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Abstract: The accommodative response of the human eye is predominantly driven by foveal vision,
but reacts also to off-foveal stimuli. Here, we report on monocular accommodation measurements
using parafoveal and perifoveal annular stimuli centered around the fovea and extending up to 8◦

radial eccentricity for young emmetropic and myopic subjects. The stimuli were presented through a
sequence of random defocus step changes induced by a pupil-conjugated tunable lens. A Hartmann–
Shack wavefront sensor with an infrared beacon was used to measure real-time changes in ocular
aberrations up to and including the fourth radial order across a 3 mm pupil at 20 Hz. Our findings
show a significant reduction in accommodative response with increased radial eccentricity.

Keywords: accommodation; sign of defocus; aberrations; wavefront sensor; tunable lens; parafovea;
perifovea; emmetropization; myopia

1. Introduction

Accommodation is the process of change in the optical power of the eye to compensate
for defocus induced by different viewing distances. The amplitude of accommodation
reduces with age and becomes almost zero at around 52 years of age [1], although some
studies have found that this reduction can be extended up to an age of 60 or 70 years [1–3].
The accommodative response also depends on stimulus properties, such as spatial fre-
quency content [4] and the location in the visual field [5]. In this study, we investigate the
ability of the human eye to accommodate to annular stimuli presented in the parafoveal
and perifoveal visual field.

Campbell concluded that foveal cones are responsible for accommodation, i.e., only
when the luminance equals the cone threshold of visibility will the accommodative reflex
be triggered [6]. In the case of parafoveal vision, Fincham reported that observers were
unable to accommodate to a white spot of light when its width exceeded 10 arcmin and the
monocular viewing angle was more than 10 arcmin away from the spot [7]. Meanwhile,
Semmlow and Tinor measured parafoveal accommodative convergence response while
viewing a 6 arcmin dark target at eccentricities up to 6◦ and found an approximately linear
drop-off in response with eccentricity [8]. Similarly, Gu and Legge measured parafoveal
accommodation by varying the size of a dark disc on a bright background and instructing
observers to view the contour of the circle as sharp as possible at eccentricities of 1◦, 7◦,
15◦ and 30◦ [9]. They concluded that peripheral vision evokes accommodative responses,
albeit with reduced magnitude. The same conclusion was reached by Hartwig, Charman
and Radhakrishnan when measuring the peripheral accommodative response in myopes
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and emmetropes [10]. When both foveal and parafoveal accommodative cues are present, a
compromise in response has been reported [11,12].

The question of parafoveal accommodation is not only of fundamental interest for
research but it is also directly relevant for subjects affected by central vision loss who rely
partially or entirely on parafoveal vision and vision aids [13,14]. Furthermore, peripheral
optics are believed to play a role in emmetropization. The image on the peripheral retina
depends on the refractive errors, the state of accommodation, and environmental factors,
since the surroundings are not dioptrically uniform [15,16]. One such environmental
factor is an increase in indoor activities, which has been found to be a major reason for
myopia prevalence in the young population [17]. So, understanding the sensitivity to
defocus at different retinal eccentricities, and the corresponding effect on accommodation
in various settings, may provide important insights into the mechanisms which stimulate
emmetropization and myopia [18].

We recently introduced an automated method to study foveal-driven accommodation
using a current-driven tunable lens (TL) in a conjugated pupil plane to introduce a random
sequence of defocus step changes within the accommodative range of each observer [19].
Randomness is used to prevent subjects from learning the required response that can
otherwise mask the desired signal [20]. We expand on our earlier study and report here
on measurements of the accommodative response across the macula from the fovea and
parafovea to the perifovea for young observers to green-colored annular stimuli with visual
angle radii from 1◦ to 8◦. Other studies have used other smaller targets to examine the
peripheral retina [9,12]. They have the advantage of including higher spatial frequencies
but are localized to just a small area of the retina at any time. In turn, the use of annular
targets benefits from including all equidistant points from the fovea simultaneously.

