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Abstract: The control performance of quadrotor unmanned aerial vehicles (UAVs) in complex en-
vironments can be affected by external disturbances and other factors. In this paper, an adaptive
neural network backstepping controller based on the barrier Lyapunov function (BLF) is designed for
a quadrotor UAV with internal uncertainties, input–output constraints and external disturbances.
Radial basis function neural networks are used to approximate the uncertainties in the dynamic
model of the UAV, while the minimum parameter learning method is combined to accelerate the
adjustment speed of neural network weights. A robust term is designed to balance the total system
disturbance and improve the anti-interference performance. The BLF is used to handle the output
constraint so that the constrained parameters cannot break the predefined constraints. An auxiliary
system is introduced to solve input saturation and avoid the dependence of tracking error on the
input amplitude in the method of approximating input saturation using the smoothing function. The
stability of the control system is demonstrated by the Lyapunov method. The simulation results show
that the proposed method has high tracking accuracy compared with the backstepping dynamic
surface control method, and the input and output are in the predefined range.

Keywords: quadrotor unmanned aerial vehicle; backstepping controller; output constraints; input
saturation; barrier Lyapunov function

1. Introduction

The quadrotor unmanned aerial vehicle (UAV) is an unmanned flying machine com-
posed of four propellers, which is attracting attention from various industries because of
its small size, low cost, rapid take-off, vertical take-off, simple structure and landing and
aerial hovering [1,2]. However, due to the inherent nonlinearity of the UAV system and
the complexity of the operating environment, the UAV is inevitably affected by negative
factors such as internal uncertainties, external disturbances and input–output constraints.
Highly maneuverable flight and external disturbances make it easy for the UAV system
inputs and outputs to reach the boundaries of the constraints. Therefore, it is a challenging
task to ensure the trajectory tracking performance and stability of the UAV control system
in a complex environment.

The UAV system is a typical nonlinear system. Currently, several methods have
been used to design nonlinear system controllers, such as fuzzy control [3–5], robust H∞
control [6–8], adaptive control [9,10], proportional integral differential (PID) control [11],
sliding-mode control [12–16] and backstepping control [17–20]. In the backstepping control,
the complex system is divided into several subsystems, then Lyapunov functions and
virtual control are designed for each external subsystem, and finally, the design of the
whole control law is completed in a recursive way. However, traditional backstepping
techniques cannot be used to design UAV control systems independently. The main
problems are as follows: (1) inadequate anti-disturbance performance and (2) designing
a higher-order system requires repeated differentiation of some functions, resulting in an
increase in computational effort and a “complexity explosion”.
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Dynamic surface control (DSC) solves the “complexity explosion” by introducing a
first-order filter in each step of the virtual control design [21,22]. In addition, the UAV
in practical applications is affected by internal uncertainties and external disturbances.
Several methods have been used to solve external disturbances, such as disturbance ob-
server [23–25], expansion state observer [26] and adaptive control [27,28]. Among these
anti-disturbance methods, adaptive control can effectively approximate and compensate
unknown bounded disturbances and it is widely used in nonlinear systems. In [27],
an adaptive command filtered backstepping sliding-mode control scheme was proposed for
finite-time tracking control of quadrotor UAV systems. An adaptive control strategy was
applied to estimate the upper bounds of the model uncertainties and external disturbances.
Radial basis function (RBF) neural networks, which have good ability to approximate
unknown functions, are widely used in nonlinear robust control system design [29]. In [30],
an adaptive DSC based on quaternion was proposed to solve the problems of complexity
explosion, internal uncertainties and external disturbances.

The above studies only considered the existence of external disturbances and internal
uncertainties in the UAV system, but they did not take the effects caused by input–output
constraints into consideration. The control input of the UAV may exceed the maximum
generated by the actuators. Under the influence of external disturbances, such as high
winds, the attitude of the UAV may sway too much or the fuselage can even flip. If the
effects of attitude constraints and input saturation are ignored, the control performance of
the UAV will be degraded.

Attitude constraints and input saturation are also essential factors affecting UAV
control performance. Paper [31] used low-pass filters for the gain processing of nonlinear
systems with input saturation. In [32], for multi-input multi-output stochastic nonlin-
ear systems with full-state constraints and input saturation, a continuous differentiable
asymmetric saturation model was proposed using a Gaussian error function representa-
tion. However, using smoothing functions to approximate input saturation in the above
studies will result in the problem that tracking errors being affected by the amplitude
of the reference signal. In [33], to deal with the UAV input saturation, the constrained
command filter was introduced, and the auxiliary dynamic was designed to eliminate the
effect of input saturation. Paper [34] investigated adaptive tracking control for stochastic
nonlinear systems by introducing an auxiliary system for saturation compensation. This
is a novel method of handling input saturation that explicitly constrains the tracking er-
ror. In addition, to prevent the UAV from being affected by external disturbances that
cause flip-flopping, attitude constraints should be considered along with input saturation.
In [35], the barrier Lyapunov function (BLF) was used to handle the full-state constraints.
From the study, it can be found that BLF is an effective tool to deal with state constraints [36].
However, references [35,36] only considered output constraints and ignored the influence
of input saturation. In summary, few studies considered input–output constraints for
quadrotor UAVs with internal uncertainties and external unknown bounded disturbances.
An in-depth study is necessary.

