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Abstract: This paper studies the problem of planning and scheduling in selective maintenance tasks of
mission requirements and the health condition of the fleet. In order to deal with the problems of high
maintenance cost and long time consumption in maintenance systems, a two-stage fleet maintenance
optimization method is proposed. Firstly, a selective maintenance model of fleets based on age
reduction is established to maximize the probability of completing the next mission and minimize
the maintenance cost. Secondly, a multiobjective sparrow search algorithm is designed to solve the
maintenance planning problem in the first stage, and a nondominated solution set of maintenance
strategies satisfying the mission constraint is obtained. In the second stage, the simulated annealing
algorithm is used to schedule the maintenance task and obtain the minimum maintenance hours
required by the maintenance strategy. An example analysis of a vehicle fleet is launched to prove the
effectiveness of this method. In a word, this method not only meets the mission requirements but
also achieves the purpose of reducing maintenance cost and maintenance hours, which can provide
reference for other types of equipment maintenance.

Keywords: maintenance planning; multiobjective optimization; sparrow search algorithm; fleet-level
maintenance; simulated annealing algorithm

1. Introduction

Equipment maintenance is a key segment to ensure high-tech equipment exerts its
ability. With the development of information technology and the increase in mission re-
quirements, fleet operation mode has been regarded as an important development direction
in the future of the fields of aerospace, transportation, military and so on. Equipment
maintenance also presents new characteristics such as complexity, networking and flexibil-
ity. Therefore, the maintenance of equipment is very important in the operation stage [1].
Many studies have shown that maintenance planning is a key factor affecting maintenance
efficiency in equipment maintenance support tasks [2].

In recent years, researchers have conducted studies on maintenance planning methods
focusing on areas such as reliability modeling, mission profiling, and resource require-
ments. Claudio Alvarez et al. [3] presented a stochastic dynamic programming model for a
condition-based maintenance application, which allows preventive maintenance measures
to be taken by allowing nonperiodic inspections. Ming-Yi You [4] considered three types
of product lifetime probabilistic models, proposing a generalized hybrid maintenance
policy for maintenance scheduling with the help of both time-based maintenance and
condition-based maintenance techniques. Tao Jiang et al. [5] developed a new selective
maintenance model for systems that execute multiple consecutive missions. In each break,
multiple optional maintenance actions, from perfect replacements down to imperfect and
minimal repairs, can be chosen for each component. Peilong Yuan et al. [6] considered
carrier aircraft support operations which should satisfy serial and parallel constraint rela-
tionships, presenting a periodic and event-driven rolling horizon scheduling strategy. This
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strategy adjusts the baseline scheduling in a reasonable computational time and avoids
the unnecessary scheduling. Zhengang Guo et al. [7,8] managed to reduce the waiting
time, makespan and electricity consumption in complex and customized manufacturing by
proposing a self-adaptive collaboration control method.

By monitoring the health condition of each key component in complex equipment in
real time, judging whether the system has a symptom of failure based on the understanding
of failing mechanism and evaluating the approximate occurrence time of system failure,
the maintenance team can make flexible maintenance arrangements according to the health
status of the system and make adequate preparations before maintenance tasks. Scheduled
maintenance and other maintenance strategies do not consider the dynamic change in equip-
ment health condition, and some key components cannot be properly maintained, resulting
in a waste of maintenance resources and mission risks. Therefore, the condition-based
maintenance strategy based on real-time monitoring and evaluation of equipment health
condition has been gradually focused on [9,10]. Marco Koopmans et al. [11] studied the
condition-based maintenance strategy for industrial facilities consisting of multiple units
working in parallel. Weikai Wang et al. [12] constructed a condition-based maintenance
model based on piecewise deterministic Markov process and considered the imperfect
maintenance of units with natural degradation.