2. Materials and Methods

Figure 1 shows a schematic of the monocular vision system used to measure parafoveal
accommodation. The TL (OptotuneTM EL-16-40-TC-VIS-5D-C; Optotune Switzerland AG,
Dietikon, Switzerland) was used to generate a sequence of negative defocus steps within the
comfortable accommodative range of each subject. This range was determined manually
before measurements by asking each subject to look at the target while adjusting the power
of the TL via lens driver controller software (Lens driver 4/4i). The TL had a nominal
response time of 5 ms and a settling time of 25 ms. The sequence of a random pattern of
defocus steps was chosen to avoid memorization of the expected accommodative response.
For each subject, the same random sequence was used but scaled to their accommodative
range. The TL provided step defocus changes every 10 s while the subject accommodated
to an annular target. The procedure was repeated for each subject with nine different radii
of the annular target, viz., 1◦, 2◦, 3◦, 4◦, 5◦, 6◦, 7◦, 7.5◦, and 8◦. No measurements were
performed beyond 8◦ retinal eccentricity for any subjects.

2.1. Participants

Six participants with ages in the range of 23 to 34 years old took part in this study: 1
emmetrope (≤−0.5 D), 2 mild myopes (≤−3 D), and 3 moderate-to-high myopes (≤−6 D).
Subjects were provided with an information leaflet and signed an informed consent form
prior to measurements. Myopic subjects wore their spectacles during measurements.
Table 1 shows the age, refractive error (right eye) and experimentally determined accom-
modative range for each subject. An autorefractor named EyeNetraTM (EyeNetra Inc.,
Cambridge, MA, USA) was used to determine the refractive error, which has a nominal
error of 0.35 diopters.
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Figure 1. Schematic of a monocular vision system which was used to measure foveal, parafoveal 
and perifoveal accommodation responses to a sequence of random defocus steps. Three 4-f tele-
scopes were used to place the iris, HS-WFS and tunable lens in conjugated pupil planes. Beam split-
ter 1 is a hot mirror, whereas beam splitter 2 is a 50/50 coated plate. Only a single green ring in the 
annular accommodation target was shown at any given time. 
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Table 1. Refractive error in diopters (D) of subjects’ right eyes. The comfortable accommodative (Ac) 
range was determined manually with the TL for each subject. Subject #1 is an emmetrope, subjects 
#2 and #3 are mild myopes and subjects #4–#6 are myopes who all wore their spectacles during 
measurements. The visual targets were displayed on a screen placed at 1 m distance from the con-
jugated pupil plane (1 diopter initial bias). 

Subject Age (Years) Sphere (D) Cylinder (D) Ac. Range (D) 
#1 29 −0.50 0.00 3.40 
#2 28 −0.75 0.00 3.53 
#3 34 −0.75 0.00 2.42 
#4 24 −4.75 0.00 3.35 
#5 23 −5.75 0.75 (Axis 30°) 3.55 

Figure 1. Schematic of a monocular vision system which was used to measure foveal, parafoveal and
perifoveal accommodation responses to a sequence of random defocus steps. Three 4-f telescopes
were used to place the iris, HS-WFS and tunable lens in conjugated pupil planes. Beam splitter 1 is a
hot mirror, whereas beam splitter 2 is a 50/50 coated plate. Only a single green ring in the annular
accommodation target was shown at any given time.

Table 1. Refractive error in diopters (D) of subjects’ right eyes. The comfortable accommodative
(Ac) range was determined manually with the TL for each subject. Subject #1 is an emmetrope,
subjects #2 and #3 are mild myopes and subjects #4–#6 are myopes who all wore their spectacles
during measurements. The visual targets were displayed on a screen placed at 1 m distance from the
conjugated pupil plane (1 diopter initial bias).