In this paper, we study the quadrotor UAV position–attitude trajectory tracking
problem with external disturbances, internal uncertainties and input–output constraints.
The main contributions of this paper are: (1) An adaptive neural network backstepping
controller (ANNBC) in conjunction with DSC and an RBF neural network, and a robust
term is proposed to deal with the position–attitude trajectory tracking. (2) A novel auxiliary
system is introduced to solve the input saturation problem. This method can avoid the
dependence of tracking error on the input amplitude in the method of approximating input
saturation by using the smoothing function which is used in most of the literature. (3) A
tandem control scheme is used to design a unified position–attitude controller, and BLF is
combined to deal with output constraints.

The remainder of the article is organized as follows. Section 2 gives the quadrotor
UAV dynamic equations and preliminaries. Section 3 proposes an ANNBC combined BLF,
adaptive neural network, robust term and anti-saturation auxiliary system, and stability
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analysis is given. Section 4 verifies the effectiveness of the proposed method through
comparative simulation experiments. The conclusions and recommendations for future
work are provided in Section 5.

2. Problem Formulation and Preliminaries

A quadrotor UAV is a flying machine with six degrees of freedom, consisting of four
rotors arranged in a cross structure. As shown in Figure 1, the coordinate system of a
quadrotor UAV is divided into an airframe coordinate system EB = {OB, XB, YB, ZB} and
an Earth coordinate system EE = {OE, XE, YE, ZE}. [x, y, z, φ, θ, ψ] are the six states of the
UAV, where [x, y, z] are the position coordinates of the UAV relative to Earth, [φ, θ, ψ] are
Euler angles of the UAV’s attitude relative to the body. The Euler angles around the x,
y and z axes are expressed as the transverse roll angle φ, pitch angle θ and yaw angle ψ,
respectively. F1, F2, F3 and F4 represent the four lift forces generated by the four rotors,
respectively [37].

B
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Figure 1. Coordinate systems of the quadrotor UAV.

The following assumptions are made for the quadrotor UAV dynamics model: (1) The
quadrotor UAV is a standard cross structure and symmetrical, while the airframe is rigid.
(2) The center of mass and center of gravity of the body structure of the UAV remain the
same. (3) When the UAV is flying or aerial hovering, the angular velocity of the UAV’s
body coordinate system and the earth coordinate system are the same. Then, the dynamics
model of the quadrotor UAV is represented as [38]

ẍ =
1

ms
(cos φ sin θ cos ψ + sin φ sin ψ)U1 −

k1 ẋ
ms

ÿ =
1

ms
(cos φ sin θ sin ψ− sin φ cos ψ)U1 −

k2ẏ
ms

z̈ =
1

ms
(cos φ cos θ)U1 − g− k3 ż

ms

φ̈ = θ̇ψ̇
Jy − Jz

Jx
+

l
Jx

U2 −
k4l
Jx

φ̇

θ̈ = φ̇ψ̇
Jz − Jx

Jy
+

l
Jy

U3 −
k5l
Jy

θ̇

ψ̈ = φ̇θ̇
Jx − Jy

Jz
+

1
Jz

U4 −
k6
Jz

ψ̇

(1)
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where ms denotes the total mass of the quadrotor. k1, k2, k3, k4, k5 and k6 denote the drag
coefficients of each channel, respectively. J = diag

{
Jx, Jy, Jz

}
denote the axial rotational

inertia of x, y, z axes. g denotes the acceleration of gravity. l denotes the distance from the
center of rotor to the center of the quadrotor. (U1, U2, U3, U4) indicate the control inputs of
the independent channels.

The UAV control system is divided into the position control subsystem and attitude
control subsystem. The position and attitude control subsystem is divided into 6 control
channels, and each of them is a standard quadratic nonlinear system. To facilitate the design
of the controller, we simplify the dynamics model. The UAV has internal uncertainties.
We define fi(X) to represent the unmodeled and uncertain part. In addition, the gyro-
scope torque is included in the total system perturbation. Considering the input–output
constraints, the model uncertainties and external disturbances, a uniform nonlinear state
expression for the 6 control channels of the UAV is derived as{

ẋi1 =xi2

ẋi2 =biui + fi(X) + wi
, i = x, y, z, φ, θ, ψ (2)

where X =
[
xx1, xx2, xy1, xy2, . . . , xψ1, xψ2

]T
=
[
x, ẋ, y, ẏ, z, ż, φ, φ̇, θ, θ̇, ψ, ψ̇

]T . The mass
measurement and rotational inertia measurement errors of the UAV are uncertain, so
the control gain b̄i = [ 1