According to the degree of repair, maintenance strategies can be divided into perfect
maintenance, minimal maintenance, imperfect maintenance, etc. [13] Among them, the
imperfect maintenance cannot make the system as good as a new one, but its health condi-
tion can be rendered better than before. Li Yang et al. [14] proposed a two-stage preventive
maintenance policy that considered imperfect maintenance, and the defect will finally be
removed by replacement in the second stage. Yuling Liu et al. [15] established a fleet-level
selective imperfect maintenance model and proposed a maintenance strategy optimization
method based on evolutionary copetition game theory. Wanqing Cheng et al. [16] simulta-
neously considered three maintenance behaviors: no maintenance, imperfect maintenance
and replacement. They proposed an imperfect model by introducing the degradation
ratio that follows the beta distribution and used the MDP method to solve the optimal
maintenance problem.

In a group of vehicles with different models and different health conditions, there is a
problem that the objective to minimize the maintenance resources, such as maintenance
hours and spare components, conflicts with the objective to maximize the maintenance
achievement. In this condition, selective maintenance planning (SMP) comes into being.
SMP employs different maintenance strategies for different equipment in the fleet, enabling
the fleet to meet the mission requirements while consuming as little maintenance resources
as possible. In recent years, selective maintenance planning has attracted more and more
attention in the field of equipment maintenance. Shahraki et al. [17] conducted a study on
selective maintenance planning for multistate systems, considering random dependent
components and imperfect maintenance, and proposed a multiobjective optimization
model considering two objective functions, including the expected value and variance
of the system reliability. Yu Liu et al. [18] proposed a sequential planning method for
selective maintenance of multistate systems, considering the limited time available for
maintenance task between continuous tasks, so as to maximize the probability of the
system successfully completing the next mission. Wenbin Cao et al. [19] summarized a set
of criteria considered in selective maintenance optimization into three categories: system
characteristics, maintenance characteristics and mission profile characteristics. Based on
these criteria, a comprehensive literature review of selective maintenance is made, and it
is pointed out that selective maintenance modeling considering different task profiles is a
kind of problem worth paying attention to.

For the selective maintenance decision problem of a complex equipment system, af-
ter the establishment of the mathematical model of the problem, it is necessary to select
the appropriate algorithm to optimize the mathematical model, so as to optimize the
decision objectives while satisfying the constraint, such as the minimum system failure
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and maintenance cost, the maximum system reliability or availability, etc. Heuristic al-
gorithms are commonly used in maintenance modeling problems, including Tabu search
algorithm [20], genetic algorithm [21], ant colony algorithm (ACO) [18], simulated anneal-
ing algorithm [22] (SA), etc. At present, most maintenance decision-solving methods of
equipment systems take a single variable as the optimization objective, and after obtaining
the maintenance strategy, other indicators are not considered to evaluate the strategy, so
that the decision plan ignores some aspects of the requirements, resulting in the reduction in
mission capability or the waste of maintenance resources. Therefore, considering multiple
indexes in maintenance tasks to make decisions and taking a reasonable way to evaluate
the decision scheme is the focus of the current research on maintenance decision-solving
methods. Xu, E.B et al. [23] established a three-objective selective maintenance model for
series–parallel systems and used an improved NSGA-III evolutionary algorithm to solve
the problem. NSGA-III reserves some dominated points near reference points instead of
only reserving nondominated points in NSGA-II, which contributes to keep the diversity
of the population.

Therefore, aiming at the mission and reliability driven selective maintenance plan-
ning problem of a fleet, this paper establishes a phased solution framework to solve the
problem. The main contributions of this paper are as follows: (1) A fleet-level selective
maintenance decision model based on virtual age reduction theory is constructed. In the
process of model establishment, the optimization objectives of cost and mission capability
are both considered. (2) The two-stage problem-solving framework and the corresponding
solution method are proposed. Considering the convergence speed of the algorithm and
the process of the maintenance task, the problem is decomposed into two parts, including
multiobjective optimization selective maintenance decision and maintenance scheduling
based on maintenance hours. An MSSA heuristic algorithm and the SA algorithm are used
to solve the problem.

The structure of this paper is as follows: In Section 2, a mathematical model for
selective maintenance planning of a fleet is established. In Section 3, a framework for
solving the model is proposed, and an MSSA algorithm and an SA algorithm are used to
optimize the model. In Section 4, a case is selected to verify the above model and algorithm,
and the results are analyzed. Finally, we summarize the content of this paper.