Subject Age (Years) Sphere (D) Cylinder (D) Ac. Range (D)

#1 29 −0.50 0.00 3.40
#2 28 −0.75 0.00 3.53
#3 34 −0.75 0.00 2.42
#4 24 −4.75 0.00 3.35
#5 23 −5.75 0.75 (Axis 30◦) 3.55
#6 25 −6.00 −2.25 (Axis 15◦) 3.28

2.2. Procedures

Subjects viewed a green annular target on a dark background on a computer monitor
with their right eye while their left eye was covered with a dark patch. The annular target,
with a line width of 1.2 mm, was chosen as it simultaneously covers all points at a fixed
radial distance from the fovea. For annular targets with 1◦, 2◦, 3◦, 4◦, 5◦, 6◦, 7◦, 7.5◦ and 8◦

retinal eccentricity, the corresponding retinal illuminance was 1.51, 1.80, 1.98, 2.11, 2.21, 2.29,
2.35, 2.38 and 2.41 log Td. The monitor was placed at a viewing distance of 1 m from the
conjugated pupil plane corresponding to an initial +1 diopter baseline of accommodation.
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The Zernike defocus coefficient C20 determined with the wavefront sensor was converted
from micrometers (µm) to diopters (D) as follows:

1
f
= −16×

√
3× C20/d2, (1)

where d is the pupil size in diameter in mm. The factor of 16 is due to the scaling of the
wavefront at the pupil onto the Hartmann–Shack wavefront sensor (HS-WFS). A near-IR
laser source of 850 nm wavelength (Edmund OpticsTM: Edmund Optics Ltd., York, UK)
was focused onto the retina and served as a probe to sense real-time ocular aberrations at
20 Hz including up to the 4th radial order of the Zernike aberrations with a CMOS-based
HS-WFS (ThorlabsTM WFS20-5C; Thorlabs Ltd., Ely, UK). The irradiance of the near-IR
source was approximately 100 µW. The system was computer controlled via a LabviewTM

interface (National Instruments Software: Labview 2016). A 3 mm iris was placed in a
conjugated pupil plane to limit the effective pupil diameter to keep the measurement
situation identical in all cases.

A small pupil limits the impact of higher-order aberrations and increases the depth of
focus, resembling vision outdoors. In our earlier study, we found no significant difference
in accommodative amplitude between pupil sizes of 2.5, 3.5 and 4.5 mm, and therefore a
negligible impact of higher-order aberrations [19]. Subjects were not dilated, but the room
was dark to ensure a sufficiently large natural pupil. As only changes in accommodative
state were studied, a possible myopic shift caused by the dark environment, i.e., night
myopia [21], was of no concern as it would provide a constant offset. A bite bar was used to
limit unwanted head motion during measurements. For each of the 9 annular stimuli, the
predetermined random sequence of defocus steps were induced by the TL and the subjects
were instructed to look straight at the wavefront sensing beam (red dot) while keeping the
circular accommodation target in focus as well as they could. To exclude disturbance by
the IR beacon, separate measurements were performed without the green annular targets
where the subjects were instructed to look at the red laser dot, and it was verified that
the initially measured defocus of the eye did not change when the TL cycled through the
defocus sequence. Thus, all subjects were able to suppress the IR beacon and concentrate
on the green annular targets while using the red dot as a fixation point.

A sequence of random defocus steps was generated, and data acquisition was in each
case limited to 110 s to limit fatigue. Every 5 to 10 min. subjects would rest to relax their
vision and longer breaks were given if they found it difficult to accommodate. To increase
comfort, data collection took place across 2 to 3 days for each subject and measurements
were repeated between 2 and 3 times under certain circumstances, i.e., if the HS-WFS
signal was degraded by unwanted eye motion (due to subject’s head position movement)
or the tiredness of subjects. In the presented data, blinks were removed numerically by
using MatlabTM (MathWorks, MATLAB R2021b) processing without otherwise affecting
the temporal response (shown in Figure S6), and defocus was determined as specified in
Equation (1).

3. Experimental Results

The response to the random step sequence for subjects #1 and #2 (emmetrope and mild
myope) is shown in Figure 2. For both observers, defocus changes are followed closely both
during accommodation and relaxation at 1◦ radial eccentricity. From 2◦ to 6◦ eccentricity,
accommodation and relaxation are in the expected direction but with a reduced response
with increasing eccentricity, which agrees with earlier studies [10,12,22,23]. At and beyond
7◦ eccentricity, the accommodative response becomes negligible. The other mild myopic
participant, subject #3, showed the same tendency (see Figure S1 in the supplementary
document). An extra step (7.5◦) between 7◦ and 8◦ radial eccentricity was taken to monitor
the response closely at the point where accommodation is absent.
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Figure 2. Induced defocus sequence by the TL (black line) and accommodation response (red line) as
a function of time for subjects (a) #1 and (b) #2 with increasing radial eccentricity from 1◦ to 8◦. The
induced defocus is shown with opposite signs to ease comparison.