(ms+∆ms)
, 1
(ms+∆ms)

, 1
(ms+∆ms)

, 1
(jx+∆jx)

, 1
(jy+∆jy)

, 1
(jz+∆jz)

]
T

is uncer-

tain. The measurement errors are divided into a deterministic part and an uncertain part.
The control gain is rewritten as b̄i = bi +

(
b̄i − bi

)
. The deterministic part

bi =
[
U1/ms, U1/ms, cosφcosθ/ms, 1/Jx, 1/Jy, 1/Jz

]T is involved in the UAV controller
design, and the uncertain part is divided into a unknown function. wi denotes the bounded
total perturbation of each channel, and the perturbation will be compensated by designing
a robust term. ui indicates the control input for each channel.

The attitude control subsystem requires output constraints. When i = φ, θ, ψ, the atti-
tude is constrained to the set |xi1| < kbi, where kbi is a constant. In addition, the control
input obeys the following saturation properties:

u(v) = sat(v) =


uM,
v,

um,

v ≥ uM
um < v < uM

v ≤ um

(3)

where v denotes the unconstrained actual input. uM > 0 and um < 0 denote the maximum
and minimum of the control input, respectively.

Assumption 1. For all t > 0, the desired tracking trajectory xi1d and its first and second order
derivative are bounded, and they satisfies Ωd = {xi1d | |xi1d| ≤ E0, |ẋi1d| ≤ E1, |ẍi1d| ≤ E2},
where E0, E1, E2 are all positive constants.

Assumption 2. The approximation error ε is bounded, i.e., |ε| < b, and 0 < b < 1 is of arbitrary
accuracy.

Assumption 3. The position and speed of the UAV are measurable.

Assumption 4. For all t > 0, both the uncertain internal part of the model and the external
disturbances are bounded and there exists an unknown parameter d such that ‖wi‖ ≤ d.

Lemma 1 ([39]). For any constant kai, let the open set N = R × Z ⊂ Rl+1 and the interval
Z = {ei1 ∈ R : −kai < ei1 < kai} ⊂ R, kai ∈ R+, and consider the following system

ζ̇ = ϑ(t, ζ) (4)
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where ζ = [ω, ei1]
T ∈ N and ϑ = R+ × N → Rl+1 are segmentally continuous at the time t and

locally Lipschitz in the system ζ, and consistent with t and R+ × N. Assuming that there exist
functions U : Rl → R+ and Vi1 : Z → R+, continuously differentiable and positive definite in
their respective domains of definition. We obtain Vi1(ei1) → ∞ when ei1 → −kai, or ei1 → kai
and β1(‖ ω ‖) ≤ U(ω) ≤ β2(‖ ω ‖), where β1 and β2 are K∞ class functions. Assume that
Vi1(ζ) = Vi1(x) + U(ω, t), and ei1(0) ∈ Z. If the inequality holds,

V̇ =
∂V
∂ζ

ϑ ≤ −DV + H (5)

where D and H are positive constants. Then, ei1 remains in the set ei1(t) ∈ Z, where t ∈ [0,+∞).

Lemma 2 ([34]). For any positive constant kai and any variable ei1, the equation ln k2
ai

k2
ai−ei1

2 ≤
ei1

2

k2
ai−ei1

2 holds when the condition |ei1| < kai is satisfied.

Lemma 3 ([40]). For an initially bounded system, if there exists a C1 continuous and positive
definite Lyapunov function V(x) satisfying π1(x) ≤ V(x) ≤ π2(x) such that V̇(x) ≤ −r1V(x)+
r2 , where π1(x), π2(x) : Rn → R are K∞ like functions and r1, r2 are positive constants, then the
solution x(t) of the system is consistently bounded.

Lemma 4 ([41]). The following inequality holds for any ς and h̄ ∈ R that 0 ≤ |h̄| − h̄ tanh
(

h̄
ς

)
≤

kpς, where is a constant that satisfies the condition kp = e−(kp+1), i.e., kp = 0.2785.

Lemma 5 ([42]). RBF neural networks have the ability to approximate unknown functions. F(X)
can be described by RBF neural networks as

F(X) = ξ*T
h(X) + δ (6)

hi(X) = exp

{
−
(
X− bj

)T(X− bj
)

c2
j

}
, j = 1, 2, . . . , L (7)

where F(X) is the unknown continuous function of the tarobtain approximation over a compact set
X ∈ Ax ⊂ Rp. h(X) = [h1, . . . , hL]

T is the basis function vector. L > 1 is the number of neural
network nodes. δ is the minimum approximation error caused by RBF neural network. X is the
input of the neural network. bj is the center value. cj is the width of the Gaussian function. ξ∗ ∈ RL

is the ideal weight, which defined as follows

ξ* = argmin
ξ̂∈RL

{
sup

x∈AX

∣∣∣ f (X)− ξ̂Th(X)
∣∣∣} (8)

where ξ̂ =
[
ξ̂1, ξ̂2, . . . , ξ̂L

]T is the estimated weight vector.

