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Abstract: This work addresses challenges related to camera 3D localization while reconstructing a 3D
model of an ear. This work explores the potential solution of using a cap, specifically designed not to
obstruct the ear, and its efficiency in enhancing the camera localization for structure-from-motion
(SfM)-based object reconstruction. The proposed solution is described, and an elaboration of the
experimental scenarios used to investigate the background textures is provided; data collection and
software tools used in the research are reported. The results show that the proposed method is
effective, and using the cap with texture leads to a reduction in the camera localization error. Errors in
the 3D location reconstruction of the camera were calculated by comparing cameras localized within
typical ear reconstruction situations to those of higher-accuracy reconstructions. The findings also
show that caps with sparse dot patterns and a regular knitted patterned winter hat are the preferred
patterns. The study provides a contribution to the field of 3D modeling, particularly in the context of
creating 3D models of the human ear, and offers a step towards more accurate, reliable, and feasible
3D ear modeling and reconstruction.

Keywords: 3D ear (pinna) reconstruction; monocular camera localization; close-range photogramme-
try; videogrammetry; smartphone-based photogrammetry; structure from motion; morphometry;
anthropometric measurements

1. Introduction

After the sound wave reaches the listener, the size and shape of the ear changes
the spectrum of sound reaching the eardrum. These spectral distortions act as a unique
feature of the human body to help us understand the location of the sound source. This
phenomenon is called the head-related transfer function (HRTF)—a response describing
how we receive sound waves from different points in space. Other parts of the human
body such as the head, shoulders, and torso also change the sound spectrum, but only
frequencies up to 3 kHz are affected in this way. Frequencies above 3 kHz are shaped by
the individual anatomy of the external ear [1]. Hair can also affect the HRTF spectrum,
especially at high frequencies, but studies have shown that this should not affect the user’s
ability to accurately localize a sound source [2].

The pinna is one of the most individual parts of the human body, even variations of a
few millimeters in its geometry have a strong effect on the HRTF filter [3]. When analyzing
the entire human population, different pinna shapes result in changes of up to 20 dB in
the HRTF spectrum above 4 kHz [4]. However, it has been shown that not all parts of the
pinna are equally important for the HRTF spectrum. The cavum conchae, fossa triangularis,
and scapha have the greatest influence, while the posterior half of the helix changes the
spectrum the least [5].
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There are two main factors that allow a human listener to locate a sound source. These
are the interaural time difference (ITD) and the interaural level difference (ILD). An ITD
occurs when the sound source is at a different distance from the two ears. Studies show that
humans can detect ITDs as small as 10 µs, which corresponds to differences in distance of
about 0.3 mm [6]. The ILD is the result of the acoustic shadow created by the head, which
acts as a barrier to high frequencies. For example, a wavelength of 2000 Hz is shorter than
the distance between human ears. Below 2000 Hz, ILD becomes ineffective because the
lower frequencies are able to bypass the detected obstacle [7].

The spatial resolution of an HRTF is determined by the number of positions of the
sound source distributed over the surface of the virtual sphere in a certain interval of
degrees. It has been shown that this resolution may not be the same for sounds coming
from the front and from the side. The minimum audible angle (MAA) is the smallest
angular deviation perceptible to a person; on the horizontal axis, it is 1 degree for frontal
sounds and proportionally increases to 10 degrees for lateral sounds. On the vertical axis, a
person feels a change in frontal sounds from 4 degrees, and for sounds coming from the
side, the MAA increases up to 20 degrees [8].

Individual HRTFs are important for improving the user experience in virtual reality.
Only by using it can a person hear the virtual sound through headphones exactly as they
would hear the sound if the source existed in the natural environment. Use cases range
from entertainment games to assistive systems for the blind. The user can be navigated by
voice, giving them the right direction and eliminating the need to look at a map [9]. Online
work meetings that have become popular during the COVID-19 pandemic could be more
realistic, with participants hearing immersive virtual acoustics. Everyone who joined the
conference could sit in a different part of the virtual room and hear the information being
said by the other participants from the side corresponding to their position.

