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Abstract: The traditional A* and DWA fusion algorithm has three problems in the task of aggregation
formation: one is the lack of meeting coordination strategy, the other is the inability to unify the
terminal course, and the third is too many turning points in the global path. To solve the above
problems, an improved algorithm is proposed. Firstly, by smoothing the global planning path, the
stability of a USV heading in the navigation is improved. Then, by adding the key points of the global
path, a guide path is formed to unify the terminal heading range. Finally, by adding an encounter
coordination strategy, aggregation efficiency is improved. Simulation experiments were carried out
in the Python environment based on this algorithm. The results show that the improved algorithm
can improve the navigation obstacle avoidance ability of USVs and guide multiple USVs to finish the
task of aggregation formation.

Keywords: A* algorithm; DWA algorithm; USV; formation aggregation

1. Introduction

In contrast to manned ships, unmanned surface vessels (USVs) have been widely
used as a new type of unmanned maritime platform in many fields such as marine ob-
servation, hydrographic survey, and accident search and rescue, leading to innovative
changes. The unmanned platform at sea has greatly promoted the transition of the ship
industry in the direction of informatization and unmanned intelligence. Gradually, USVs
are replacing manned ships as the backbone in some fields. As an important development
in unmanned technology, USV formation provides advantages in terms of lower cost,
higher safety, stronger task adaptability, mutual synergy, and stronger data processing
capabilities compared with single-boat manned ships. First, USV formation does not need
to carry personnel, which can save expenses related to personnel life support, thereby
greatly reducing the cost of the formation. Second, USVs are more flexible in dealing with
a variety of complex environments. Under harsh maritime working conditions, the safety
of the USV equipment is the only consideration, and there are no additional personnel
adaptability and personal safety concerns. Third, the form and number of USV formations
can be selected according to the requirements of the task to quickly adapt and respond
to different task requirements. Fourth, USV formations can realize cooperative control
through intelligent technology, and with higher formation synergy, the efficiency of mission
execution can further be improved. Fifth, USV formations can carry more types of sensors
and data acquisition equipment, allowing the collection, processing, and transmission of a
large amount of data in real time, thereby providing support for more efficient and accurate
mission execution.

In USV navigation control formation, path planning and obstacle avoidance technolo-
gies are the keys to intelligent navigation. Obstacle avoidance technology is essential in
ensuring the safe and efficient navigation of a USV, and path planning technology can
generate efficient and feasible trajectories based on the information collected by various
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sensors and communication systems, whereby according to a USV’s performance and
environmental conditions, the USV is guided to reach the target location safely and accu-
rately. Therefore, the usual method of intelligent navigation employs global path planning
algorithms to achieve path planning in a known environment, and subsequently uses
local path planning algorithms to achieve dynamic obstacle avoidance in a positional
environment. The common global path planning algorithms include the reverse encryption
algorithm (REA)* based on a grid map [1], A*, Dijkstra, and randomly exploring random
tree (RRT)* algorithms based on the sampling method [2], as well as a probabilistic roadmap
(PRM) and intelligent AG based on neural networks and ant colony algorithms [3,4]. Local
path planning algorithms include the artificial potential field method (PFM), dynamic
window approach (DWA), time elastic band (TEB) [5], and vector field histogram (VFH)
algorithms [6]. In integrating the above global and local path planning algorithms, the
A* algorithm provides the advantages of easy implementation, wide applicability, and
strong scalability, whereas DWA can fully combine the underactuated characteristics of
USV and displays stronger adaptability. Therefore, the two were selected as the ideal
global and local path planning algorithms for fusion to achieve ideal results in autonomous
navigation applications.