3. Adaptive Backstepping Controller Design

In this section, a BLF-based ANNBC with DSC, adaptive neural network and anti-
saturation strategy is designed for the UAV control system with internal uncertainties,
external disturbances and input–output constraints. A stability proof is given.

Due to the presence of four inputs and six outputs for UAVs, it is difficult to perform
a unified controller design directly. In addition, there is a strong coupling relationship
between each control output of the UAV. As shown in Figure 2, a tandem control scheme
is used to design the UAV controller. The controller adopts double closed-loop control.
The outer loop is the position controller, and the inner loop is the attitude controller. The de-
sired trajectory is (xd, yd, zd) and ψd , and the desired attitude angles [φd, θd] are computed
by the position controller. The attitude tracking is achieved through the inner loop. RBF
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neural networks are used to compensate system uncertainties and they are trained online
according to tracking errors

(
ex, ey, ez, eφ, eθ , eψ

)
.
(

f̂x, f̂y, f̂z, f̂φ, f̂θ , f̂ψ

)
represent the outputs

of the RBF neural networks.

Position 

controller Attitude 

controlle

r

QuadrotorDesired 

trajectory

dx

dy

dz

df

dθ

dy

, ,q f y

4U

3U

2U

1U

x, y,z

x, y,z,

, ,f q y

d d d

d d d

x , y ,z ,

, ,f q y

adaptive law

RBF neural network

x y ze ,e ,e ,

e ,e ,ef q yˆ ˆ ˆ, ,x y zf f f

ˆ , ˆ, ˆf f ff q y

+-

Figure 2. UAV tandem control scheme.

It can be seen from Figure 2 that (φd, θd) are unknown. Two intermediate variables
ux, uy are introduced to calculate (φd, θd). The intermediate variables ux, uy are defined as{

ux = sinψsinφ + cosψsinθcosφ
uy = sinψsinθcosφ− cosψsinφ

(9)

According to Equation (9), we can obtain
φd =arcsin

(
uxsinψ− uycosψ

)
θd =arcsin

uxcosψ + uysinψ

cos φd

(10)

where ux and uy are the control law of x and y channels, respectively. ψ is the actual yaw
angle of the UAV, which can be obtained by sensors.

Remark 1. For constrained nonlinear systems, input saturation is approximated by using a smooth-
ing function in [31,32]. The method will make the tracking error affected by the amplitude of the
reference signal. Take a simple system dx = (Px + u(v))dt, for example, assuming that P = 2,
uM = 2, um = −2, |x(0)| ≤ 2, y = x, we can obtain |y(t)| ≤ e−t|x(0)|+

(
1− e−t)uM ≤ 4 by

integration. At this time, if the amplitude of the smoothing function yr(t) = 8, then |y(t)− yr(t)| ≥ 4.
It means that when the amplitude of the reference signal is larger, the tracking error will become larger. It
has an impact on the tracking performance of the system.

This paper applies a new anti-saturation strategy to the quadrotor UAV to solve the
input saturation problem. Each channel of the UAV dynamics model is a second-order
nonlinear system, so consider the following anti-saturation auxiliary system{

dλi1 = (λi2 − pi1λi1)dt
dλi2 = (∆u− pi2λi2)dt

(11)

where λi1, λi2 is the design variable of the auxiliary system and λi1(0) = 0, λi2(0) = 0. pi1
and pi2 are positive constants to be designed. ∆u is the input saturation error defined as
∆u = u(v)− v.
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3.1. Controller Design

The position controller and attitude controller are designed separately, and the design
process is similar. The control inputs of position–attitude control systems need to be
designed with anti-saturation strategies.

Define the system tracking errors as{
ei1 =xi1 − λi1 − xi1d

ei2 =xi2 − λi2 − si
(12)

where xi1d is the desired trajectory of the system state xi1. si is the introduced first-order
filter virtual function. The first-order filter structure is

τi ṡi + si = αi

si(0) = αi(0)
(13)

where τi is the time constant of the filter. αi is the virtual control.
Define the first-order filter function error as Ti = si − αi, and its derivative is

Ṫi = ṡi − α̇i =
αi − si

τi
− α̇i = −

Ti
τi

+ $(xi1, xi1d, ẋi1d, ẍi1d, λi1, λi2) (14)

where $(xi1, xi1d, ẋi1d, ẍi1d, λi1, λi2) is a continuous function and assume that there is an
unknown boundary $∗ such that $ ≤ |$∗|.