2. Equipment Group Maintenance Planning Model Based on Service Age Regression Model
2.1. Problem Description and Model Assumptions

Much research on maintenance planning often ignores the constraints of maintenance
resources, such as maintenance time and maintenance team, and believes that multiple
resources required by maintenance tasks are adequately available. However, maintenance
tasks in the real world are often constrained by the limited resources [24]. Therefore, the
problem of maintenance decision under limited maintenance resources has become the
focus of research in the field of system support in recent years. Under the premise that
various maintenance resources are subject to task constraints, this paper pays attention to
the clustering characteristics of the fleet under maintenance, carries out research on the
selective maintenance decision making of a fleet considering imperfect maintenance and
provides an optimized maintenance strategy under the mission constraints.

In the equipment group maintenance planning model involved in this paper, it is consid-
ered that the equipment group and maintenance tasks meet the following assumptions:

Assumption 1. The equipment cluster has several devices of the same model, all of which have the
same system structure, are series–parallel systems and have the same number and type
of components.

Assumption 2. The maintenance cost of each component is related to the initial and postmainte-
nance state of the component, which can be measured by the component maintenance grade and
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replacement maintenance cost. The replacement maintenance cost of all components of the same
model is the same.

Assumption 3. The probability of the fleet to satisfy the requirement in the next mission given by
the model is a value predicted according to the component state, without considering the influence of
other environmental factors during the task.

Assumption 4. Each process requires different maintenance team and equipment, and each group
of maintenance team and equipment can only maintain one subsystem of the equipment at the
same time.

2.2. Optimization Objective
2.2.1. The Probability of the Fleet to Satisfy the Requirement in the Next Mission

The mission satisfied capability of the fleet refers to the health condition that the fleet
can keep during the mission. In the series–parallel system, as long as the failure probability
of the equipment system during the mission is lower than the required level, the equipment
system can be considered to have achieved the health condition required by the mission
after maintenance. The performance of a component, subsystem or system can be described
in a variety of ways. In the research aimed at maintenance planning, such performance
can often be measured by a series of indicators, such as reliability, failure rate or mean time
between failures. In this paper, it is assumed that the component lifetime model follows
the two-parameter Weibull distribution in Equation (1) :

f (x) =
β

η

(
t
η

)β−1
exp

[
−
(

t
η

)β
]

(1)

where β is the shape parameter and η is the scale parameter.
Cassady et al. proposed the concept of conditional survival probability to describe

the probability that a component does not fail in the duration of the mission [25]; that is,
the probability that the components will still work normally when the task ends if the
components work normally at the beginning of the task:

rij(n) = P
(

X−ij = 1|X+
ij = 1

)
(2)

In this chapter, reliability is used to represent the probability that components work
normally. When the task duration is τk, Equation (2) becomes

rij(n) = R
(

V+
ij (n)|V

−
ij (n)

)
= R

(
V+

ij (n)
)

/R
(

V−ij (n)
)

(3)

In the virtual service age model, the component failure rate is determined by the
virtual service age rather than the actual working time. According to the system mission
reliability model in Figure 1, the conditional survival probability of the fourth equipment
in the equipment cluster can be expressed as

Pe =
s

∏
i=1

Ni

∏
j=1

Re,i,j

(
V+

ij (k)
)

/
s

∏
i=1

Ni

∏
j=1

Re,i,j

(
V−ij (k)

)
(4)

The mission satisfied capability of a single equipment system can be evaluated accord-
ing to its reliability. However, the health condition of the fleet cannot be simply described
by reliability, which can only be comprehensively evaluated according to the attributes
of each equipment unit. In this section, a k-out-of-n system model is used to describe the
mission satisfied capability of the fleet. It is believed that at any stage in the mission process,
as long as the amount of failed equipment in the fleet remains below a certain level, the
fleet can be regarded as able to successfully complete the mission objective. Therefore, the
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probability of the the amount of failed equipment kept at the required level can be regarded
as the mission satisfied capability of the fleet. In this section, the k-out-of-n system model is
combined with the survival probability of the equipment system mentioned above, and the
relationship between the component health condition and the mission satisfied capability
of the fleet is described by the method of universal generating function.

subsystem 1 subsystem 2 subsystem n

Figure 1. Structure diagram of series–parallel system.