In the literature, Chen et al. [7] used the key turning point extraction algorithm to
eliminate redundant inflection points and redundant nodes in the global path, optimized
the traditional A* algorithm, and fused it with DWA to optimize path length, smoothness,
and safety. Lao et al. [8] improved the key point selection strategy based on the traditional
A* algorithm and fused it with DWA to construct a global optimal path evaluation function
to achieve real-time optimal path planning. Li et al. [9] validated and analyzed the A* and
DWA fusion algorithm for a single USV. Zhan et al. [10] introduced the safety distance
factor into the heuristic function of the A* algorithm to improve the safety of the algorithm’s
planned path and subsequently used the planar structure method to smooth and optimize
the global planned path to realize the path planning of the A* and DWA fusion algorithm.
Liu et al. [11] quantified and analyzed the obstacle information in the environment, thereby
adjusting the weights of the heuristic function of the A* algorithm to improve algorithmic
efficiency and flexibility. In addition, they improved the path smoothing based on Floyd’s
algorithm to realize dynamic path planning in complex environments. Lu et al. [12]
optimized the predicted cost function and heuristic function of the A* algorithm to tune
the global planning path to the requirements of the task. Zhao et al. [13] reduced the
turn angle for path planning in the improved A* algorithm by treating travel time as the
cost and adjusting the weight of the heuristic function according to obstacle information.
Bian et al. [14] incorporated the key track points in the global planning path of A* into
the evaluation function of the DWA algorithm to solve the problem of the traditional
DWA algorithm which fails to evaluate under a combination of “C”-shaped obstacles, and
improved the ability to navigate through dense obstacle zones. Wu et al. [15] proposed a
hybrid dynamic path planning algorithm for FAGV based on improved A* and improved
DWA. This algorithm can avoid obstacles dynamically without being far away from the
global optimal path. Dan et al. [16] proposed the improved A* algorithm combined with
the greedy algorithm for a multi-objective path planning strategy. This algorithm can
achieve a smoother path and reduce the path length by about 5%. Bai et al. [17] proposed a
path planning algorithm based on A* and DWA to achieve global path optimization while
satisfying security and speed requirements for unmanned aerial vehicles (UAVs). This
algorithm shortens the path length, reduces the planning time, improves the smoothness of
the UAV path, and enhances the safety of UAV path obstacle avoidance. R. Han et al. [18]
proposed a distributed approach for multi-robot navigation which combines the concept of
reciprocal velocity obstacle (RVO) and the scheme of deep reinforcement learning (DRL) to
solve the reciprocal collision avoidance problem with limited information.

The above research indicates various application directions for the A* and DWA fusion
algorithm, mostly focusing on the path planning of a single intelligent body, and less
on aggregation formation-related problems such as collaborative path planning of multi-
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intelligent bodies and cross-encounters. In USV aggregation formation, the traditional A*
and DWA fusion algorithm is not applicable to this scenario for the following reasons. First,
the global path ramp of the traditional A* algorithm has numerous turning points, which
causes the USVs to jitter in the local path planning stage. Second, the USVs are under-
driven models, and the traditional fusion algorithm cannot unify the heading range of the
USVs when arriving at the end point, which forms a certain obstacle to the cooperative
movement after aggregation formation. Third, the intersection of multiple USV paths is not
considered because of a lack of an encounter coordination strategy, which can easily lead to
collision accidents or reduce obstacle avoidance efficiency. Therefore, this study improves
the traditional A* and DWA algorithms to address the three aforementioned problems. The
algorithm is improved and optimized by smoothing the global planning path, specifying
the end position heading range, and adding an encounter coordination strategy to make it
suitable for USV aggregation formation.

In this paper, Section 1 mainly analyzes the importance of USV navigation control
research and introduces the research status of USV navigation and formation assembly.
Section 2.1 mainly expounds on the traditional A* and DWA fusion algorithm. Section 2.2
mainly introduces the main contents of the improved algorithm. Sections 2.2 and 2.3
mainly introduces the main contents of the improved algorithm. Section 3 mainly carries
out simulation experiments and comparative analysis. Section 4 mainly summarizes the
findings and future prospects.

2. Materials and Methods
2.1. Overview of Traditional A* and DWA Algorithms
2.1.1. Traditional A* Algorithm

The traditional A* algorithm, proposed by Hart et al. [19], is a heuristic search al-
gorithm that finds the shortest path to the target location in a graph. This algorithm is
optimized on the basis of Dijkstra’s algorithm; however, compared to Dijkstra’s algorithm,
a cost function f (n) is introduced to optimize the search process by reducing the number
of nodes, thereby improving search efficiency. The basic idea of the A* algorithm is to start
from the starting point, calculate for each node the cost to the starting point g(n) and to the
end point h(n), and then add the two values to obtain f (n). Commencing with the starting
point, the node with the smallest value of f (n) is selected for extended traversal until the
end point is reached, or OPENLIST is empty. The cost function is expressed as

f (n) = g(n) + h(n) (1)

In Equation (1), the heuristic function h(n) is one of the most important factors affecting
the temporal complexity of the A* algorithm [20]. The specific flow of the traditional A*
algorithm is shown in Figure 1.