Most of the virtual reality products available today still use a common HRTF, which is
the average of several measured subjects, but averaging over individuals does not produce
good perceptual results [10]. Virtual source localization experiments have shown that the
use of a common HRTF has a very high possibility of up–down and front–back confusion,
while the use of an individual HRTF significantly reduces the occurrence of this effect [11].

One way to obtain a personalized HRTF is through binaural acoustic measurements,
where microphones are inserted into the subject’s ear canal and a large number of sound
sources are placed in a semicircle around the human head at different elevation angles,
but maintaining the same radius. The subject is seated in an automated rotating chair and
measurements are taken each time the chair is repositioned at a fixed azimuth [12]. Such
measurements are difficult and available only for scientific purposes, requiring expensive
equipment, an anechoic room, and expertise. Although there have been attempts to simplify
this process to one that could be performed at home using only a single speaker and a
head tracking system [13], or using a smartphone by moving it around the head, storing
the phone’s position in space, and recording the test signal played by the phone with
microphones built into headphones [14].

Researchers are constantly looking for ways to easily obtain as close to an individual
HRTF as possible without complicated measurement procedures. There are suggestions to
select the most appropriate HRTF from the ones available by analyzing the anthropometric
data of the subject whose personalized HRTF we are looking for and identifying the most
similar object in the selected database [15,16]. Another way to select the HRTF matcher
is to classify the anthropometric data of the database objects into clusters, highlight the
centers of these clusters, identify which cluster best fits the subject’s ear, and select the
central HRTF of that cluster as the subject’s individual HRTF [17].

In addition to acoustic measurements and the most similar HRTF fitting methods,
numerical calculations are also possible when trying to calculate the expected HRTF spec-
trum by analyzing how sound waves of different frequencies will reach the eardrum point
geometrically from all possible directions. For such algorithms, it is necessary to provide
an accurate 3D model of the head and ears. The mesh can be created in many ways—the
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head can be laser scanned [18] or it can be reconstructed photogrammetrically [19,20].
With an accurate 3D model, we can calculate a human-customized HRTF filter; researchers
have developed tools for this task [21]. An HRTF filter can also be computed using deep
neural networks (DNNs) with anthropometric measurements and ear images [22] or sound
source directions [23] as input. DNN can also be used to detect an ear in an image and
automatically label the points that define its shape [24–29].

Image-based reconstruction and modeling of objects [30–32], scenes [33–38], or pro-
cesses [39,40], is a widely available and relatively inexpensive technique for information
acquisition [41–43]. One of the photogrammetric methods is the structure-from-motion
(SfM) technique [44–46]. This provides a noninvasive, cost-effective means of creating
three-dimensional models of objects and environments from sets of two-dimensional
images [47–51]. The SfM approach works by first estimating camera positions and then
progressively reconstructing the 3D coordinates of the points in the scene [52–54]. SfM is
highly valuable in the sense that it allows for the reconstruction of 3D structures using
images taken from hand-held cameras [55–59]. However, the accuracy of SfM is intrinsically
linked to the quality of the input images and the precision of camera localization [60–62].

Deep neural networks have been used to implement SfM tasks that include feature
detection, matching, and outlier rejection [63–67]. Deep learning can automatically learn
feature representations and mapping functions from large volumes of data, which has been
shown to improve the robustness and accuracy of SfM [68–70]. Deep learning has also
been combined with traditional SfM techniques to create hybrid models, which can take
advantage of the strengths of both approaches [71,72]. Deep neural networks can be used
for monocular depth and camera motion estimation to regress the camera pose [73–75].

An essential factor in the success and precision of object 3D reconstruction is the
accurate localization of the camera in a three-dimensional space [76]. As the SfM technique
depends on determining the three-dimensional structure of a scene from a series of two-
dimensional images taken from different viewpoints, accurately determining the camera’s
spatial position and orientation at each viewpoint is paramount [41,77]. Inaccuracies in
camera 3D localization can lead to errors in the derived depth information, the resulting
three-dimensional reconstruction, and any subsequent analyses [78]. Such errors can prop-
agate and magnify, ultimately undermining the fidelity of the reconstructed model. This
can, in turn, adversely impact the usability of the ear’s 3D model to derive precise HRTF.