Derivation of the tracking error ei1 yields

ėi1 = ẋi1 − λ̇i1 − ẋi1d = xi2 − λ̇i1 − ẋi1d

= λi2 + si + ei2 − λi2 + pi1λi1 − ẋi1d

= ei2 + si + pi1λi1 − ẋi1d

(15)

The states (x, y, z) do not need to be constrained in the position controller, while the
states (φ, θ, ψ) need to be constrained. The Lyapunov function is designed as

Vi1 =


1
2

e2
i1 +

1
2

T2
i , i = x, y, z

1
2

ln
e2

i1
k2

ai − e2
i1
+

1
2

T2
i , i = φ, θ, ψ

(16)

where kai is the upper bound of the attitude tracking error, which satisfies |ei1| < kai.
To facilitate the derivation of subsequent formulas, a function ai is defined for the

state constrained.

ai =


1, i = x, y, z

1
k2

ai − e2
i1

, i = φ, θ, ψ
(17)

Taking the time derivative of (16). According to si = Ti + αi, we obtain

V̇i1 = aiei1 ėi1 + TiṪi = aiei1(ei2 + Ti + αi + pi1λi1 − ẋi1d) + Ti

(
−Ti

τi
+ $i

)
(18)

According to the fundamental theorem of Young’s inequality, suppose there exists an
arbitrary positive constant σi that satisfies the following inequality:

|ei1Ti| ≤ e2
i1 +

1
4

T2
i (19)

|Ti$i| ≤
1

2σi
T2

i $2
i +

σi
2
≤ 1

2σi
T2

i $*2
i +

σi
2

(20)
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Substituting (19) and (20) into (18) yields

V̇i1 ≤ aiei1(ei2 + αi + pi1λi1 − ẋi1d) + ai

(
e2

i1 +
1
4

T2
i

)
−

T2
i

τi
+

1
2σi

T2
i $*2

i +
σi
2

≤ aiei1(ei2 + αi + pi1λi1 − ẋi1d)− T2
i

(
1
τi
− 1

4
− 1

2σi
$*2

i

)
+

σi
2
+ aie2

i1

(21)

According to Equation (21), the virtual control is designed as follows:

αi = −ki1ei1 + ẋi1d − pi1λi1 (22)

where ki1 is the parameter to be designed and satisfies ki1 > 0
Substituting (22) into (21) results in

V̇i1 ≤ −ai(ki1 − 1)ei1
2 + aiei1ei2 − T2

i

(
1
τi
− ai

4
− 1

2σi
$*2

i

)
+

σi
2

(23)

Taking the time derivative of ei2 yields

ėi2 = ẋi2 − λ̇i2 − ṡi = biui + fi(X) + wi −∆ui + pi2λi2 − ṡi

= biui + ξ∗i
Thi + wi −∆ui + pi2λi2 − ṡi

(24)

The RBF neural network is used to approximate the unknown function fi(X).

fi(X) = ξ∗i
Thi(X) + δi (25)

where ξ∗i is the vector of ideal weights. hi(X)is the Gaussian basis function. δi is the
minimum approximation error of the RBF neural network which used to approximate the
unmodeled and uncertain part fi(X). To balance the effects of approximation errors and ex-
ternal disturbances, an adaptive robust term is defined to compensate for the perturbations,
and it can also compensate for the approximation error of RBF neural network. The external
disturbances are time-dependent and the state of each control channel is bounded, so the
total system perturbation wi is also bounded. Suppose there exists an unknown constant
w∗i as the boundary of the perturbation, wi ≤

∣∣w∗i ∣∣ is satisfied.
The neural network minimum parameter learning method is used to improve the

speed of adjusting parameters; let Θ∗i =‖ ξ∗i ‖
2. The Lyapunov function is designed as

Vi2 = Vi1 +
1
2

e2
i2 +

1
2βi

Θ̃2
i +

1
2ρi

w̃2
i (26)

where βi, ρi are the two positive constants to be designed. Θ̂i is the estimate of the neural
network weights, and Θ̃i = Θ∗i − Θ̂i is the estimation error between the desired weights
and the estimated weights. ŵi is the estimate of the total perturbation of the system,
and w̃i = w∗i − ŵi is the estimation error between the actual perturbations and the estimated
perturbations. According to Equation (26), we obtain

V̇i2 = V̇i1 + ei2

(
biui + ξ∗Ti hi + wi − ∆ui + pi2λi2 − ṡi

)
− 1

βi
Θ̃i

˙̂Θi −
1
ρi

w̃i ˙̂wi (27)

According to the fundamental theorem of Young’s inequality, suppose there exists an
arbitrary positive constant σi that satisfies the following inequality

ei2ξ*T
i hi ≤

1
4σi

e2
i2Θ

*
i h

T
i hi + σi (28)

Substituting (28) into (27) yields
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V̇i2 ≤− ai(ki1 − 1)e2
i1 −

(
1
τi
− ai

4
− $∗2

i
2σi

)
T2

i +
σi
2
+ ei2(aiei1 + biui −∆ui + pi2λi2 − ṡi)