2.1.2. Traditional DWA Algorithm

The traditional DWA algorithm, proposed by Fox et al. [21], obtains a feasible velocity
combination within a certain time window by combining the limiting velocity and accelera-
tion constraints of the robot’s own physical limitations with the obstacle constraints of the
object environment (v, w), where v and w denote linear and angular velocities, respectively.
The three types of constraints can be expressed as follows:

Vs = {(v, w)|vmin ≤ v ≤ vmax, wmin ≤ w ≤ wmax} (2)

Vd =
{
(v, w)

∣∣vc −
.
v∆t ≤ v ≤ vc +

.
v∆t, wc −

.
w∆t ≤ w ≤ wc +

.
w∆t

}
(3)

Va =

{
(v, w)|va ≤

√
2 · dist(v, w) · .

v, wa ≤
√

2 · dist(v, w) · .
w
}

(4)
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where Vs is the self-limiting velocity constraint; Vd is the self-limiting acceleration con-
straint; Va is the obstacle constraint; vc denotes the current linear velocity;

.
v denotes linear

acceleration; wc is the current angular velocity;
.

w is angular acceleration; dist(v, w) denotes
the distance between the trajectory and the nearest obstacle.
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The intersection of the three types of constraints determines the feasible velocity range:

Vr = Vs ∩Vd ∩Va (5)

By sampling all feasible velocity combinations according to the specified accuracy
(v, w), the predicted trajectory is formed and evaluated, and the one with the highest score
is considered the ideal trajectory. The evaluation function is defined as follows:

E(v, w) = σ(α · head(v, w) + β · dist(v, w) + γ · vel(v, w)) (6)

where α, β, γ are the weight coefficients; the head function refers to the difference between
the heading angle at the end of the trajectory and the azimuth angle of the target; the dist
function calculates the distance between the target and the nearest obstacle; the vel function
is the linear velocity magnitude; σ denotes the normalization process.

2.1.3. Traditional A* and DWA Fusion Algorithm

The traditional A* and DWA fusion algorithm can simultaneously consider the global
static environment as well as the layout dynamic environment. The USV relies on the
map resources pre-loaded into the database and its own sensors to develop situational
awareness of the global and local environments. The global optimal path is first obtained
according to the A* algorithm, whereby the optimal path is discretized into a number of
point traces. Subsequently, the locally optimal path is generated according to the target
point of the DWA algorithm, as determined by the point traces, and combined with the
location of surrounding obstacles to generate navigational information to guide the USV.
The fusion algorithm can continuously update the heading state of the USV, considering the
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navigational capability constraints and environmental information, thus achieving more
efficient and accurate path planning. The algorithmic principle is illustrated in Figure 2.
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Figure 2. Traditional A* and dynamic window fusion algorithm.

In Figure 2, the global path is first generated using the traditional A* algorithm
based on the position, size, and other information on the USV target and obstacles in the
environment. Then, the local guide target is set according to the distance from the USV and
used as the target point for the DWA algorithm. Finally, the traditional DWA algorithm is
used to generate the dynamic window and guide the navigation.

2.2. Global Path Smoothing Optimization
2.2.1. Problems with the Global Path of the Traditional A* Algorithm

The traditional A* algorithm grids the global environment and explores the surround-
ing grids, starting to traverse from the grid where the target is located. As shown in Figure 3,
in the traditional algorithm, there are mainly four or eight directions for traversal search.
However, the complexity of the actual global environment is much higher; therefore, even
if the eight-direction search algorithm is used, the calculated global path is only composed
of continuous line segments in eight directions, making it difficult to satisfy the require-
ments of the actual environment. When other angular directions appear, the traditional A*
algorithm combines them according to the existing directions, thereby causing additional
turning points to appear in the generated paths. This increases the complexity of the global
path and affects the stability and accuracy of the navigation phase of the USV.
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2.2.2. Improved Path Smoothing

To eliminate the extra turning points in the paths and achieve simplified global paths,
a path smoothing algorithm is proposed in this study. Based on the paths obtained by the
traditional A* algorithm, the non-essential path points are eliminated, and the critical path
points are retained to obtain smoothed and optimized critical paths. The specific steps of
this algorithm are shown in Figure 4 below. After eliminating the non-essential path points,
the number of points in the optimized path set is reduced. In subsequent steps of the fusion
algorithm, optimized global paths are collected and added to the path point set according
to the unit grid length of the A* algorithm.
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2.3. Designated End Position Heading
2.3.1. Traditional Fusion Algorithm Endpoint Position Heading