In the fleet described in this chapter, the state (failure or nonfailure) of component Ne
ij

in the mission process is expressed by the binary variable Xe
ij. According to the survival

probability defined in Equation (5), the mission performance of the fleet can be expressed
by the following structure function:

φ(X1, X2, · · · , XN) =

{
1 if ∑N

i=1 Xi ≥ k

0 if ∑N
i=1 Xi ≤ k

(5)

Among them, the binary variable φ represents whether the health state of the equip-
ment cluster meets the mission requirements. The structure function of the system indicates
the relationship between the state of the system and the state of its components. For ex-
ample, for the system formed by two components in series and parallel, their structural
function can be expressed as

φ(Y1, Y2) = min(Y1, Y2) (6)

φ(Y1, Y2) = Y1 + Y2 (7)

Assuming that the health states of all N components in the equipment cluster are
independent of each other, the relationship between mission satisfied capability P of
the fleet and health states of all components can be expressed in the form of universal
generating function according to the structure functions:

P(z) = ⊗{X1(z), X2(z), · · · , XN(z)}

=
2

∑
i1=1
· · ·

2

∑
iN=1

(
N

∏
j=1

p(j,i) · z
φ(x(1,0),··· ,x(N,1))

)
(8)

Therefore, this section combines the method of universal generating function with the
method of survival probability to describe the mission satisfied capability.
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2.2.2. Maintenance Cost of Equipment Group

The use of money represents the consumption of maintenance resources in mainte-
nance tasks, including maintenance spare components, maintenance manpower, etc. In this
section, the Kijima II model [26] is used to describe the impact of maintenance tasks on
the mission capability of the equipment system. Maintenance activities will repair all the
accumulated damage of the system, and the virtual age of the system will be reduced to a
certain proportion.

V−ij (k) = A(k)V+
ij (k− 1) (9)

where V−ij represents the virtual age of the system before the k-th maintenance task, and

V+
ij (k− 1) represents the virtual age of the system after the k-th maintenance task.

The maintenance work is divided into several levels, and then the maintenance cost
required by the maintenance task of the equipment system at different levels is determined.
In the series–parallel equipment system, the equipment is composed of several subsystems,
and each subsystem is composed of several parallel components; then, the maintenance
cost c associated with the maintenance of the fij level is

c
(

fij
)
= c
(

f max
ij

)
× fij/ f max

ij (10)

2.2.3. Constraints in the Maintenance Task

Similar to the maintenance cost, the maintenance hours of equipment are also related
to the maintenance level of equipment. The calculation process of maintenance hours is
as follows:

Maintenance time t associated with fij maintenance level is

t
(

fij
)
=

t
(

f max−1
ij

)
× fij/ f max−1

ij fij 6= f max
ij

0 fij = f max
ij

(11)

The maintenance time of subsystem i in the equipment system is

Ti =
S

∑
i=1

Ni

∑
j=1

(
t0
ij + t

(
fij
))

(12)

The virtual age rollback factor is determined by the ratio of the invested maintenance
cost to the replacement maintenance cost. Given the component maintenance grade f , the
virtual age rollback factor can be expressed as

A(k) = 1−

 c
(

fij
)

c
(

f max
ij

)
mij

(13)

where mij is the virtual age improvement coefficient, which is determined according to the
method based on the virtual age and remaining life of the system. The remaining life of
components can be expressed as

TMRL = E
(
T −Vij(k) | T > Vij(k)

)
=
∫ ∞

Vij

R(t)dt/R
(
Vij(k)

)
(14)

Then, the virtual age improvement coefficient of components can be expressed as

mij
(
Vij(k)

)
= Vij(k)/TMRL = Vij(k)× R

(
Vij(k)

)
/
∫ ∞

Vij

R(t)dt (15)
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In summary, the constraints considered in this paper include maintenance level,
maximum maintenance time and minimum mission satisfied capability.