+ |ei2|w∗i − ei2w∗i tanh
(

ei2
ςi

)
+ ei2ŵi tanh

(
ei2
ςi

)
+

1
4σi

e2
i2Θ̂ihT

i hi

+
1

4σi
e2

i2Θ̃ihT
i hi + σi + ei2w̃i tanh

(
ei2
ςi

)
− 1

βi
Θ̃i

˙̂Θi −
1
ρi

w̃i ˙̂wi

(29)

According to Lemma 4, we further obtain

V̇i2 ≤− ai(ki1 − 1)e2
i1 −

(
1
τi
− ai

4
−

$∗2i
2σi

)
χ2

i

+ ei2

(
ei1 + biui − ∆ui + pi2λi2 − ṡi +

1
4σi

ei2Θ̂ihT
i hi + ŵi tanh

(
ei2
ςi

))
+

1
4σi

ei2Θ̂ihT
i hi + ŵi tanh

(
ei2
ςi

)
+

Θ̃i
βi

(
γi
4σi

e2
i2hT

i hi − ˙̂Θi

)
+

Θ̃i
βi

(
γi
4σi

e2
i2hT

i hi − ˙̂Θi

)
+

w̃i
ρi

(
ρiei2 tanh

(
ei2
ςi

)
− ˙̂wi

)
+ 0.2785ζiw∗i +

3σi
2

(30)

According to Lyapunov’s stability theorem, the control law ui , the adaptive laws ˙̂Θi
and ˙̂wi of the parameter are designed according to Equation (30)

ui = b−1
i

(
ki2ei2 − aiei1 + ṡi −

1
4σi

ei2Θ̂ihT
i hi − ŵi tanh

(
ei2
ζi

)
− ∆ui + pi2λi2

)
(31)

˙̂Θi =
βi
4σi

e2
i2hT

i hi − γiΘ̂i (32)

˙̂wi = ρiei2 tanh
(

ei2
ζi

)
− viŵi (33)

where ki2, γi and vi are the parameters to be designed and satisfy ki2 > 0, γi > 0 and vi > 0.
Substituting Equations (31)–(33) into (30), we obtain

V̇i2 ≤− ai(ki1 − 1)e2
i1 −

(
1
τi
− ai

4
−

$∗2i
2σi

)
T2

i −
γi

2βi
Θ̃2

i −
vi

2ρi
w̃2

i

− ki2e2
i2 +

3σi
2

+ 0.2785ςiw∗i +
γi

2βi
Θ∗2

i +
vi

2ρi
w∗2

i

(34)

3.2. Stability Analysis

The control law (31) and the adaptive laws (32), (33) are selected based on
Assumptions 1–4. The following properties hold if the system satisfies the state constraints
−kbi < xi1(0) < kbi and input saturation.

Theorem 1. All closed-loop signals are bounded.

Theorem 2. The attitude system state does not exceed the set constrained condition −kbi <
xi1(t) < kbi, ∀t > 0.

Theorem 3. The output tracking error can be made to converge to the domain of zero by selecting
suitable parameters and the convergence accuracy is affected by the parameters.
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To facilitate the subsequent proof, first define

Ki =
1
τi
− ai

4
− $*2

i
2σi

(35)

Substituting (35) into (34), then

V̇i2 ≤ −ai(ki1 − 1)e2
i1 − KiT2

i −
γi

2βi
Θ̃2

i −
vi

2ρi
w̃2

i − ki2e2
i2 +

3σi
2

+ 0.2785ςiw∗i (36)

According to Lemma 2, it can be deduced that

− ln
k2

ai
k2

ai − ei1
2
≥ − ei1

2

k2
ai − ei1

2
(37)

According to Equation (37), for the attitude control subsystem that requires output
constrained, we can further obtain

V̇i2 ≤ −(ki1 − 1) ln
k2

bi
k2

bi − e2
1i
− KiT2

i −
γi

2βi
Θ̃2

i −
vi

2ρi
w̃2

i − ki2e2
i2 +

3σi
2

+ 0.2785ςiw∗i (38)

Define Di = min{2(ki1 − 1), 2ki2, 2Ki, γi, vi}, Hi =
3σi
2 + 0.2785ςiw∗i2. Based on (26),

we can obtain

V̇i2 ≤ −DiVi2 + Hi (39)

Proof of Theorem 1. Multiplying both sides of (39) by etDi at the same time, the following
inequality is obtained

eDitV̇i2 ≤ (−DiVi2 + Hi)eDit (40)

Perform the integration operation on Equation (40):

d
dt

(
eDitVi2

)
≤ HieDit

eDitVi2 −Vi2(0) ≤
Hi2
Di

(
eDit − 1

)
0 ≤ Vi2 ≤ Vi2(0)e−Dit +

Hi
Di

(
1− e−Dit

)
≤ Vi2(0) +

Hi
Di

(41)

If Vi2(0) ≤ `, we can obtain Vi2(0) ≤ `+ Hi
Di

. Based on (39), it is known that Vi2 is
bounded. It can be determined that ei1,ei2, αi, si are bounded. Also, ui, xi1 are bounded.
Then, all variables are in the closed-loop control system.