In the traditional fusion algorithm, the heading at the end point of the USV is deter-
mined by environmental obstacles and the global path. The A* algorithm only provides the
optimal solution for reaching the end point from the starting point. Moreover, the tradi-
tional DWA algorithm cannot realize the function of customizing the end point heading,
and the method of modifying the path evaluation index function is complex and difficult
to realize. As shown in Figure 5, in an ideal environment without obstacles, regardless of
the value of the USV heading angle α at the starting position, the end point heading α′ of
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the USV, determined by the traditional fusion algorithm, always converges to the end point
azimuth β of the starting position, and the longer the global path length, the smaller the
difference between the two angles |α′ − β|. Therefore, the terminal heading of the USV is
always determined by the azimuth angle β, which is affected by the global path length.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 16 
 

2.3. Designated End Position Heading 

2.3.1. Traditional Fusion Algorithm Endpoint Position Heading 

In the traditional fusion algorithm, the heading at the end point of the USV is deter-

mined by environmental obstacles and the global path. The A* algorithm only provides 

the optimal solution for reaching the end point from the starting point. Moreover, the tra-

ditional DWA algorithm cannot realize the function of customizing the end point heading, 

and the method of modifying the path evaluation index function is complex and difficult 

to realize. As shown in Figure 5, in an ideal environment without obstacles, regardless of 

the value of the USV heading angle at the starting position, the end point heading of 

the USV, determined by the traditional fusion algorithm, always converges to the end 

point azimuth  of the starting position, and the longer the global path length, the smaller 

the difference between the two angles | |  −  . Therefore, the terminal heading of the 

USV is always determined by the azimuth angle  , which is affected by the global path 

length. 

 
(a) 

 
(b) 

Figure 5. (a). USV heading and end point bearing. (b). Global path end point guidance section 

added.  
Figure 5. (a). USV heading and end point bearing. (b). Global path end point guidance section added.

2.3.2. Adding a Global Path End Point Guide Segment

A method is proposed in this study to realize the control of the end point heading of
the USV, whereby a key waypoint is set on the basis of the global path obtained by the
traditional A* algorithm to form a global path end point guidance section. The guidance
section is the line between the key waypoint Pk and the target point, and the azimuth of the
key waypoint Pk at the end point β′ is the reference value of the end point heading control.
Thus, the longer the length of the guidance section, the smaller the error value |α′ − β′|.
Therefore, the length of the guidance section and the azimuth angle β′ can be adjusted to
achieve control of the end point heading of the USV.
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2.4. Synergistic Optimization of Multi-USV Encounters
2.4.1. Encounter Problems in the Traditional Fusion Algorithm

The traditional fusion algorithm is designed to solve the single USV navigation prob-
lem. In a multi-USV environment, the algorithm achieves the desired effect only when the
global paths of each USV do not cross and maintain a considerable distance from each other.
In scenarios involving encounters, it is difficult to complete safe and efficient navigation
tasks using the traditional fusion algorithm.

2.4.2. Encounter Coordination Strategy for Multiple USVs

To solve the encounter problem in multi-USV navigation, an encounter coordination
strategy is proposed. First, an encounter judgment rule is set such that when the distance
between the local guidance points of each USV Dist is less than or equal to a specified
value, the USVs are judged to be in an encounter situation. Second, the priority of USV
maneuvering is set to avoid a collision. The USVs considered to be in a mutual encounter
situation are grouped, and the outboard angle value ϕ of the current USV relative to another
USV is calculated, whereby the USV with the larger outboard angle value is given higher
priority to avoid a collision. Finally, according to the priority level, the local guidance point
of each USV is adjusted, only keeping the local guidance point position of the low-priority
USV unchanged, and the current position of the other USV is incorporated into the global
environment of the high-priority USV as the midpoint of the obstacle. At this time, the
low-priority USV gradually decelerates to the local guidance point, and the high-priority
USV maneuvers rapidly toward the global target point to ensure navigation safety. The
process continues until the distance Dist between the two local guidance points is greater
than the critical value, at which point the encounter situation is circumvented, and the
low-priority USV resumes movement from the local target point, continuing to guide the
USV while gradually accelerating.