This work addresses challenges related to camera 3D localization while reconstructing
an ear’s 3D model. Efforts are put towards developing and refining methodology that
enhances the precision of camera 3D localization. This will pave the way for more accurate,
reliable, and robust 3D reconstruction of the ear.

The novelty and contributions of this work can be summarized as follows:

• Proposed a simple solution for the improvement of camera 3D localization for the ear
3D reconstruction tasks. The proposed solution is based on enriching the background
texture.

• Presented a dataset construction approach for the evaluation of camera 3D localization.
• Performed comparative evaluation of different cap textures’ influence on the precision

of camera 3D localization.
• Presented comparative results of camera 3D localization improvement solutions; the

results show that the proposed method is effective and using a cap with texture allows
a reduction in camera localization error. The results also show that caps with sparse
dot patterns and a regular knitted patterned winter hat are the preferred patterns.

The problem of and proposed solution for camera 3D localization improvement is
summarized in Figure 1.

The outline of the paper is as follows. In Materials and Methods (Section 2), the
proposed solution for improving camera 3D localization via enhancing the background
texture around the ear is described; an elaboration of the experimental scenarios used to
investigate the background textures is provided; the data collection and software tools used
in the research are reported. Results (Section 3) gives experimental comparison results of
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the background enhancement approaches using various caps and the overall usefulness
of the solution and provides an interpretation of the findings and practical implications.
Finally, Section 4 gives the conclusions of this work.

Camera movement 
trajectory

Ear being 
reconstructed

Reconstructed 
camera 3D locations 
of each video frame

(b)

(a)

Figure 1. The problem of camera 3D localization. Building the 3D model of the ear using the
structure-from-motion (SfM) technique requires a precise computation of the camera positions (a).
In this research, we propose augmenting the side region of the head with a suitable texture for
the reconstruction process. The solution we are investigating aims to enhance the texture in the
background of the image of the ear, such that it remains fixed relative to the ear. We are exploring
the potential of using a cap (b), examining its efficiency in improving 3D camera localization for
SfM-based object reconstruction.

2. Materials and Methods

Three-dimensional reconstruction of an object, an ear in our case, by leveraging a
dataset of photographs and applying the structure-from-motion (SfM) technique, requires
a precise computation of camera positions.

SfM generates 3D reconstructions of an object or a scene from a series of 2D images,
taken from different viewpoints. The process also estimates the camera’s position and
orientation for each of the images. The overall SfM pipeline consists of several steps: feature
extraction; feature matching; camera motion estimation; dense point cloud generation;
mesh generation; and texturing.

The key mathematical concepts underlying SfM are projective geometry and opti-
mization. The relationship between the 3D point and its 2D projection on an image can
be expressed using homogeneous coordinates and the camera projection matrix. The pur-
pose of the optimization process is to find the 3D structure and camera parameters that
best explain the observed 2D image points. This is usually formulated as a non-linear
least-squares problem.

Performing photogrammetry using the SfM technique for the reconstruction of the ear
requires a sequence of actions that must be carried out. First, capturing the ear from various
angles is a necessary step. This step provides a comprehensive set of images necessary
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for the reconstruction process. Second, the removal of the background in the images.
The background is unsuitable for the reconstruction process due to the head movements
relative to the background during the capture process. An unfixed background can lead
to inaccurate results in the reconstruction process. Third, calculating camera positions in
3D space is an essential process. These positions can be determined by associating feature
points within the head region across different frames. However, a notable problem arises
in the side area of the head—the texture is not rich, therefore, it is difficult to extract a
sufficient number of distinctive feature points that can be accurately matched across the
frames.

In this research, we propose augmenting the side region of the head with a suitable
texture for the reconstruction process. This research explores the potential solution of
using a cap and its efficiency in enhancing the camera 3D localization for SfM-based object
reconstruction.

2.1. Improvement of Camera 3D Localization

The primary source of camera 3D localization inaccuracies is the scarcity of texture on
the side of the head, which leads to the lack of unique feature points that can be tracked in
the image set.