Figure 3 shows the mean accommodative response for all subjects determined for the
interval of 11–19 s (induced defocus ranged from −1.16 D to −2.10 D depending on the
individual) as a function of stimulus eccentricity for all six subjects. The accommodative
response decreases with higher eccentricities, although some variations are noticeable, e.g.,
for subjects #2 and #3, at 3◦ eccentricity, defocus went up compared to 2◦, and the in case of
myopic subject #6, more variations were noticed at 4◦, 6◦ and 7.5◦, which can be caused
by overshooting or accommodation. The accommodative range and initial position differ
between subjects as expected based on Table 1.
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Figure 3. Mean accommodative response as a function of eccentricity for all subjects at the time
interval of 11–19 s where the defocus induced by the TL was (#1) −1.98, (#2) −2.08, (#3) −1.16, (#4)
−1.93, (#5) −2.10, and (#6) −1.87 diopters.

To estimate the difference between accommodative response and induced defocus,
further analysis was performed. Table 2 shows these results at the time interval of 0–110 s
and radial eccentricities in the range of 1–8◦ together with the average for all subjects. A
low value means that the response followed the induced defocus well. Except for subject
#3, all subjects showed a gradual decrease in accommodative response with eccentricity.
Subject #3 is the oldest of the subjects, and therefore the range and drop-off with eccentricity
is smaller. On average, the accommodative response flattens out for radial eccentricities of
7◦ and beyond.

Table 2. The average root-mean-square (RMS) deviation between induced defocus and accommoda-
tive response for all subjects for stimuli at eccentricities from 1◦ to 8◦. The time interval was 0 to
110 s.

Subject 1◦ 2◦ 3◦ 4◦ 5◦ 6◦ 7◦ 7.5◦ 8◦

#1 0.388 0.628 0.802 0.805 0.956 1.259 1.247 1.222 0.925
#2 0.378 0.482 0.504 0.816 0.883 0.936 1.116 0.855 0.935
#3 0.415 0.435 0.676 0.444 0.418 0.425 0.497 0.469 0.499
#4 0.510 0.476 0.481 0.797 0.845 0.967 1.039 1.224 1.199
#5 0.476 0.499 0.719 0.671 0.842 1.112 1.294 1.258 1.185
#6 0.401 0.544 0.634 0.564 0.997 0.760 0.954 0.752 1.059

Average 0.428 0.510 0.636 0.683 0.823 0.910 1.024 0.963 0.967

To determine whether other Zernike terms were affected, selected coefficients are
shown in Figure S2 for subject #1. As expected with a small 3 mm pupil, the defocus term
dominates the response, although careful comparison does reveal that astigmatism Z3
changed with the same sign as Z4, whereas astigmatism Z5 and spherical aberration Z12
changed with the opposite sign. This tendency was also noticed with foveal accommodation
for pupil sizes up to 4.5 mm [19]. In some cases, coma Z7 and Z8 (not shown for simplicity)
changed too, but only slightly (less than 0.2%), with the same sign as Z4. In all cases,
defocus alone accounts for more than 99% of the total response with a small pupil.

