et al. [28] study an assembly line balancing problem where the factor of
human energy consumption is included and the objective is to minimize the value of SI.

Appl. Sci. 2023, 13, 8720 5 of 17

They propose several solution methodologies and make comparison of their performance
via computational experiments.

As shown above, the smoothness index SI has been well studied in the assembly line
balancing problem. In this work, we adopt the smoothness index to evaluate the level
of workload balance between the identical parallel machines in order to provide a most
reasonable job scheduling solution in manufacturing decision making, considering the
fairness of the workload.

3. Problem Statement and Mathematical Model
3.1. Problem Statement

There are n jobs with positive processing times p1, p2, . . . , pn to be processed on m
identical parallel machines. All the jobs are released at time 0, and the objective is to
minimize the workload smoothness index, i.e., minimizing SI =

√
∑i∈M(Wmax −Wi)2,

where Wmax is the maximum workload of the machine and Wi is the workload of machine
i. The value of Wi is exactly the total processing time of the jobs assigned to machine i in
any processing schedule. Adopting the classical three-notation method, we denote the
considered problem as Pm||SI.

The problem under consideration is based on the following fundamental assumptions.

(1) Each machine can only process one job at a time;
(2) The setup time of processing any job on each machine is negligible;
(3) All the machines are available for processing jobs from time 0.

Below, we first present basic parameters and decision variables and then establish one
mathematical model for problem Pm||SI. We further linearize the objective function and
thus provide an equivalent linear programming model.

3.1.1. Input Parameters

M : set of machines indexed by i, i.e., i ∈ M = {1, 2, . . . , m};
J : set of jobs indexed by j, i.e., j ∈ J = {1, 2, . . . , n};
pj : the processing time of job j ∈ J ;
Wmax : the given maximum workload limitation of machines.

3.1.2. Decision Variables

xij : a binary variable equal to 1 if job j ∈ J is processed on machine i ∈ M and 0
otherwise;

yijj′ : a binary variable equal to 1 if jobs j ∈ J and j′ ∈ J \{j} are processed on machine
i ∈ M and 0 otherwise;

Wi : the workload of machine i ∈ M.

3.2. Mathematical Model

The objective is to minimize the SI, as shown in Formula (1).

[P1] : min SI =
√

∑
i∈M

(Wmax −Wi)2. (1)

subject to

∑
i∈M

xij = 1, j ∈ J (2)

Wi = ∑
j∈J

xij · pj, i ∈ M (3)

Wi ≤Wmax, i ∈ M (4)

xij ∈ {0, 1}, i ∈ M, j ∈ J (5)

Wi ∈ S+, i ∈ M (6)

Appl. Sci. 2023, 13, 8720 6 of 17

Constraint (2) guarantees that each job can only be processed in a machine.
Constraint (3) calculates the workload of machine i ∈ M. Constraint (4) ensures that the
workload of each machine cannot exceed the maximum workload constraint.
Constraints (5) and (6) give the ranges of the variables, where S+ is the set of positive
real numbers.

3.3. Objective Function Linearization

In model [P1], the objective function is non-linear. To transform the model into a linear
programming and then solve it via CPLEX or other commercial solvers, we linearize the
objective function in this subsection.

Theorem 1. For problem Pm||SI, minimizing SI is equivalent to minimizing

∑
i∈M

∑
j∈J

∑
j′∈J \{j}

pj · pj′ · yijj′ (7)

Proof. Azizoǧlu and İmat [27] have proved that minimizing SI2 is equivalent to minimizing

∑
i∈M

(∑
j∈J

p2
j · yijj + 2 · ∑

j∈J
∑

j′∈J \{j}
pj · pj′ · yijj′) (8)

Furthermore, since ∑i∈M yijj = ∑i∈M xij = 1, ∑i∈M(∑j∈J p2
j · yijj) is a constant. Therefore,

minimizing SI is equivalent to minimizing Equation (8). The proof is completed.

According to Theorem 1, mathematical model [P1] can be reformulated as below

[P2] : min f = ∑
i∈M

∑
j∈J

∑
j′∈J \{j}

pj · pj′ · yijj′

subject to Constraints (2)–(6) and the following Constraints (9)–(11).

yijj′ ≥ xij + xij′ − 1, i ∈ M, j ∈ J , j′ ∈ J \{j} (9)

yijj′ ≤ xij, i ∈ M, j ∈ J , j′ ∈ J \{j} (10)

yijj′ ∈ {0, 1}, i ∈ M, j ∈ J , j′ ∈ J \{j} (11)

Constraints (9) and (10) give the processing sequence of jobs on each machine.
Constraint (11) gives the range of the variables. Since [P2] is a linear programming model,
we can directly adopt some commercial solver such as CPLEX to solve it.

4. Theoretical Analysis
4.1. NP-Hardness

For problem Pm||SI, we prove its NP-hardness via reduction from the PARTITION problem.

Theorem 2. Problem Pm||SI is NP-hard.

Proof. We prove the theorem by reducing PARTITION to the considered problem. We first
phrase the classical PARTITION problem below.

PARTITION: Given n positive real numbers S = {a1, a2, . . . an} with k = 1
2 ∑n

j=1 aj,
do there exist two disjoint subsets S1, S2 such that S1

⋃
S2 = S and ∑j∈S1

aj = ∑j∈S2
aj = k?