The solution we are investigating is aimed at improving texture in the background
of images of the ear in a such way that the background would be fixed relative to the
ear. There are several requirements for the approach: (1) the simplicity of implementation,
(2) actual improvement in the 3D localization of cameras, and (3) an additional advantage
would be if it would help to reconstruct the metric scale of the scene.

The most convenient solution to add texture to the face, without obstructing the
portion under reconstruction (the ear), is to place a cap with an appropriate texture on the
head, ensuring that it does not cover the ear. This brings us to the research questions we
seek to answer in this study: what type of texture is best suited for this purpose, and does
the placement of such a cap indeed improve camera localization. To answer these questions,
13 textures cases were designed and investigated as separate experimental scenarios. These
experimental scenarios are depicted in Figure 2 and summarized in Section 2.2.

2.2. Experimental Scenarios

The experimental scenarios were carefully designed to investigate the usefulness of
the proposed solution to enhance the background texture around the ear using a cap. To
evaluate the potential benefits of wearing a cap, scenarios both with and without a cap
were set up. To compare the usefulness of different textures on the caps, 12 additional
scenarios were tested, each with a distinct cap texture. These different setups allowed for
a comprehensive analysis of the influence of the cap texture on the enhancement of the
background texture around the ear, which is an important factor for accurate 3D localization
of cameras.

The experimental scenarios (cases) for the investigation of the effect of cap usage on
camera 3D localization accuracy (refer to Figure 2) were as follows:

1. No cap—regular case of image collection for ear reconstruction;
2. Dots 1—regularly arranged dot pattern of the 1st size;
3. Dots 1s—sparse dot pattern of the 1st size;
4. Dots 2—regularly arranged dot pattern of the 2nd size;
5. Dots 2s—sparse dot pattern of the 2nd size;
6. Dots 3—regularly arranged dot pattern of the 3rd size;
7. Dots 3s—sparse dot pattern of the 3rd size;
8. Dots 4—regularly arranged dot pattern of the 4th size;
9. Dots 4s—sparse dot pattern of the 4th size;
10. Painted blobs—pattern of randomly painted blobs of different sizes;
11. Checkerboard—a well-known pattern used for camera calibration;
12. Printed irreg.—printed pattern of irregularly scattered small dots;
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13. Winter hat—a regular knitted patterned winter hat.

1. No cap

2. Dots 1 3. Dots 1s 4. Dots 2 5. Dots 2s

6. Dots 3 7. Dots 3s 8. Dots 4 9. Dots 4s

10. Painted blobs 11. Checkerboard 12. Printed irreg. 13. Winter hat

Figure 2. Experimental scenarios for the investigation of the effect of cap usage on camera 3D lo-
calization accuracy. Cap usage is the proposed solution for background enrichment with patterns
in order to improve feature matching in the photogrammetry pipeline. Twelve types of caps were
tested, leading to 13 experimental scenarios: 1. No cap—regular case of image collection for ear
reconstruction; 2. Dots 1, 4. Dots 2, 6. Dots 3, and 8. Dots 4—four dot size cases of regularly arranged
dot patterns; 3. Dots 1s, 5. Dots 2s, 7. Dots 3s, and 9. Dots 4s—four dot size cases of sparse dot pat-
terns; 10. Painted blobs—pattern of randomly painted blobs of different sizes; 11. Checkerboard—a
well-known pattern used for camera calibration; 12. Printed irreg.—printed pattern of irregularly
scattered small dots; 13. Winter hat—a regular knitted patterned winter hat.
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2.3. Camera Localization Quality Evaluation

The effects of cap usage on the accuracy of camera 3D localization were evaluated and
compared across various experimental scenarios. Errors in the 3D location reconstruction
of the camera were calculated by comparing camera localizations within typical ear recon-
struction situations to those of higher accuracy. Figure 3 presents the experimental setup
used to assess the precision of the camera reconstruction. The upper branch is dedicated to
the calculation of high-accuracy camera localizations, while the lower branch illustrates
a typical ear reconstruction situation. In a standard ear reconstruction scenario, the back-
ground around the head in the image would be removed because it is typically non-static
and unsuitable for the photogrammetric reconstruction of the ear.