Figure 4 shows the accommodative response for myopic subjects #4 and #6. As
emmetropes and mild myopes, myopic subjects were also able to track changes to the TL
in the correct direction at up to 6◦ perifoveal vision, albeit with reduced response. At 7◦

and beyond, no response was observed (same for myopic subject #5; shown in Figure S3).
The refraction by the spectacles impacts the field of view. However, for most subjects, this
is a modest effect. With a vertex distance of 14 mm and for the most myopic subject (#6),
wearing −6 D correction equals an 8% reduction in field size (or 7.3◦ for the 8◦ target).
If fully corrected with contact lenses, this will not be perceived as a reduction by the
subject. Relatedly, the accommodative demand is modified by approximately 5% at ±2 D



Appl. Sci. 2023, 13, 8645 7 of 12

by accommodation [24]. All subject groups showed a similar accommodative response
with smaller amplitude at increasing eccentricity and a reduced range with increased age.
Some accommodative overshooting (lead of accommodation) was noted, although this
occurred mostly for the untrained subjects and may thus be a result of uncertainty and
increased errors.
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All subjects showed a similar tendency in the case of reaction and response time
determined following the same procedure as in Ref. [19]. Figure 5 shows the temporal
response of accommodation and relaxation for subject #1 at 1◦ and 5◦ eccentricity. The
reaction time (i.e., latency or delay in the onset of accommodation) differs little between
(a) lower and (b) higher eccentricities, while the response time (i.e., time required to com-
plete accommodation before stabilizing at a new accommodative level) almost doubles at
5◦ eccentricity when compared to 1◦, as shown in Figure 5 (and with a reduced accommo-
dation amplitude). For foveal stimuli, the reaction time was in the range of 300–700 ms
and the response time was 200–800 ms, where far-to-near accommodation response was
faster than near-to-far relaxation [19,25,26]. For higher eccentricities (5◦ and beyond), the
reaction time increased slightly (400–800 ms), though some variations may occur, e.g.,
the relaxation reaction time is approximately 320 ms in Figure 5b, but the response time
increased substantially (900 ms–2 s) for most of the cases. The response also varied with
the magnitude of the induced defocus steps, but the oscillatory behavior was in good
correspondence with earlier findings [27].
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Figure 5. Examples of temporal dynamics with two stimulus radii (a) 1◦ and (b) 5◦: defocus (TL:
black line) and accommodation (eye: red line) following an accommodative step change (left) and
relaxation (right) for subject #1. Determined reaction time (brown rectangle) and response time (green
rectangle) are indicated.

Figure 6 shows examples of (a) reaction and (b) response times for subject #1 for 1◦

to 6◦ retinal eccentricity arranged from lower to higher dioptric stimulus value. Figure 6a
shows an increase in reaction time at 6◦ retinal eccentricity, but there is also some variation
between reaction times at other eccentricities and for different defocus stimuli. Figure 6b
shows that the response time was almost 70% higher for 5◦ and 6◦ retinal eccentricity
when compared to lower eccentricities. The longer times relate to the more challenging
accommodation at increased eccentricity. Yet, as for the foveal study [19], there is no clear
relationship between reaction and response times for different defocus stimuli. Similar
observations were made for the other subjects studied (for simplicity not shown). Moreover,
fatigue as well as untrained subjects would typically have increased reaction and response
times. Also, increased stimulus eccentricity increases the accommodative uncertainty and
required time.
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4. Discussion

For all six subjects, a reduction in the parafoveal accommodation response at large
eccentricity was noted, which agrees with earlier studies [8]. At 7◦ and beyond, there was
no longer a clear correspondence between defocus stimuli and the ocular response. This is
smaller than in some studies [9], plausibly due to the reduction in the number of accom-
modative cues when using a TL. All subjects showed similar peripheral accommodative
tendencies, and therefore no more subjects were recruited in this study. A related study [12]
found that at 7◦ retinal eccentricity (14◦ diameter), an accommodative response was present
when subjects looked onto a black-and-white textured target made with a circle containing
a Maltese cross target at the center while experiencing sinusoidal induced defocus (±1.5 D)
caused by a TL at frequencies of 0.1, 0.2, 0.5 and 1 Hz. The presence of the central Maltese
cross target can possibly be the reason why an accommodative response was still present.
This differs from the methodology employed in the present study, where concentric annular
targets were displayed at increasing retinal eccentricities. Accommodation is impacted
by spatial frequencies, and not necessarily at the highest spatial frequencies, as shown
in a study with digital blur of natural images [28]. The spatial frequency content of the
annular target on a dark background is narrow when compared to that of an extended
Maltese cross.