For problem Pm||SI, we construct a job input instance with n + m− 2 jobs that are
to be processed on m (2 ≤ m ≤ n) machines. Let pj = aj for 1 ≤ j ≤ n, and pj = k for
n + 1 ≤ j ≤ n + m− 2. Hence, ∑1≤j≤n pj = 2 · k and ∑1≤j≤n+m−2 pj = m · k. We claim
that if there exists a YES answer to the PARTITION problem, implying the existence of
two disjoint sets S1, S2 with ∑j∈S1

aj = ∑j∈S2
aj = k, then there is an optimal solution to

problem Pm||SI, in which the first n jobs are partitioned into two job sets with the same

Appl. Sci. 2023, 13, 8720 7 of 17

total processing time equal to k and assigned to two machines with the same workload of k.
For the remaining m− 2 jobs, each of them is assigned to one of the remaining machines.
As shown in Figure 3, all the machines are of the same workload of k and SI = 0 in the
optimal solution.

On the other hand, if there exists an optimal solution to problem Pm||SI, then we
conclude that the first n jobs must be partitioned into two job sets with the same total
processing time. With pj = aj for 1 ≤ j ≤ n, it indicates the existence of two disjoint subsets
S1, S2 with ∑j∈S1

aj = ∑j∈S2
aj = k. The proof is completed.

M1

M2

Mm 2

Mm 1

Mm

k t0

Figure 3. Illustration of an optimal solution to problem Pm||SI.

4.2. Upper and Lower Bounds

Theorem 3. Assume that job Jk (k ∈ [1, m]) has the longest processing time among the job set. For
any feasible solution of a job input instance, the upper bound of the objective value is as follows.

UB =

√√√√m ·W2
max + (

∑j∈J \{k} pj

m
+ pk − 2 ·Wmax) · ∑

j∈J
pj.

Proof. In the optimal solution, we have Wi ≤
∑j∈J \{k} pj

m + pk and ∑i∈MWi = ∑j∈J pj.
Thus, we can know that

SI2 = ∑
i∈M

(Wmax −Wi)
2

= m ·W2
max − 2 · ∑

i∈M
Wmax ·Wi + ∑

i∈M
Wi

2

= m ·W2
max + ∑

i∈M
Wi · (Wi − 2 ·Wmax)

≤ m ·W2
max + (

∑j∈J \{k} pj

m
+ pk − 2 ·Wmax) · ∑

j∈J
pj

= UB2.

Hence, SI ≤ UB. The proof is completed.

Theorem 4. LB =

√
m · (Wmax −

∑j∈J pj
m)2 is a lower bound of problem Pm||SI.

Appl. Sci. 2023, 13, 8720 8 of 17

Proof. Let ∆i = Wi −
∑j∈J pj

m . As ∑i∈M ∆i = 0,

SI2 = ∑
i∈M

(Wmax −
∑j∈J pj

m
− ∆i)

2

= ∑
i∈M

[(Wmax −
∑j∈J pj

m
)2 + ∆2

i − 2 · ∆i · (Wmax −
∑j∈J pj

m
)]

= ∑
i∈M

[(Wmax −
∑j∈J pj

m
)2 + ∆2

i]− 2 · (Wmax −
∑j∈J pj

m
) · ∑

i∈M
∆i

= ∑
i∈M

[(Wmax −
∑j∈J pj

m
)2 + ∆2

i].

Due to ∑i∈M ∆2
i ≥ 0, SI2 ≥ m · (Wmax −

∑j∈J pj
m)2 = LB2. Hence, SI ≥ LB. The proof is

completed.

Lemma 1. In the optimal solution of problem Pm||SI, the workload imbalance between any two
machines is less than or equal to the processing time of the smallest job on the machine with a
larger workload.

Proof. According to Azizoǧlu and İmat [27], model [P2] and the following model [P3]
share the common optimal solution.

[P3] : min f = ∑
i∈M

(Wi)
2

subject to Constraints (2)–(6).
Let l ∈ J , i and i′ denote the smallest job on the machine with a larger workload, the

machine with a larger workload and the machine with a smaller workload. We assume that
Wj −Wi′ ≥ pl . We only need to prove the following inequality.

(Wi)
2 + (Wi′)

2 ≥ (Wi − pl)
2 + (Wi′ + pl)

2

Due to Wj −Wi′ ≥ pl , we have

(Wi − pl)
2 + (Wi′ + pl)

2

= (Wi)
2 + (Wi′)

2 + 2 · (pl)
2 − 2 · pl · (Wi −Wi′)

≤ (Wi)
2 + (Wi′)

2

Therefore, Lemma 1 is proved. The proof is completed.

Theorem 5. If n > m, there is no machine with a workload of 0 in the optimal solution of problem
Pm||SI.

Proof. According to Lemma 1, it is evident that Theorem 5 holds. Therefore, the proof
process is omitted for simplicity.

5. Heuristic Algorithms

In this section, we further construct an efficient genetic algorithm and an improved
list algorithm to solve the considered problem.

Appl. Sci. 2023, 13, 8720 9 of 17

5.1. Genetic Algorithm Based on Bounding Mechanisms

The genetic algorithm simulates the natural selection and genetic mechanism in Dar-
win’s biological evolution theory. As meta-heuristic search algorithms, genetic algorithms
have been extensively used to solve scheduling problems in manufacturing systems [29]
and other NP-hard problems [30]. In the genetic algorithm, each chromosome represents
a feasible solution [31]. For problem Pm||SI, we propose an improved genetic algorithm
based on bounding mechanisms, which is denoted as GABM.

5.1.1. Chromosome Representation

For each chromosome, the position of a gene represents the index of the job, while the
value of the gene represents the index of a machine. For example, in Figure 4, the first gene
is 1: that is to say, job J1 is to be processed on machine 1.