As shown in Figure 6, when the distance Dist between USV1 and USV2′s local guid-
ance point reaches the critical value, the outboard angle values are compared, and if
ϕ12 < ϕ21, USV2′s collision avoidance priority is higher than that of USV1, whereby
USV1 will slow down to the current local guidance point to avoid USV2, and USV2 will
sail normally.
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3. Experiments and Results

To verify that the improved fusion algorithm can further enhance the USV obstacle
avoidance synergy and achieve USV aggregation formation, the traditional fusion and
improved algorithms were simulated in the Python environment, and the results were
analyzed and compared. The parameters of the USV kinematic and DWA algorithms are
shown in Tables 1 and 2, respectively.

Table 1. USV kinematic parameters.

Type Parameter Value (Unit)

Minimum speed 0 (kn)
Maximum speed 20 (kn)

Minimum angular velocity 15 (deg-s)−1

Maximum angular velocity 15 (deg-s)−1

Acceleration 2 (kn-s)−2

Angular acceleration 5 (deg-s)−2

Table 2. Fusion algorithm parameters.

Type Parameter Value (Unit)

Collision radius 0.25 (nm)
Time period 0.01 (h)

Speed resolution 0.1 (kn)
Angular velocity resolution 1 (deg-s)−1

Predicted track time 120 (s)
Global path unit length 0.05 (nm)

α 0.1
β 0.1
γ 0.7

3.1. Global Path Smoothing Verification Experiment

Based on Tables 1 and 2, a single USV path planning environment containing three
obstacles was created, and the traditional A* algorithm was compared with the smoothing
optimization algorithm. In Figures 7 and 8, the global path steering points are significantly
reduced after smoothing optimization, from 41 to 2 in this scenario, which is a positive
outcome of smoothing optimization.
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3.2. Designated End Position Heading Verification Experiment

The dual-USV path planning environment was created according to Tables 1 and 2,
and the heading control reference β′ of the optimized algorithm was set to 0◦ in comparing
the traditional fusion algorithm with the optimized algorithm, as shown in Figures 9–12.
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In Figures 9–12, after the optimized algorithm is added to the end guidance segment,
the USV adjusts the heading at the end of the range under the influence of the guidance
segment, whereby the heading converges towards β′ at the end position.

3.3. Validation Experiment for Encounter Coordination

Based on Tables 1 and 2, a dual-USV environment was created, and USV head-on
encounter and cross-encounter situations were set up to compare the traditional fusion
algorithm and the optimized algorithm with an encounter coordination strategy, as shown
in Figures 13–16.
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In Figures 13–16, in the traditional algorithm without an encounter coordination
strategy, the use of the DWA algorithm fails to achieve the desired avoidance maneuver
in an encounter situation. In the simulation experiment results of Figures 13 and 15, the
USVs collide, and the navigation task cannot be completed. In contrast, the optimization
algorithm with an encounter coordination strategy provides good safety and applicability
by setting the priority of avoidance, thereby allowing one of the USVs to slow down and
avoid a collision to achieve safe navigation while also complying with the actual rules of
safe maritime navigation. In Figures 17 and 18, under the optimization algorithm, the USV
does not take a large angle maneuver during the encounter and can choose an efficient
cooperative collision avoidance path with a shorter distance, which allows the USV to
economize on fuel in practical situations.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 16 
 

avoid a collision to achieve safe navigation while also complying with the actual rules of 

safe maritime navigation. In Figures 17 and 18, under the optimization algorithm, the USV 

does not take a large angle maneuver during the encounter and can choose an efficient 

cooperative collision avoidance path with a shorter distance, which allows the USV to 

economize on fuel in practical situations. 

 

Figure 17. Optimization algorithm encounter trajectories (cross-encounter situation). 

 

Figure 18. Optimization algorithm encounter trajectories (cross-encounter situation). 

3.4. Multi-USV Aggregation Formation Experiment 

According to Tables 1 and 2, three USV environments were created, and obstacles 

were added. The reference value of heading control   of the optimization algorithm   

was set, and a simulation experiment was conducted for USV aggregation formation. The 

results are shown in Figures 19–21. 

 

Figure 19. Simulation of aggregation formation ( 0 =  ). 

Figure 17. Optimization algorithm encounter trajectories (cross-encounter situation).