2.2.4. Optimization Model

Given the health condition of the fleet before the maintenance work and the mission
requirements, the selective maintenance decision problem in this chapter can be described
as follows: under the constraints of the next mission maintenance time and mission satisfied
capability, the appropriate maintenance level is selected for each component in the system
so as to maximize the task capability of the equipment system and minimize the mainte-
nance cost. On this basis, a multiobjective dynamic programming model for the selective
maintenance problem of equipment cluster is established, which can be expressed as

Max Pe =
s

∏
i=1

Ni

∏
j=1

Re,i,j

(
V+

ij (k)
)

/
s

∏
i=1

Ni

∏
j=1

Re,i,j

(
V−ij (k)

)
(16)

Min C =
m

∑
e=1

ce
(

fij
)

(17)

subject to
0 ≤ fij ≤ N (18)

T ≤ T0 (19)

P ≥ P0 (20)

Among them, Equations (16) and (17), respectively, give the optimization objectives of
maintenance cost and mission satisfied capability, and Equation (18) limits the selection
range of the maintenance level. Equations (19) and (20) give the constraints of maintenance
hours and mission satisfied capability.

3. Mission and Reliability Driven Fleet Selective Maintenance Planning Two-Stage Method
3.1. A Two-Stage Method Considering Multiple Optimization Objectives and Maintenance
Time Constraints

The selective maintenance planning problem of fleet mentioned in this paper has the
following characteristics: First, the available maintenance resources in the maintenance
task are limited. Second, the repaired equipment should be able to meet the reliability
requirements during the next mission. Due to the complexity of the equipment operating
conditions, the initial health condition of the fleet is complex and changeable. Previously
used time-based maintenance strategies did not take the dynamic perception of equipment
conditions into account, so some inefficient support operations could be taken, while
some key components could not properly be maintained, resulting in a waste of potential
remaining useful life [27].

In this context, the main purpose of the fleet maintenance planning is to make a main-
tenance strategy which systematically considers the mission requirements and the limited
maintenance resources within the required time and reduces the time and cost as much as
possible. In addition, maintenance planning should be based on the health conditions of the
fleet and the key components of each equipment, as well as the allocation of maintenance
resources, such as tools and spare parts, to select the appropriate maintenance objects,
maintenance methods and maintenance order.

The maintenance planning problem is a multiobjective optimization problem, and
there are two optimization objectives: maintenance cost and mission satisfied capability.
There are two methods to solve this kind of problem: One is to convert the multiobjective
problem into a single-objective problem by weighting the optimization objective, but this
method misses some important search regions in the solution space. The second is to find
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the nondominant solution set on the Pareto frontier of the problem and select the strategy
according to the given rules. Due to the complexity of the application environment, it is
unacceptable to simply transform the optimization objectives into a single-optimization
objective, resulting in possible omissions. At the same time, in order to enhance the rate of
convergence, we can reduce the complexity of the problem by dividing the solving process
into two stages.

Therefore, a nondominated maintenance strategy solution set can be obtained by
using a heuristic algorithm and Pareto nondominated sorting method to optimize two
optimization objectives in the problem. Then, considering the different requirements
on the minimum mission satisfied capability, the obtained nondominated solution set is
divided into different intervals according to the task success rate, and several solutions
with the highest fitness are selected as alternatives in each interval. According to the
assumption, one group of maintenance equipment can only serve one equipment at the
same time. Therefore, after the maintenance strategy of the fleet is determined, the planning
of maintenance scheduling can be regarded as a flow shop scheduling problem with the
goal of minimizing maintenance time.

According to the above analysis of the problem, the problem can be divided into two
stages to solve in turn, and a series of solution sets can be obtained to strike a balance
between the two optimization objectives of cost and equipment group task capability, with
the corresponding minimized maintenance hours and the optimal maintenance schedule.
The problem can be solved as follows:

The first stage of the problem aims to maximize the mission satisfied capability and
minimize the maintenance cost, takes the total maintenance cost and the task success rate
as constraints, completes the multiobjective selective maintenance decision, sorts and filters
the resulting solution set and inputs the second stage of the problem.