Reconstructed
cameras

(reference)

Reconstructed
cameras

(reference)
Structure from motion
(sparse reconstruction)
Structure from motion
(sparse reconstruction)

Reconstructed
cameras

(investigated)

Reconstructed
cameras

(investigated)
Structure from motion
(sparse reconstruction)
Structure from motion
(sparse reconstruction)

Alignment of camera 
motion trajectories

Alignment of camera 
motion trajectories

Localization 
accuracy of 
investigated 

camera

Localization 
accuracy of 
investigated 

camera

Background
masking

Figure 3. The experimental setup for the evaluation of camera reconstruction accuracy. Reference
camera locations forming a camera motion trajectory are reconstructed using a full frame image. A
background of such an image has a rich pattern that is favored by the photogrammetry algorithms.
Images from test cases contain only the head region, as real scenarios of capturing the head for ear
reconstruction would require removal of the background region that cannot be ensured to be static.
Reconstructed camera locations from the investigated scenarios are compared to reference camera
locations by aligning camera trajectories. The camera localization accuracy is evaluated as the median
of camera displacements in the investigated trajectory.

High-accuracy camera localization is achieved by taking advantage of a specially
created background with a rich texture placed behind the mannequin’s head. This back-
ground is not only texturally rich, but also non-flat. To simulate images that would be
acquired for reconstruction of the ears, the surrounding background of the head in the
images was masked. The position of the head in the image sequence was tracked and the
same bounding box (BBox) of the head was transferred between all images in the set.

Camera localization was performed using the Meshroom software and the structure-
from-motion algorithm for sparse reconstruction. Sparse reconstruction was performed
for both initial and masked images. The 3D locations of the reconstructed cameras were
aligned by a 3D similarity transformation, comprising translation, rotation, and scaling.
This research did not involve reconstruction of the absolute scale of the model. To estimate
the absolute scale, additional information is required [79]. Scale differences were eliminated
during the alignment of the 3D locations of the reconstructed cameras in the test cases to
the 3D locations of the reference camera. Therefore, the comparative evaluation of the cap
usage scenarios does not require scale information.
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After aligning the locations of the camera sets, the Euclidean distances between the
locations were computed. The median of these distances was used as an error metric for
camera 3D localization within a specific cap type and experimental setup scenario (camera
distance and camera motion trajectory).

2.4. Software Used

The software tools and programming languages used in this research are as follows:

• MATLAB programming and numeric computing platform (version R2022a, The Math-
works Inc., Natick, MA, USA) for the implementation of the introduced improvements
to the baseline reconstruction algorithm by integrating with AliceVision/Meshroom;
MATLAB was also used for data analysis and visualization;

• Meshroom (version 2021.1.0) (https://alicevision.org accessed on 15 September 2022) [80],
3D reconstruction software based on the AliceVision photogrammetric computer vi-
sion framework. Used for the execution of the SfM reconstruction algorithms;

2.5. Setup and Data Collection

The study involved the collection of an image dataset designed specifically for the ex-
perimental evaluation of the proposed solutions aimed at enhancing camera 3D localization.
This dataset was acquired through the recording of videos and extracting frames. A total of
four different experimental setups were implemented, each consisting of 13 experimental
cases (scenarios).

The four experimental setups differed in the distances between the camera and a
mannequin head, along with variations in the radius of the camera’s circular motion
trajectory. After setting the distance from the camera to the mannequin’s head, the radius
of the camera’s trajectory was tuned so that the head of the mannequin would never go
outside of the frame while the camera was moving. The 13 experimental cases (scenarios)
consisted of cases involving the presence of different caps or the absence of a cap on the
mannequin’s head (summary in Section 2.2).

The precision of the reconstructed 3D locations of the reference camera was increased
by specially creating a background. A background image has to have a rich pattern, which
is favored by the photogrammetry algorithms. The background was added in such a way
that later it could be completely masked using image processing steps after detecting the
head’s bounding box (BBox). An image of the mannequin’s head without a background
was used to perform 3D localization of the cases under investigation.