A chromosome individual

1 2 12 12

1 2 43 65 The position of each gene

represents the job index
Each gene represents

the machine index

The gene index

Figure 4. Illustration of a chromosome.

5.1.2. Fitness Function

In the genetic algorithm, the fitness value of a chromosome corresponds to the proba-
bility that it is selected as the parent chromosome. We assume that NIND is the population
size, and obj(v) is the corresponding objective value of chromosome v in the population.
Since this study aims to minimize the workload smoothness index, we define the fitness
value of chromosome v as 1/obj(v). For the case where the solution (or a chromosome) is
infeasible, we set the corresponding objective value to be a sufficiently large real number,
implying that its fitness value is infinitesimal.

5.1.3. Initialization of Chromosomes

In order to reduce the solution space and find the optimal solution more accurately,
we generate the initial population by the BM algorithm. The pseudo-code of the algorithm
is described in Algorithm 1, where chrom(v, j) means the jth gene of chromosome v. In the
BM algorithm, UB is the upper bound of the optimal solution which can be obtained by
Theorem 3, and LB is the lower bound of the optimal solution which can be obtained by

Theorem 4. Let ω =
∑j∈J \{k} pj

m + pk, where job Jk is with the maximum processing time.

5.1.4. Crossover and Mutation

After two parents are selected, we then randomly select two genes from the two par-
ents, respectively, to cross based on two-point crossover. Similarly, after a chromosome is
randomly selected in the population, for completing mutation, we randomly select a gene
that can guarantee the maximum workload of the chromosome after mutation is smaller
or equal to ω to mutate. In addition, after crossover, if the maximum workloads of any
two offspring are large than ω, we will copy their parents as offspring.

Appl. Sci. 2023, 13, 8720 10 of 17

Algorithm 1 BM algorithm

Require: UB, LB, NIND,M, {p1, p2, . . . , pn}
1: for v = 1 : NIND do
2: for j = 1 : n do
3: κ = {i|i ∈ M & wi + pj ≤ ω}

%Define a machine set κ in which the current workload of all jobs plus pj is less than or
equal to ω

4: chrom(v, j) = κ(σ), where σ is a random integer less than the length of set κ
%A machine is randomly selected in set κ to process job j ∈ J

5: end for
6: Calculate the fitness of chromosome v, i.e., obj(v)
7: while obj(v) > UB do
8: Chromosome v is regenerated according to the above rules

%If the objective value of the corresponding chromosome is larger than the given upper
bound, a new chromosome is generated to replace it

9: Calculate the fitness of chromosome v
10: end while
11: if obj(v) = LB then
12: NIND chromosomes v are copied as the initial population

%If the corresponding objective value of the chromosome is equal to the given lower bound,
NIND copies of that chromosome will be used as the initial population

13: v← NIND + 1
14: end if
15: end for
16: return Initial chromosome population

5.2. List Scheduling Algorithms

List scheduling algorithms (LSAs) perform well in solving parallel machine scheduling
problems with regard to machine utilization criteria [3,32]. The main idea of LSAs is to
assign each job in the list of waiting jobs to the machine with the minimum workload [16].
In practice, there are different strategies for selecting jobs from the waiting job list. We
denote the list scheduling algorithm based on the SPT (shortest processing time first),
LPT (longest processing time first) and RPT (random processing time) rules by LSASPT ,
LSALPT and LSARPT , respectively. For convenience, we show the pseudo-code of LSAs in
Algorithm 2.

Algorithm 2 List scheduling algorithms (LSAs)

Require: m, n, {p1, p2, . . . , pn}
1: Sequence the jobs in the order of LPT, SPT or random.
2: for j = 1 : n do
3: Assign job j ∈ J to the machine with the currently minimum workload
4: for i = 1 : m do
5: Calculate the current workload of machine i, that is, the sum of the processing time

of the jobs currently assigned to machine i
6: end for
7: end for
8: return The objective value and the corresponding schedule

5.3. An Improved List Scheduling Algorithm

Previous studies show that the list scheduling algorithm based on the LPT rule has bet-
ter performance in solving workload balancing problems (e.g., [32]). Inspired by Lemma 1,
we propose an improved list scheduling algorithm based on the LPT rule, which is denoted
by ILSALPT . The main idea of ILSALPT algorithm is to minimize the difference between

Appl. Sci. 2023, 13, 8720 11 of 17

the maximum workload and the minimum workload. A detailed description of the main
idea of the ILSALPT algorithm is shown in Figure 5.

Calculate the difference between the

maximum and the minimum workload,

denoted by Δmax

Find a feasible solution by

LSTLPT

 Exchanging several appropriate

jobs on the two machines

Yes

Calculate the difference between the

maximum and the minimum workload,

denoted by Δmax

No

Assign the selected jobs from the machine

with the maximum workload to the

machine with the minimum workload

No

Output the feasible solution

Yes

 Judge whether the imbalance can

be reduced by exchanging several

appropriate jobs on the two

machines

 Judge whether the imbalance can be

reduced by assigning one or more

appropriate jobs from the machine with the

maximum workload to that with the

minimum workload

Figure 5. The framework of the ILSALPT algorithm.

For example, suppose there are seven jobs to be processed on two machines. The
corresponding processing times of the jobs are (8, 9, 8, 6, 8, 7, 6). Let the maximum
workload constraint be 29. The solution of the LSALPT algorithm is shown in Figure 6a.
The working time of machine 1 is 6 longer than that of machine 2. If we can remove
3 (6/2) units’ processing times from machine 1 to machine 2, the optimal solution can be
obtained. However, it is not difficult to find that this method is not feasible for this case.
Nevertheless, we can reduce the working time on machine 1 by 3 units as much as possible
by exchanging the positions of job J2 and job J6; the detail is shown in Figure 6b. After the
above operations, we can obtain a better feasible solution. To keep our algorithm more
understandable, the pseudo-code of the ILSALPT algorithm is described in Algorithm 3.