Proof of Theorem 2. −kbi < xi1(0) < kbi can be obtained according to Lemma 1. Since
xi1(t) = ei1(t) + xi1d(t), it can be deduced that

−kai + xi1d(t) < xi1(t) < kai + xi1d(t), ∀t > 0 (42)

Then we infer that −kbi < xi1(t) < kbi, ∀t > 0.

Proof of Theorem 3. Based on Equation (26), it can be obtained that

1
2

ln
k2

ai
k2

ai − e2
i1
≤
(

Vi2(0)−
Hi
Di

)
e−Dit +

Hi
Di

(43)
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Transforming both sides of Equation (43) into an exponent with e as the base

k2
ai

k2
ai − e2

i1
≤ e2[(Vi2(0)−Hi/Di)e−Dit+Hi/Di] (44)

Since |ei1| < kai, it is known that k2
ai − e2

i1 > 0, and it can be obtained that

|ei1(t)| ≤ kai(t)
√

1− e−2[(Vi2(0)−Hi/Di)e−Dit+Hi/Di] (45)

When t→ ∞, ei1(t) ≤ kbi(t)
√

1− e−2Hi/Di , we obtain

|xi1(t)− xi1d(t)| ≤ kai(t)
√

1− e−2Hi/Di (46)

According to the definitions of Hi and Di , the output tracking error converges to the
domain of 0 when t→ ∞, and the convergence accuracy is affected by the parameters.

4. Simulation Results

In this section, the proposed BLF-based ANNBC is applied to the quadrotor UAV to
verify the anti-interference and tracking performance under constrained conditions. The su-
periority of the present method is verified through comparative simulation experiments
with the backstepping dynamic surface control (BDSC) [43]. The controller design gives
a uniform form of control law for each control channel of the UAV, and the parameters
and constraints are different from each control channel. Considering the dynamics of
equation (1), the parameters of the quadrotor UAV in [37] are listed in Table 1.

Table 1. Modeled parameters of the UAV.

Parameter Value Units

ms 0.468 Kg
l 0.3 m

Jx, Jy, Jz 0.0023 N ·m
k1, k2, k3 0.01 N · s/m
k4, k5, k6 0.012 N · s/rad

The desired position–attitude trajectory of the UAV are as follows

[xd(t), yd(t), zd(t)]
T = [t, 2cos(0.5t), sin(t)]T

ψd(t) = 2sin(t)
(47)

The initial conditions for the quadrotor UAV are given as

[x(t0), y(t0), z(t0), θ(t0), φ(t0), ψ(t0)]
T = [0, 0, 2, 0, 0, 0]T (48)

To make the comparison experiments more convincing, the parameters of the two
control methods are identical. The relevant parameters of the control law (31), (22) and
the adaptive law (32), (33) are given as kx1 = 1, kx2 = 5, ky1 = 1, ky2 = 5, kz1 = 1, kz2 = 5,
kθ1 = kθ2 = 10, kφ1 = kφ2 = 10, kψ1 = kψ2 = 10. βi = 1, γi = 0.1, ρi = 1, vi = 0.1, ςi = 0.01,
σi = 1, Θ̂i(t0) = 0, ŵi(t0) = 0

Assume that the following uncertainties and external disturbances are [37]

[
∆m(t), ∆Jx(t), ∆Jy(t), ∆Jz(t)

]T
= [0.2, 0.001× sin(t), 0.001× cos(t), 0.001(sin(t) + 1)]T ,

[∆k1, ∆k2, ∆k3, ∆k4, ∆k5, ∆k6] = 0.5× rand(1),[
wx(t), wy(t), wz(t)

]T
= [0.3× sin(t), 0.3× cos(t), 0.1× sin(0.5t)]T ,[

wφ(t), wθ(t), wψ(t)
]T

= [0.5× cos(0.1t), 0.3× sin(0.01t), 1− 0.5× sin(0.5t)]T .

(49)

In this paper, we use RBF neural network to approximate the unknown part, and the
selected structure is 2-5-1, which means two inputs, five hidden layer nodes, and one
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output. The RBF neural network parameters are set as cx = cy = cz = cθ = cφ =

cψ =

[
−2,−1, 0, 1, 2
−2,−1, 0, 1, 2

]
, bx = by = bz = bφ = bθ = bψ = 3. Set the attitude tracking

error constraint to kai = 0.51. Using the anti-saturation strategy proposed in this paper,
the maximum and minimum of the control inputs are set, respectively, as U1M = 9, U1m = 4,
U2M = 5, U2m = −10, U3M = 2, U3m = −5, U4m = −30, U4M = 30.