The videos were acquired using the smartphone Samsung Galaxy S10+ standard cam-
era app. For the comparative evaluation of the proposed solutions (head caps), 195 videos
were taken. The acquisition conditions can be grouped into four experimental setups:
videos were recorded at four different distances and slightly different camera motion trajec-
tories. The capture conditions of the same experimental setup were kept as homogeneous
as possible: fixed orientation of the smartphone, lighting conditions, artificial background,
frame rate of 24 frames/s, frame size of 3840 × 2160 pixels, ISO 800, shutter speed 1/350,
F1.5, average length of the videos 17.2 ± 2.6 s. The movement pattern of the phone while
capturing was the same for all videos—a circle, the radius of which changed between the
four experimental setups. The motion of the camera in a circular or near circular trajectory
was established with the help of a device which allowed repeating the same camera motion
trajectory while changing experimental cases.

3. Results and Discussion

In this research, we addressed the problem of camera 3D localization for tasks in-
volving the reconstruction of a 3D model of the ear. We proposed a simple solution
to improve the accuracy of 3D camera localization based on enriching the background
texture—specifically, using a hat with a particular pattern.

To ascertain the effectiveness of this ’hat’ solution and compare how different patterns
might enhance camera localization accuracy, we generated a specific dataset to test these

https://alicevision.org
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hypotheses. We performed a comparative evaluation of the influence of different cap
textures on the precision of 3D camera localization and presented the comparative results
of solutions to improve camera 3D localization in Figure 4.

The results of the experimental comparison presented in Figure 4 comprise a compari-
son of 13 experimental scenarios (cases). The first column (block of data points) in the chart
presents the results of the baseline case when no cap was used. The subsequent columns
display the results of scenarios when different caps were used. The experimental scenarios
are depicted in Figure 2 and summarized in Section 2.2. The camera 3D localization accu-
racy was evaluated in different experimental cases (the evaluation method is described in
Section 2.3), and the errors are graphed in Figure 4.

Figure 4. Results of experimental comparison of proposed camera 3D localization improvement
solutions. In the graph, the results of 13 experimental cases are summarized. Each case consists
of data arranged in 5 virtual columns: the first four columns show the separate experiment accu-
racy evaluation results (camera localization errors) of the four experimental setups, and the fifth
column shows summary statistics with a box plot, which includes all data points from the first four
columns. As some reconstruction experiments were not successful (photogrammetry pipeline failed
to reconstruct the sparse scene), these failures are summarized and presented as bar charts under the
horizontal axis. Full-sized bars mean that 100% of cases failed. The same color of the bar charts and
data points labels the same experimental setup.

The data for evaluation were collected in four different experimental setups (as de-
scribed in Section 2.5); therefore, the results are grouped in Figure 4, and the color along
with the marker type denotes the particular experimental setup. Each data point corre-
sponds to a separate experiment. The data points are arranged in four virtual columns, and
the fifth column shows the summary statistics using a box plot that incorporates all the
data points from the first four columns.

The main conclusion drawn from the results presented in Figure 4 is that the use of a
hat reduces camera localization errors—errors in the first data block (“no cap” experimental
case) are the highest.

We observed that some reconstruction experiments were unsuccessful (the photogram-
metry pipeline failed to reconstruct the sparse scene). These failures are summarized and
presented as bar charts beneath the horizontal axis. The height of the bar indicates the
percentage of failed reconstructions. The “dots 4” (regularly arranged dot pattern of the
fourth size dots), “dots 3”, “checkerboard”, “no cap”, and “dots 1” cases included failed
reconstructions.
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The lowest reconstruction errors and all successful camera 3D location reconstructions
were achieved using a regular knitted patterned winter hat (“winter hat” case), caps with
sparse dot patterns (“dots 1s”, “dots 4s”, “dots 3s”, “dots 2s”), and a hat with a pattern of
randomly painted blobs of different sizes (“painted blobs”). All the hats with sparse-dotted
patterns performed well regardless of the pattern’s dot size. Caps with a printed dot pattern
offer the greatest potential to aid in the reconstruction of the scale of the 3D ear model.
However, the weakness of the “painted blobs” hat is that it was painted manually.