Appl. Sci. 2023, 13, 8720 12 of 17

Algorithm 3 ILSALPT algorithm

Require: m, n, {p1, p2, . . . , pn}
1: Find a feasible solution by LSTLPT
2: Calculate the difference between the maximum workload and the minimum workload,

denoted by ∆max
3: Determine the longest job k which is processed on the machine with the maximum

workload
4: Determine the set, denoted by η, of jobs that are processed on the machine with the

minimum workload
5: α = {j|j ∈ η & 0 < pk − pj < ∆max}% Find the job j in set η satisfying 0 < pk − pj < ∆max
6: while α 6= φ do
7: Assign job Jk to the machine with the minimum workload
8: Seek the job denoted by j′ in set α whose absolute value of the difference between its

processing time and pk is the closest to ∆max/2, then assign the job to the machine
with the maximum workload

9: α = α \ {j′}
10: Update set α and ∆max
11: end while
12: β = {j|j ∈ η & pj < ∆max} % Find the job j processed on the machine with the maximum

workload satisfying pj < ∆max
13: while β 6= φ do
14: Assign the job denoted by j′′ in set β whose processing time is closest to ∆max/2 to

the machine with the minimum workload
15: β = β \ {j′′}
16: Update set β and ∆max
17: end while
18: Calculate the objective value
19: return The objective value and the feasible solution

J2J1

J5

J3

J6J7 J4M1

M2

0 1 2 3 4 5 6 7 8 9 10 11 12 161413 15 1817 19 2321 22 25 26 2928272420
t

J1

J2

J3 J6

J7 J4M1

M2

0 1 2 3 4 5 6 7 8 9 10 11 12 161413 15 1817 19 2321 22 25 26 2928272420
t

(a) the feasible solution obtained by LSALPT

(b) the feasible solution obtained by ILSALPT

J5

Figure 6. The feasible solutions obtained by LSALPT and ILSALPT .

6. Numerical Experiments

CPLEX is a common commercial solver for finding exact solutions of linear program-
ming models. Hence, we select the optimal solution obtained by CPLEX solver as the
benchmark to evaluate the performance of GABM, ILSALPT , LSASPT , LSALPT and LSARPT
algorithms in small-scale numerical experiments. Notice that in this work, we first apply

Appl. Sci. 2023, 13, 8720 13 of 17

CPLEX to solve a mixed-integer linear programming model [P2] to obtain the value of Wi
(i ∈ M). Then, the optimal objective value of model [P1] can be obtained by Formula (1).
To reveal the performance difference between the above heuristic algorithms, we define
a relative error gap1 = obj−obj∗

obj∗ × 100% in small-scale numerical experiments, where obj
represents the objective value of the solution obtained by the corresponding algorithm.
In small-scale instances, gap1 measures the relative error between the objective value of
each heuristic algorithm and that of CPLEX. In large-scale instances, we define gap2 (please
refer to the Section 6.2) to measure the relative error between the objective value of each
heuristic algorithm and that of LSALPT . All the numerical experiments are conducted on a
PC with AMD Ryzen 7 4800U, 1.80 GHz processors.

In the numerical experiments, we set the parameters of the genetic algorithm with
good performance through repeated experiments. The relevant parameters of the GABM
algorithm in numerical experiments are as follows:

• The number of the population size and iterations are 200 and 100, respectively;
• The probability of crossover and mutation are 0.6 and 0.4, respectively.

In addition, since the maximum workload of any optimal solution cannot exceed ω
(please refer to Section 5.1.3), for brevity, we set the maximum workload constant to be
Wmax = ω.

6.1. Small Job Instances (n ≤ 15)

We first present numerical experiment results for small job input instances, in which
the processing time of each job is a positive real number between 5 and 10. For each
combination (m, n), we generate three instances with the random seed, and the numerical
results in Table 1 are the average objective value of the solutions to the three instances by
the corresponding algorithms.

Table 1. Experimental results of small job instances with job processing time range from 5 to 10.

(m, n) CPLEX
LSARPT LSALPT LSASPT GABM ILSALPT

obj gap1 obj gap1 obj gap1 obj gap1 obj gap1

(2, 5) 6.74 7.85 16.47 7.36 9.20 8.51 26.26 6.74 0.00 6.74 0.00
(2, 10) 6.72 7.11 5.80 6.74 0.29 7.06 5.06 6.72 0.00 6.74 0.30
(2, 15) 6.79 7.03 3.53 7.60 11.93 8.64 27.25 6.79 0.00 6.80 0.15
(3, 5) 11.19 12.09 8.04 11.19 0.00 12.21 9.12 11.19 0.00 11.19 0.00
(3, 10) 10.29 10.75 4.47 11.04 7.29 11.84 15.06 10.29 0.00 10.32 0.29
(3, 15) 11.00 11.55 5.00 11.00 0.00 11.19 1.73 11.00 0.00 11.00 0.00
(4, 5) 13.89 14.15 1.87 13.89 0.00 14.72 5.98 13.89 0.00 13.89 0.00
(4, 10) 13.77 14.77 7.26 14.53 5.52 15.39 11.76 13.77 0.00 14.09 2.32
(4, 15) 14.37 15.76 9.67 14.97 4.18 15.79 9.88 14.37 0.00 14.46 0.63

Average 10.53 11.23 6.90 10.92 4.27 11.71 12.46 10.53 0.00 10.58 0.41

Note: gap1 = obj−obj∗
obj∗ × 100%, where obj∗ is the exact solution obtained by CPLEX.