The second stage of the problem can be classified as a job-shop scheduling problem.
The N subsystems of each equipment in the fleet need to complete maintenance operations,
that is, each equipment needs to go through N maintenance processes in turn.

The above two parts of the problem can be solved by heuristic algorithm, respectively,
and a nondominated solution set aiming at maximizing mission satisfied capability and
minimizing maintenance cost is obtained. The solution set is further evaluated by main-
tenance hours to obtain the best alternative maintenance strategy and the corresponding
optimal maintenance schedule. Combined with other known information, maintenance
support elements such as maintenance resources can also be given.

3.2. Algorithm Design
3.2.1. An Improved Sparrow Search Algorithm Used for Solving Selective Maintenance Planning

The sparrow search algorithm (SSA) is a swarm intelligent algorithm developed based
on sparrows’ foraging and antipredation mechanism, proposed by Xue et al. [28], and it has
attracted wide attention since it was proposed [29,30]. Li et al. compared the performance
of this algorithm with some other typical swarm algorithms in recent years through a
series of test functions and believed that this algorithm has great research and application
potential [31].

In this section, a multiobjective sparrow search algorithm (MSSA) is proposed to solve
the multiobjective selective maintenance model. The original sparrow search algorithm is
mainly aimed at a single-objective optimization problem. In the process of swarm position
update, some solutions with poor fitness will jump directly near the optimal position,
which will accelerate the convergence rate of the algorithm but also affect the global search
ability of the algorithm, easily resulting in local optimal. In order to improve the algorithm
and make it more suitable for the multiobjective selective maintenance model designed in
this paper, this section improves the position update rules of the sparrow search algorithm,
introducing the NSGA-II nondominated sorting method [32]. The improved algorithm is
introduced as follows:
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(1) Coding method

A reasonable coding method is very important for the process of optimizing the
algorithm to solve the problem. In this paper, component-based coding is adopted, and
each component’s maintenance level in the maintenance strategy corresponds to a code.
The dimension of the population is equal to the total number of components in the system,
and the position information of each dimension is equal to the maintenance-level code
of the components. In this coding way, the solution space of the maintenance planning
problem can correspond to the search space of the sparrow search algorithm, and then the
search is carried out through the location update process.

(2) Nondominant sorting method

In the process of location updating, the sparrow search algorithm needs to sort the
population according to fitness. Since the problem involved in this paper is a multiobjective
optimization problem, there is no fixed fitness calculation method. One way to solve this
problem is to use NSGA-II nondominated sorting method to divide sparrow populations.

The main steps of this sorting method are as follows: First, each individual in the
population is compared with other individuals, and all the other individuals that dominate
the individual are recorded. Then, all nondominant individuals are included in Pareto’s
optimal frontier, that is, the first nondominant level. These individuals are then removed
from the dominant records of the remaining individuals, the nondominant individuals
of the remaining individuals are included in the second nondominant class and so on,
until all individuals are included in a nondominant class. In this way, the operation rules
of the original algorithm can be simulated by the operation of different non-dominant-
level individuals.

(3) Nondominated solution set update strategy

After Pareto frontier solutions are obtained by nondominated sorting, these solutions
should be input into external files and saved. Because swarm intelligence algorithm usually
has a large number of iterations, the number of Pareto frontier solutions output by the
algorithm is large, and these solutions cannot all be kept, so there is usually a capacity limit
of external files. The NSGA-II algorithm adopts the crowding ranking method to protect
the diversity of solutions in external files so as to ensure that the distribution of the output
solution set of the algorithm is sufficiently dispersed in the target space [29].