Figures 3 and 4 represent the position-attitude tracking curves of the UAV using
the ANNBC. Figures 5 and 6 represent the position–attitude tracking curves of the UAV
using the BDSC. It can be found that in the presence of external disturbances and internal
uncertainties, the ANNBC still has good control performance with small tracking errors.
For the UAV using the BDSC in Figures 5 and 6, the outputs cannot track the desired
trajectory well because there is no anti-disturbance design. Total disturbances and uncer-
tainties severely impair the control performance and lead to large tracking errors. It is
concluded that our proposed method has stronger anti-disturbance performance and better
tracking performance.

0 5 10 15 20
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20

40

0 5 10 15 20

−5

0

5

0 5 10 15 20
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Figure 3. Response curves of position tracking of the ANNBC.
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Figure 4. Response curves of attitude tracking of the ANNBC.
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Figure 5. Response curves of positions tracking of the BDSC.
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Figure 6. Response curves of attitude tracking of the BDSC.

The position–attitude tracking errors of the UAV control system using the ANNBC
are shown in Figures 7 and 8, respectively. The position control subsystem has a large
tracking error at the beginning. By introducing RBF neural networks and robust terms,
the position-attitude tracking errors

[
ex, ey, ez, eφ, eθ , eψ

]
within the range of [0.012, 0.057],

[0.021, 0.103], [−0.072, 0.045], [−0.013, 0.031], [−0.015, 0.018] and [−0.033, 0.002], respec-
tively. The state of the attitude control channel needs to be constrained. It can be found
that with ANNBC, the tracking error of the attitude control channel is always in the range
of [−0.51, 0.51], satisfying the set constraint. In the presence of external disturbances and
internal uncertainties, our proposed ANNBC can achieve output constraints at all moments.
While from Figures 5 and 6, since there is no anti-interference and output constraints design,
small perturbation leads to a large tracking error. Output constraints are broken and the
dynamic properties of the system are affected. It is concluded that the ANNBC has a very
small steady-state error, which can well solve output constraints, model uncertainties and
external disturbances , and meet the performance requirements of UAV for fast, accurate
and anti-interference landing.
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Figure 7. Curves of position tracking errors of the ANNBC.
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Figure 8. Curves of attitude tracking errors of the ANNBC.

In this paper, the maximum and minimum of the control inputs are set, respectively,
as U1M = 9, U1m = 4, U2M = 5, U2m = −10, U3M = 2, U3m = −5, U4m = −30, U4M = 30.
The curves of the control inputs without anti-saturation strategy (v1, v2, v3, v4) and with the
anti-saturation strategy(U1, U2, U3, U4) are shown in Figure 9a–d. The UAV control system
is a typical nonlinear system. As the control input is limited by physical factors, the control
intput will show input saturation. To verify the effectiveness of the anti-saturation strategy,
the control input without anti-saturation strategy and the control input with anti-saturation
strategy are simulated for comparison. It can be seen that the control intput of each channel
is always within the set constraints under the anti-saturation strategy. Control inputs
without anti-saturation processing will be too large or too small at first. With the anti-
saturation processing, the control intput is strictly limited to a constrained range and still
has good tracking performance.
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(a) Curves of control inputs U1 and v1.
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(b) Curves of control inputs U2 and v2.
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(c) Curves of control inputs U3 and v3.
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Figure 9. Curves of control inputs without anti-saturation strategy and with the anti-saturation strategy.

5. Conclusions

In this paper, we study the quadrotor UAV position–attitude trajectory tracking
problem with external disturbances, internal uncertainties and input–output constraints.
An ANNBC is proposed by combining BLF, DSC, an adaptive neural network and an
anti-saturation auxiliary system. A tandem control scheme is adopted to design position
and attitude controllers for the UAV. An adaptive neural network is used to approximate
the uncertainty term of the UAV model. A robust term is designed to balance the total
system disturbance. The BLF is used to cope with attitude constraints, while a new auxiliary
system is introduced to solve the input saturation problem. Using the ANNBC, the UAV
achieves high accuracy in tracking performance and input–output constraints. The stability
of the system is guaranteed and all signals are bounded.

Due to limited conditions, the designed controllers in this paper are not simulated in a
sufficient number of specific environments. In future research, we will consider validating
the performance in more complex environments. In addition, we will further consider the
UAV trajectory tracking problem with asymmetric time-varying output constraints, which
is not considered in this paper.
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Abbreviations
The following abbreviations are used in this manuscript:

ms Mass
g Gravitational acceleration
xi1 = [x, y, z, φ, θ, ψ]T Position and Euler angles
xi2 = [ẋ, ẏ, ż, φ̇, θ̇, ψ̇]

T Linear velocity and angular velocity
wi =

[
wx, wy, wz, wφ, wθ , wψ

]T Total perturbation
J = diag

{
Jx, Jy, Jz

}
Axial rotational inertia

EB = {OB, XB, YB, ZB} Airframe coordinate system
EE = {OE, XE, YE, ZE} Earth coordinate system
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