In our study, the TL induced random defocus instead of a well-known periodic
defocus change, thereby reducing possible accommodative cues. Small fluctuations were
noticed throughout accommodation, and it is plausible that these may provide a cue to the
accommodative response [29]. Blur adaptation can improve visual acuity by approximately
0.2 logMAR within approximately an hour [30,31], and a related acuity reduction occurs
after removing a prescribed correction [32]. This adaptation may partially be of optical
origin, as photoreceptors dynamically adapt to the direction of incident light [22,23,33].
When it comes to the contrast of the stimuli, previous studies found that it does not have any
influence on the accommodative response while reading on an electronic micro-display [34]
or for near vision [35], and it has no significant impact on the accommodative lag [36]. Yet,
other studies show that pupil size and higher-order aberrations may have some influence
in the accommodation stimulus response [37], while illumination intensity impacts the
amplitude of accommodation [38].

Another key parameter is the retinal ganglion cell density that also drops off with
increasing eccentricity [39]. The parafoveal results are similar between emmetropic and
myopic subjects. Thus, refractive error may matter less [40] than monocular vergence,
which possibly limits the outer-segment leakage of light [41,42].

5. Conclusions

In this study, we reported on an automated monocular system to measure accom-
modation to annular stimuli projected on the parafovea and the perifovea in response to
random step defocus changes induced by a current-driven tunable lens. The accommoda-
tive response time increased gradually with increasing eccentricity, while the amplitude
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decreased gradually and became negligible at 7◦ radial distance and beyond. For a 3 mm
limited-eye pupil, defocus is the dominating Zernike coefficient, with no significant con-
tribution from higher-order aberrations. Our experimental results clearly show that the
amplitude of accommodation reduces with increased eccentricity, which can possibly be
linked to the reduction in cone density and thus to a contrast reduction caused by the
leakage of light from the outer segments [42]. Moreover, no evidence of a different accom-
modative response was found between subjects of different refractive errors in this study,
which agrees well with previous findings [10,43]. We are conducting further research to
understand the mechanisms that trigger the correct direction of accommodation and thus
the detection of the sign of defocus in the young adult eye both in foveal and parafoveal
vision, as this ultimately may relate to myopia and the emmetropization process [44,45].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app13158645/s1, Figure S1: Induced defocus sequence by the TL
(black line) and accommodation response (red line) as a function of time for subject #3 for increasing
radial eccentricity from 1◦ to 8◦. The induced defocus is shown with opposite sign to ease comparison;
Figure S2: Individual Zernike coefficients in response to induced TL defocus changes for subject #1
for defocus Z4 (red line), astigmatism Z3 and Z5 (brown and blue lines), and spherical aberration
Z12 (orange line); Figure S3: Induced defocus sequence by the TL (black line) and accommodation
response (red line) as a function of time for subject #5 for increasing radial eccentricity from 1◦ to
8◦. The induced defocus is shown with opposite sign to ease comparison; Figure S4: Schematic of
setup to test Zernike coefficient changes in response to defocus changes of the TL monitored in a
plane that is conjugate to the HS-WFS. An expanded collimated HeNe (633 nm) laser beam was used
for the illumination. The iris was set to a beam diameter of 4.5 mm corresponding to the largest
eye pupil used in this study; Figure S5: Changes of Zernike coefficients as a result of a random
sequence of defocus changes generated with the TL as measured with the HS-WFS including up to
4th radial Zernike order. In (a) astigmatism (Z3, Z5), defocus (Z4), spherical (Z12), and coma (Z7, Z8)
are all included on a common scale. In (b) defocus has been removed, and the vertical scale adjusted
to reveal minute changes in the remaining Zernike coefficients when defocus changes; Figure S6:
Analysis of blink removal with a MatlabTM code using (a) raw defocus data from the HS-WFS to
obtain the (b) blink-filtered results. In (c) the difference between raw data and blink-corrected data
shows no significant impact outside of the blink-induced spikes. Note that the sign of TL response
has not been swapped here as it is in the main manuscript.
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