In Table 1, we observe that the relative error between each of the two proposed
heuristic algorithms, i.e., ILSALPT and GABM, and the exact solution is less than 1% in all
the small job instances. For the other three previous algorithms, i.e., LSARPT , LSALPT and
LSASPT , their average relative errors are equal to 6.90%, 4.27% and 12.46%, respectively.
From the “gap1” column, we observe that the performance of the list algorithm based on
the LPT rule is better than that based on SPT and RPT rules. Nevertheless, the list algorithm
based on the SPT rule holds the worst performance compared to other list algorithms.
There is no significant trend where the relative errors of the tested algorithms increase with
the number of either jobs or machines. Specifically, considering that the number of jobs is
an integer multiple of that of machines (e.g., the second and fifth combinations), the list
scheduling algorithm can output higher-quality feasible solutions. In addition, the average
relative errors of ILSALPT and GABM are about 90.40% and 100.00% smaller than that of

Appl. Sci. 2023, 13, 8720 14 of 17

LSALPT , respectively. We thereby can conclude that (1) GABM outperforms ILSALPT in
small-scale numerical experiments; and (2) the two proposed heuristic algorithms perform
much better than the other three list algorithms.

6.2. Large Job Instances (n ≥ 50)

Below, we further test the performance of the proposed two heuristic algorithms
together with the previous list scheduling algorithms with large job input instances. Espe-
cially, we consider two scenarios with regard to the variation range of the processing times
of jobs, i.e., pj ∈ [5, 10] or pj ∈ [8, 10]. Similar to the case of small job input instances, three
instances are generated for each combination (m, n), and the average results are reported
in Tables 2 and 3, where the running time is in seconds. Notice that in large-scale instances,
CPLEX fails to output even feasible solutions within 7200 s for most instances. Due to the
better performance of the list algorithm based on the LPT rule compared to that based on
SPT and RPT rules in solving small job instances, we set the value of obj∗∗ as the benchmark
obtained by LSALPT , i.e., gap2 = obj−obj∗∗

obj∗∗ × 100%.

Table 2. Experimental results of large job instances with job processing time range from 5 to 10.

(m, n)
LSALPT LSARPT LSASPT GABM ILSALPT

obj∗∗ Time (s) obj Time (s) gap2 obj Time (s) gap2 obj Time (s) gap2 obj Time (s) gap2

(3, 50) 12.11 <1 11.80 <1 −2.56 12.99 <1 7.27 11.44 1 −5.53 11.45 <1 −5.45
(3, 100) 12.19 <1 12.50 <1 2.54 13.12 <1 7.63 11.49 1 −5.74 11.49 <1 −5.74
(3, 500) 12.23 <1 12.28 <1 0.41 13.07 <1 6.87 11.53 3 −5.72 11.53 <1 −5.72
(3, 1000) 12.24 <1 11.77 <1 −3.84 13.13 <1 7.27 11.54 5 −5.72 11.54 <1 −5.72
(5, 50) 17.71 <1 18.26 <1 3.11 18.01 <1 1.69 17.72 2 0.06 17.71 <1 0.00
(5, 100) 17.84 <1 18.78 <1 5.27 18.09 <1 1.40 17.85 2 0.06 17.84 <1 0.00
(5, 500) 17.87 <1 18.99 <1 6.27 18.14 <1 1.51 17.88 4 0.06 17.87 <1 0.00
(5, 1000) 17.87 <1 18.68 <1 4.53 18.16 <1 1.62 17.89 6 0.11 17.87 <1 0.00
(15, 50) 36.98 <1 36.76 <1 −0.60 38.68 <1 4.60 36.43 5 −1.49 36.10 <1 −2.38
(15, 100) 36.88 <1 37.07 <1 0.52 38.40 <1 4.12 36.20 4 −1.84 35.84 <1 −2.82
(15, 500) 37.25 <1 37.56 <1 0.83 38.78 <1 4.11 36.60 7 −1.75 36.12 <1 −3.03
(15, 1000) 37.27 <1 37.48 <1 0.56 38.80 <1 4.11 36.56 9 −1.91 36.13 <1 −3.06
(20, 50) 43.51 <1 43.34 <1 −0.39 45.03 <1 3.49 42.76 5 −1.72 43.01 <1 −1.15
(20, 100) 42.38 <1 43.46 <1 2.55 42.86 <1 1.13 43.13 6 1.77 42.38 <1 0.00
(20, 500) 42.44 <1 43.73 <1 3.04 42.93 <1 1.15 43.03 8 1.39 42.44 <1 0.00
(20, 1000) 42.46 <1 43.98 <1 3.58 42.93 <1 1.11 43.09 11 1.48 42.46 <1 0.00

Average 27.45 <1 27.90 <1 1.61 28.32 <1 3.69 27.20 5 −1.66 26.99 <1 −2.19

Note: gap2 = obj−obj∗∗
obj∗∗ × 100%.

Table 3. Experimental results of large job instances with job processing time range from 8 to 10.