Crowding is a number that measures how close a solution is to its neighbors in the
solution set. As shown in Figure 2, in which the solid points represent nondominant
solutions and the hollow points represent general solutions, crowding can be defined as a
normalized estimate of the perimeter of a rectangle composed of vertices with two adjacent
solutions on either side of that point. Assuming that the coordinates of the solutions on
both sides of the solution set are Zmax and Zmin, respectively, and in a certain dimension,
define the normalized length Znormal of the rectangle formed by the i-th solution in this
dimension direction as

Znormal = (zi+1 − zi−1)/(Zmax − Zmin) (21)

The sum of the normalized lengths of the rectangle in all dimensions is the crowding
of the i-th solution in the solution set.

In this way, the update strategy of the external file of the algorithm can be expressed as
follows: when the algorithm completes a position update, it compares the nondomination
rank of the solution of the external file input with the solution in the file, deletes the
dominated solution and then retains the solution with low density in the external file.
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Figure 2. Crowding calculation method.

(4) Location update procedure

Step 1: Initialize the population
Set the sparrow population size n and the maximum number of iterations itermax.

According to the above coding method, the population is initialized, and the position coor-
dinates of each dimension are randomly assigned to each individual within the constraint
range of maintenance level as follows:

X =


x1,1 x1,2 · · · x1,d
x2,1 x2,1 · · · x2,d

...
...

...
...

xn,1 xn,2 · · · xn,d

 (22)

where X is the coordinates matrix of the population, and any individual i in any dimension
j coordinates xi,j satisfies 0 < xi,j < f max

ij .
After initialization, the population was sorted by the fast nondominated sorting

method. Then, according to Equations (8) and (10), the fitness of each individual in the
population in the two objectives of mission capability and maintenance cost is given, re-
spectively.

Step 2: Producer location update
In the sparrow search algorithm, when the alarm value is less than the safety threshold,

the producers will search according to Equation (23):

Xk+1
i,j =

Xk
i,j · exp

(
−i

α·itermax

)
R2 < ST

Xk
i,j + Q R2 > ST

(23)

where Q is a random variable subject to normal distribution, Xi,j represents the position of
the i sparrow in dimension j and ST represents the safety threshold; itermax is the maximum
number of iterations of the algorithm.

Since the power of the exponential function in Equation (23) is always less than 0, this
step can be regarded as an operation to gradually converge the discoverer individual to
the origin of coordinates. This operation is not conducive to the global search ability of
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the algorithm, so the method of making the coordinates increase in random proportion is
adopted instead. At this point, the location update rule for the producer becomes

Xt+1
i,j =

{
Xt

i,j · (1 + Q/3) if Pt
i,j ≥ ST

Xt
i,j + Q if Pt

i,j ≤ ST
(24)

where Pi,j represents the early warning value of individual sparrows.
Since the maintenance level can only be an integer, and there are upper and lower

bound constraints, the producer should be integer-processed after updating the above rules,
and the coordinates that exceed the constraints should be reset to the value closest to the
value that obeys the constraints. After the location update is completed, the population is
redivided by the nondominated sorting method, and the scrounger location update process
is started.

Step 3: Scrounger location update
In the scrounger location updating stage of the sparrow search algorithm, individuals

with better fitness will jump near the producer, which reduces the global search ability
of the algorithm. Since the problem model under consideration is discrete, this chapter
combines the characteristics of genetic algorithm and adopts the mechanism of elitist to
strengthen the local search ability of the algorithm. In this case, the position update rule in
the accession stage can be described as the dynamic update process shown in Figure 3.

parent 
populations

5 2 9 1 4 6 5 75 2 9 1 4 6 5 7

1 5 1 2 3 5 2 31 5 1 2 3 5 2 3

5 2 9 1 4 6 5 7

1 5 1 2 3 5 2 3

5 2 9 1 4 6 5 75 2 9 1 4 6 5 7

8 9 4 7 3 4 7 98 9 4 7 3 4 7 9

1 5 1 2 3 5 2 31 5 1 2 3 5 2 3

6 9 6 6 7 2 6 76 9 6 6 7 2 6 7

elitist
populations

5 2 9 1 4 6 5 7

8 9 4 7 3 4 7 9

1 5 1 2 3 5 2 3

6 9 6 6 7 2 6 7

elitist
populations

nondominated
sorting

5 7

genes

5 7

genes

1 5 1 2 3 5 5 31 5 1 2 3 5 5 31 5 1 2 3 5 5 3

6 9 6 7 7 2 6 76 9 6 7 7 2 6 7

5 2 9 1 4 6 5 75 2 9 1 4 6 5 7

8 9 4 7 3 4 7 98 9 4 7 3 4 7 9

5 2 9 1 4 6 5 7
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1 5 1 2 3 5 5 31 5 1 2 3 5 5 3