Appl. Sci. 2023, 13, 8625 13 of 16

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 16 
 

avoid a collision to achieve safe navigation while also complying with the actual rules of 

safe maritime navigation. In Figures 17 and 18, under the optimization algorithm, the USV 

does not take a large angle maneuver during the encounter and can choose an efficient 

cooperative collision avoidance path with a shorter distance, which allows the USV to 

economize on fuel in practical situations. 

 

Figure 17. Optimization algorithm encounter trajectories (cross-encounter situation). 

 

Figure 18. Optimization algorithm encounter trajectories (cross-encounter situation). 

3.4. Multi-USV Aggregation Formation Experiment 

According to Tables 1 and 2, three USV environments were created, and obstacles 

were added. The reference value of heading control   of the optimization algorithm   

was set, and a simulation experiment was conducted for USV aggregation formation. The 

results are shown in Figures 19–21. 

 

Figure 19. Simulation of aggregation formation ( 0 =  ). 

Figure 18. Optimization algorithm encounter trajectories (cross-encounter situation).

3.4. Multi-USV Aggregation Formation Experiment

According to Tables 1 and 2, three USV environments were created, and obstacles
were added. The reference value of heading control β′ of the optimization algorithm β′

was set, and a simulation experiment was conducted for USV aggregation formation. The
results are shown in Figures 19–21.
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In Figures 19–21, it is observed that the optimized algorithm provides significant
improvements in obstacle avoidance, encounter, and end course uniformity in the en-
vironment of the three USVs, achieving ideal results in the simulation environment, by
completing more complicated USV aggregation formation tasks.

Through the above experiments and analysis, the method proposed in Reference [18]
is compared with the fusion algorithm in this paper, as shown in Table 3:

Table 3. Algorithm comparison.

Algorithm Name Fusion Algorithm of A* and DWA Fusion Algorithm of RVO and DRL

Algorithm core method Fusion algorithm of Improved A* and
traditional DWA

Fusion algorithm of RVO and multiple
PPO deep reinforcement learning

Number of robots in formation 3 10/16/20
Designated terminal course Yes No

Acclimatization Strong Weak
Computing power demand Low High

Maneuverability requirements of robots Low High

Compared with the method proposed in reference [18], the fusion algorithm in this
paper has the following advantages:

1. By improving the traditional A* algorithm, this paper realizes the function of specify-
ing the terminal course, which is more comprehensive in formation control ability;

2. The algorithm in this paper can be successfully implemented in multi-type environ-
ments by setting appropriate parameters. However, the deep reinforcement learning
algorithm needs many simulated environments for training, and also needs targeted
training according to different types of environments to achieve better results. There-
fore, the algorithm proposed in this paper is more adaptable to the environment;

3. A deep reinforcement learning algorithm needs a lot of computing power and takes
a long time to obtain an ideal training model, which puts higher demands on the
equipment configuration involved in the calculation. The algorithm proposed in this
paper is based on traditional A* and DWA algorithms, which have lower complexity
and less demand for computing power;

4. The RVO algorithm itself is prone to heading jitter in the navigation process, which
puts forward higher requirements for the robot’s maneuverability, while the DWA
algorithm fully considers the robot’s maneuverability and is more suitable for under-
actuated systems such as USV.
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At the same time, the shortcomings of the algorithm in this paper are that the number
of robots in the formation is small, and more complex collision avoidance strategies need to
be introduced, which puts forward higher requirements for the efficiency of the algorithm
and is more difficult to realize.

4. Conclusions

In this paper, we analyzed the traditional A* and DWA fusion algorithm to investigate
the problems in the predicted trajectory window during collision avoidance. By smoothing
the global planning path, the stability of the USV heading in the navigation stage was
improved. Subsequently, global path key points were added to form the end point guidance
segment, which can specify the end point location heading range. For the multi-USV
encounter coordination problem, the aggregation efficiency and safety were improved
by introducing an encounter coordination strategy. The simulation results show that the
improved fusion algorithm can better improve the control ability and navigation efficiency
of USVs and complete the task of USV aggregation formation.

At the same time, the description of the USV motion model in this algorithm is
relatively simple, with a certain divergence from the actual USV motion situation. Moreover,
the model of the simulation environment is not rich enough, and there is a lack of a more
comprehensive analysis of the efficiency and applicable environment of the algorithm. The
above problems will be further improved in the follow-up algorithm improvement and
real-scene testing research to obtain more ideal experimental results.
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