(m, n)
LSALPT LSARPT LSASPT GABM ILSALPT

obj∗∗ Time (s) obj Time (s) gap2 obj Time (s) gap2 obj Time (s) gap2 obj Time (s) gap2

(3, 50) 13.24 < 1 13.06 < 1 −1.36 13.70 < 1 3.47 11.53 1 −12.92 11.53 < 1 −12.92
(3, 100) 13.23 < 1 12.55 < 1 −5.14 13.65 < 1 3.17 11.51 1 −13.00 11.52 < 1 −12.93
(3, 500) 13.26 < 1 12.73 < 1 −4.00 13.68 < 1 3.17 11.54 3 −12.97 11.54 < 1 −12.97
(3, 1000) 13.26 < 1 12.78 < 1 −3.62 13.68 < 1 3.17 11.54 5 −12.97 11.54 < 1 −12.97
(5, 50) 17.83 < 1 18.19 < 1 2.02 17.88 < 1 0.28 17.83 2 0.00 17.83 < 1 0.00
(5, 100) 17.83 < 1 18.26 < 1 2.41 17.87 < 1 0.22 17.83 2 0.00 17.83 < 1 0.00
(5, 500) 17.88 < 1 19.14 < 1 7.05 17.93 < 1 0.28 17.88 4 0.00 17.88 < 1 0.00
(5, 1000) 17.88 < 1 18.87 < 1 5.54 17.93 < 1 0.28 17.89 6 0.06 17.88 < 1 0.00
(15, 50) 38.86 < 1 38.25 < 1 −1.57 39.67 < 1 2.08 37.93 4 −2.39 37.32 < 1 −3.96
(15, 100) 38.94 < 1 38.28 < 1 −1.70 39.63 < 1 1.77 37.84 4 −2.83 36.56 < 1 −6.11
(15, 500) 38.96 < 1 37.52 < 1 −3.70 39.70 < 1 1.90 37.37 6 −4.08 36.12 < 1 −7.29
(15, 1000) 38.97 < 1 37.37 < 1 −4.11 39.73 < 1 1.95 37.20 10 −4.54 36.13 < 1 −7.29
(20, 50) 46.07 < 1 45.81 < 1 −0.56 46.84 < 1 1.67 45.31 5 −1.65 44.86 < 1 −2.63
(20, 100) 42.43 < 1 42.78 < 1 0.82 42.51 < 1 0.19 42.64 6 0.49 42.43 < 1 0.00
(20, 500) 42.47 < 1 43.89 < 1 3.34 42.55 < 1 0.19 43.80 8 3.13 42.47 < 1 0.00
(20, 1000) 42.47 < 1 44.15 < 1 3.96 42.55 < 1 0.19 43.93 11 3.44 42.47 < 1 0.00

Average 28.35 < 1 28.35 < 1 −0.04 28.72 < 1 1.50 27.72 5 −3.76 27.24 < 1 −4.94

Note: gap2 = obj−obj∗∗
obj∗∗ × 100%.

Tables 2 and 3 report the experimental results of LSALPT , LSASPT , GABM and ILSALPT .
Similar to the small job setting, the results of large job instances in Tables 2 and 3 indicate

Appl. Sci. 2023, 13, 8720 15 of 17

that ILSALPT and GABM outperform again the other three list algorithms on average in
terms of solution quality. ILSALPT produces the best solutions for all the test instances,
while LSALPT and GABM output the best schedules for only a part of the instances. More-
over, Tables 2 and 3 report that the average performance of LSALPT is worse than GABM
for the test instances.

For the solution quality, we observe by Tables 2 and 3 that the objective value of
the solution obtained by any of the heuristic algorithms increases proportionally in the
number of machines, while the number of jobs has no significant impact on the objective
value. Moreover, when the job processing time is scaled in [8, 10], the average performance
of LSARPT is even better than that of LSALPT . That is to say, compared to small-scale
numerical experiments, LSALPT lost its power to solve large-scale instances. Similarly,
due to the limitations of given iterations and population size, the average performance
of the designed genetic algorithm in solving large-scale numerical instances also shows a
downward trend. From Tables 2 and 3, we can know that the solution quality of GABM is
generally inferior to that of ILSALPT . This is mainly due to the inability of the designed
genetic algorithm to fully utilize its performance in solving large job instances under the
given chromosome population size and the number of iterations. Moreover, for some
combinations where the number of jobs is an integer multiple of the number of machines,
the performance of GABM is inferior to that of LSALPT due to the limitations of the given
population size and iterations. Considering the running time, all the heuristic algorithms
require running time proportional to the job scale. Meanwhile, the average running time
consumed by ILSALPT is significantly less than that of GABM. Actually, the running time
of GABM is much larger than that of the other four heuristic algorithms.

In summary, we conclude the following. (1) In general, both ILSALPT and GABM
outperform the previous list scheduling algorithms. (2) For large-scale instances, ILSALPT
can output the best solutions for all the instances within one second. (3) In large-scale
numerical experiments, the list scheduling algorithm based on the LPT rule lost its power
to solve the considered problem.

7. Conclusions

In this work, we study an identical parallel machine scheduling problem, aiming
at minimizing the workload smoothness index or the workload imbalance between the
parallel machines. We first prove the NP-hardness of the considered problem, and we prove
its theoretical upper and lower bounds. An efficient genetic algorithm and an improved list
scheduling algorithm are further proposed to solve the problem. Numerical results show
the following: (1) the list scheduling algorithm based on the LPT rule performs better than
that based on SPT and RPT rules in dealing with parallel machine scheduling problems
to minimize workload imbalance; and (2) the designed genetic algorithm can output
high-quality feasible solutions in solving small-scale instances (i.e., n ≤ 15), while the
improved list scheduling algorithm has better performance in solving large-scale instances
(i.e., n ≥ 50).