The results demonstrate that the proposed method is effective and that the use of a
cap with texture reduces camera localization error. The findings also suggest that caps with
sparse dot patterns and a regular knitted patterned winter hat are the preferred patterns.

4. Conclusions

This study provides a contribution to the field of 3D reconstruction, particularly in
the context of creating a 3D model of the human ear. Our research shows that using a
cap, specially designed not to cover the ear, is a straightforward and efficient solution to
improve camera localization in this task.

The effectiveness of this approach comes from the enrichment of the background in the
image of the ear. The fixed relationship between the cap and the ear prevents independent
movement of the background and usage of an appropriate cap ensures that the ear remains
visible.

The 3D camera localization accuracy was evaluated in 13 experimental scenarios—12
different caps and no cap. The experimental results show that the use of a cap with texture
reduces camera localization errors. In some cases, performing sparse reconstruction without
the cap is impossible, i.e., the structure-from-motion (SfM) algorithm from Meshroom
fails to determine the camera positions and to reconstruct the scene. Our experiments
demonstrate that the use of caps can alleviate this issue by aiding in the determination of
camera positions. The results demonstrate that caps with sparse dot patterns and a regular
knitted patterned winter hat are the preferred patterns.

Furthermore, a cap with the appropriate texture could also be useful for reconstruction
of the metric scale of the object. This is crucial when metric measurements are required.
Further experiments can be carried out to compare cap patterns for reconstruction of the
metric scale of the ear.
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20. Trojnacki, M.; Dąbek, P.; Jaroszek, P. Analysis of the Influence of the Geometrical Parameters of the Body Scanner on the Accuracy
of Reconstruction of the Human Figure Using the Photogrammetry Technique. Sensors 2022, 22, 9181. [CrossRef]

21. Ziegelwanger, H.; Kreuzer, W.; Majdak, P. Mesh2hrtf: Open-source software package for the numerical calculation of head-related
transfer functions. In Proceedings of the 22nd International Congress on Sound and Vibration, Florence, Italy, 12–16 July 2015.

http://doi.org/10.1121/1.1349185
http://dx.doi.org/10.17743/jaes.2019.0024
http://dx.doi.org/10.1121/10.0004128
http://www.ncbi.nlm.nih.gov/pubmed/33940891
http://dx.doi.org/10.1121/1.5087566
http://dx.doi.org/10.1038/s41598-020-62983-z
http://dx.doi.org/10.1121/1.407089
http://dx.doi.org/10.1121/1.5027019
http://dx.doi.org/10.1109/ACCESS.2020.2994932
http://dx.doi.org/10.1007/s40857-019-00169-y
http://dx.doi.org/10.1016/j.ergon.2020.103076
http://dx.doi.org/10.3390/s22239181


Appl. Sci. 2023, 13, 8712 12 of 14

22. Lee, G.W.; Kim, H.K. Personalized HRTF modeling based on deep neural network using anthropometric measurements and
images of the ear. Appl. Sci. 2018, 8, 2180. [CrossRef]

23. Lu, D.; Zeng, X.; Guo, X.; Wang, H. Head-related Transfer Function Reconstruction with Anthropometric Parameters and the
Direction of the Sound Source: Deep Learning-Based Head-Related Transfer Function Personalization. Acoust. Aust. 2021,
49, 125–132. [CrossRef]

24. Cintas, C.; Quinto-Sánchez, M.; Acuña, V.; Paschetta, C.; De Azevedo, S.; Cesar Silva de Cerqueira, C.; Ramallo, V.; Gallo,
C.; Poletti, G.; Bortolini, M.C.; et al. Automatic ear detection and feature extraction using geometric morphometrics and
convolutional neural networks. IET Biom. 2017, 6, 211–223. [CrossRef]

25. Ban, K.; Jung, E.S. Ear shape categorization for ergonomic product design. Int. J. Ind. Ergon. 2020, 80, 102962. [CrossRef]
26. Wang, X.; Liu, B.; Dong, Y.; Pang, S.; Tao, X. Anthropometric Landmarks Extraction and Dimensions Measurement Based on

ResNet. Symmetry 2020, 12, 1997. [CrossRef]
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