In practice, the parallel machines may be non-identical or have job-dependent pro-
cessing capabilities. Thus, one future topic is to extend the considered problem to the
scenario with either uniform or unrelated machines. Another interesting research aspect is
to introduce the concept of the job family into the considered problem, where jobs belong
to different families and each machine can only process a partial family of the jobs. Finally,
it is common that jobs are of uncertain processing times in practice, while the established
model in this work is unable to handle the scenario with this uncertainty. Therefore, it is
meaningful to extend our study to the scenario with uncertin processing times of jobs.

Author Contributions: Conceptualization, Z.W. and F.Z.; methodology, Z.W. and F.Z.; software,
Z.W.; validation, F.Z. and M.L.; formal analysis, Z.W.; investigation, Z.W.; resources, Z.W.; data
curation, Z.W.; writing—original draft preparation, Z.W.; writing—review and editing, Z.W. and F.F.;
visualization, Z.W.; supervision, F.Z.; project administration, F.Z.; funding acquisition, F.Z. and M.L.
All authors have read and agreed to the published version of the manuscript.

Appl. Sci. 2023, 13, 8720 16 of 17

Funding: This work was partially supported by the National Natural Science Foundation of China
(Grant Nos. 72271051, 71832001, 72021002 and 72071144) and the Fundamental Research Funds for
the Central Universities (Grant No. 2232018H-07).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liu, X.; Chu, F.; Zheng, F.; Chu, C.; Liu, M. Parallel machine scheduling with stochastic release times and processing times. Int. J.

Prod. Res. 2020, 59, 6327–6346. [CrossRef]
2. Kim, J.; Kim, H.J. Parallel machine scheduling with multiple processing alternatives and sequence-dependent setup times. Int. J.

Prod. Res. 2020, 59, 5438–5453. [CrossRef]
3. Mokotoff, E. Parallel machine scheduling problems: A survey. Asia-Pac. J. Oper. Res. 2001, 18, 193–242.
4. Muter, I. Exact algorithms to minimize makespan on single and parallel batch processing machines. Eur. J. Oper. Res. 2020, 285,

470–483. [CrossRef]
5. Rakrouki, M.A.; Kooli, A.; Chalghoumi, S.; Ladhari, T. A branch-and-bound algorithm for the two-machine total completion time

flowshop problem subject to release dates. Oper. Res. 2020, 20, 21–35. [CrossRef]
6. Strusevich, V.A. Approximation algorithms for makespan minimization on identical parallel machines under resource constraints.

J. Oper. Res. Soc. 2020, 72, 2135–2146. [CrossRef]
7. Yin, Y.; Chen, Y.; Qin, K.; Wang, D. Two-agent scheduling on unrelated parallel machines with total completion time and weighted

number of tardy jobs criteria. J. Sched. 2019, 22, 315–333. [CrossRef]
8. Christ, Q.; Dauzère-Pxexrxexs, S.; Lepelletier, G. An iterated min-max procedure for practical workload balancing on non-Identical

parallel machines in manufacturing systems. Eur. J. Oper. Res. 2019, 279, 419–428. [CrossRef]
9. Ouazene, Y.; Nguyen, N.Q.; Yalaoui, F. Workload balancing on identical parallel machines: Theoretical and computational

analysis. Appl. Sci. 2021, 11, 3677. [CrossRef]
10. Xu, G.Y.; Guan, Z.L.; Yue, L.; Mumtaz, J.; Liang, J. Modeling and optimization for multi-objective nonidentical parallel machining

line scheduling with a jumping process operation constraint. Symmetry 2021, 13, 1521. [CrossRef]
11. Rajakumar, S.; Arunachalam, V.P.; Selladurai, V. Workflow balancing strategies in parallel machine scheduling. Int. J. Adv.

Manuf. Technol. 2004, 23, 366–374. [CrossRef]
12. Keskinturk, T.; Yildirim, M.B.; Barut, M. An ant colony optimization algorithm for load balancing in parallel machines with

sequence-dependent setup times. Comput. Oper. Res. 2012, 39, 1225–1235. [CrossRef]
13. Moon, D.H.; Kim, D.K.; Jung, J.Y. An operator load-balancing problem in a semi-automatic parallel machine shop. Comput. Ind.

Eng. 2004, 46, 355–362. [CrossRef]
14. Wang, H.; Alidaee, B. Unrelated parallel machine selection and job scheduling with the objective of minimizing total workload

and machine fixed costs. IEEE Trans. Autom. Sci. Eng. 2018, 15, 1955–1963. [CrossRef]
15. Moodie, C.L.; Young, H.H. A heuristic method of assembly line balancing for assumptions of constant or variable work element

times. J. Ind. Eng. 1965, XVI, 23–29.
16. Ouazene, Y.; Yalaoui, F.; Chehade, H.; Yalaoui, A. Workload balancing in identical parallel machine scheduling using a

mathematical programming method. Int. J. Comput. Intell. Syst. 2013, 7 (Suppl. 1), 58–67. [CrossRef]
17. Yildirim, M.; Duman, E.; Krishna, K.; Senniappan, K. Parallel machine scheduling with load balancing and sequence dependent

setups. Int. J. Oper. Res. 2007, 1, 42–49.
18. Ho, J.C.; Tseng, T.L.; Ruiz-Torres, A.J.; Lopez, F.J. Minimizing the normalized sum of square for workload deviations on m

parallel processors. Comput. Ind. Eng. 2009, 51, 186–192. [CrossRef]
19. Walter, R.; Lawrinenko, A. A note on minimizing the normalized sum of squared workload deviations on m parallel processors.

Comput. Ind. Eng. 2014, 75, 257–259. [CrossRef]
20. Schwerdfeger, S.; Walter, R. A fast and effective subset sum based improvement procedure for workload balancing on identical

parallel machines. Comput. Oper. Res. 2016, 73, 84–91. [CrossRef]
21. Akturk, M.S.; Ilhan, T. Single CNC machine scheduling with controllable processing times to minimize total weighted tardiness.

Comput. Oper. Res. 2011, 38, 771–781. [CrossRef]
22. Foumani, M.; Razeghi, A.; Smith-Miles, K. Stochastic optimization of two-machine flow shop robotic cells with controllable

inspection times: From theory toward practice. Robot. Comput.-Integr. Manuf. 2020, 61, 101822. [CrossRef]
23. Kim, Y.J.; Kim, Y.K.; Cho, Y. A heuristic-based genetic algorithm for workload smoothing in assembly lines. Comput. Oper. Res.

1998, 25, 99–111. [CrossRef]
24. Scholl, A. Balancing and sequencing of assembly lines contributions to management science. Physica 1999, 2, 23–25.
25. Emde, S.; Boysen, N.; Scholl, A. Balancing mixed-model assembly lines: A computational evaluation of objectives to smoothen

workload. Int. J. Prod. Res. 2009, 48, 3173–3191. [CrossRef]

http://doi.org/10.1080/00207543.2020.1812752
http://dx.doi.org/10.1080/00207543.2020.1781278
http://dx.doi.org/10.1016/j.ejor.2020.01.065
http://dx.doi.org/10.1007/s12351-017-0308-7
http://dx.doi.org/10.1080/01605682.2020.1772019
http://dx.doi.org/10.1007/s10951-018-0583-z
http://dx.doi.org/10.1016/j.ejor.2019.06.007
http://dx.doi.org/10.3390/app11083677
http://dx.doi.org/10.3390/sym13081521
http://dx.doi.org/10.1007/s00170-003-1603-4
http://dx.doi.org/10.1016/j.cor.2010.12.003
http://dx.doi.org/10.1016/j.cie.2003.12.015
http://dx.doi.org/10.1109/TASE.2018.2832440
http://dx.doi.org/10.1080/18756891.2013.853932
http://dx.doi.org/10.1016/j.cie.2008.05.003
http://dx.doi.org/10.1016/j.cie.2014.07.004
http://dx.doi.org/10.1016/j.cor.2016.03.008
http://dx.doi.org/10.1016/j.cor.2010.09.004
http://dx.doi.org/10.1016/j.rcim.2019.101822
http://dx.doi.org/10.1016/S0305-0548(97)00046-4
http://dx.doi.org/10.1080/00207540902810577

Appl. Sci. 2023, 13, 8720 17 of 17

26. Nearchou, A.C. Maximizing production rate and workload smoothing in assembly lines using particle swarm optimization. Int.
J. Prod. Econ. 2011, 129, 242–250. [CrossRef]

27. Azizoǧlu, M.; İmat, S. Workload smoothing in simple assembly line balancing. Comput. Oper. Res. 2018, 89, 51–57. [CrossRef]
28. Finco, S.; Battini, D.; Delorme, X.; Persona, A.; Sgarbossa, F. Workers’ rest allowance and smoothing of the workload in assembly

lines. Int. J. Prod. Res. 2019, 58, 1255–1270. [CrossRef]
29. Defersha, F.M.; Rooyani, D. An efficient two-stage genetic algorithm for a flexible job-shop scheduling problem with sequence

dependent attached/detached setup, machine release date and lag-time. Comput. Ind. Eng. 2020, 147, 106605. [CrossRef]
30. Dunbar, M.; Belieres, S.; Shukla, N.; Amirghasemi, M.; Perez, P.; Mishra, N. A genetic column generation algorithm for sustainable

spare part delivery: Application to the Sydney DropPoint network. Ann. Oper. Res. 2020, 290, 923–941. [CrossRef]
31. Zheng, F.; Man, X.; Chu, F.; Liu, M.; Chu, C. Two yard crane scheduling with dynamic processing time and interference. IEEE

Trans. Intell. Transp. Syst. 2018, 19, 3775–3784. [CrossRef]
32. Rajakumar, S.; Arunachalam, V.P.; Selladurai, V. Workflow balancing in parallel machines through genetic algorithm. Int. J. Adv.

Manuf. Technol. 2007, 33, 1212–1221. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.ijpe.2010.10.016
http://dx.doi.org/10.1016/j.cor.2017.08.006
http://dx.doi.org/10.1080/00207543.2019.1616847
http://dx.doi.org/10.1016/j.cie.2020.106605
http://dx.doi.org/10.1007/s10479-018-2911-2
http://dx.doi.org/10.1109/TITS.2017.2780256
http://dx.doi.org/10.1007/s00170-006-0553-z

	Introduction
	Literature Review
	Parallel Machine Workload Balancing Problem
	Smoothness Index in the Assembly Line Environment

	Problem Statement and Mathematical Model
	Problem Statement
	Input Parameters
	Decision Variables

	Mathematical Model
	Objective Function Linearization

	Theoretical Analysis
	NP-Hardness
	Upper and Lower Bounds

	Heuristic Algorithms
	Genetic Algorithm Based on Bounding Mechanisms
	Chromosome Representation
	Fitness Function
	Initialization of Chromosomes
	Crossover and Mutation

	List Scheduling Algorithms
	An Improved List Scheduling Algorithm

	Numerical Experiments
	Small Job Instances (n15)
	Large Job Instances (n50)

	Conclusions
	References