5 2 9 1 4 6 5 7

1 5 1 2 3 5 5 3

common
populations

offspring
elitist

populations

offspring
common

populations

offspring 
populations

Figure 3. Location update rule of MSSA user phase.



Appl. Sci. 2023, 13, 8600 12 of 20

The sparrow populations are divided into elitist populations composed of first and
second nondominant individuals and common populations composed of residual individu-
als. The elitist population is retained in the process of location update, and the individuals
of the common population randomly acquire the genes of the elitist population in some
dimensions to replace their own genes. After that, the progeny population is outputted,
the population is redivided by the fast nondominated sorting method, the external file is
updated and the alert location is updated.

Step 4: Watcher location update
A watcher is a proportion of individuals randomly selected from the population.

Similar to the scrounger position update stage, the watcher adopts the location update
method based on genetic algorithm. The sparrow in a better position will move to the
individual in a worse position in the population, while the sparrow in a worse position
will move to the less crowded position in the external file. The position update rule of the
watcher becomes

Xt+1
i,j =

 Xt
i,j + randi

(
Xnormal − Xt

i,j

)
if i ∈ rank 1

Xt
i,j + randi

(
XEA − Xt

i,j

)
if i /∈ rank 1

(25)

where Xnormal represents the location of a common population individual, XEA repre-
sents a location recorded in an external file and randi(x) represents a random integer
between [0, X].

The population is then redivided by using the nondominated sorting method, the
external file is updated and the second step is returned until the predetermined number of
iterations is reached.

The overall processes of the proposed multiobjective sparrow search algorithm is
summarized into Algorithm 1.

Algorithm 1 The framework of MSSA
Input:
N: population of sparrows
iterm: maximum iterations
Output:
nondominated solution set

1: Initialize a population of N sparrows and define its relevant parameters
2: while iter < iterm do
3: rank the population with nondominated sorting approach;
4: for condition do
5: Using Equation (24) update the producers’ location;
6: set producers’ location as integer
7: Sort the population with nondominated sorting approach;
8: Genetic recombination between elitist swarms and basic swarms;
9: Sort the population with nondominated sorting approach;

10: Save the nondominated solution to the external archive;
11: Using Equation (25) update the guards’ location;
12: Sort the population with nondominated sorting approach;
13: Save the nondominated solution to the external archive;
14: iter = iter + 1;
15: Sort the external archive with crowding distance;
16: return nondominated solution set.
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3.2.2. A Simulated Annealing Algorithm Used to Solve Maintenance Scheduling

Since the maintenance scheduling of fleet is a sequential process, the efficiency of
maintenance tasks can be further improved by reasonable maintenance scheduling. In this
section, the SA algorithm is used to further optimize the maintenance schedule to minimize
the maintenance time corresponding to the maintenance plan.

SA [33] is a local search algorithm that introduces the concept of annealing in solids.
This algorithm can reduce the complexity of the algorithm and avoid the shortcoming of
the traditional local search algorithm which converges to the local optimal solution quickly
by making an annealing schedule of the temperatures and length of times for which the
system is to be evolved. In this section, SA is used to calculate the minimum maintenance
time of a known maintenance plan, and the most appropriate maintenance strategy is
selected according to the maintenance time.

The purpose of maintenance scheduling optimization is to minimize the total mainte-
nance time of the fleet through a reasonable scheduling scheme on the basis of an optimized
maintenance plan. According to the analysis of known conditions, the input of the problem
is a fleet to be repaired and the maintenance time required under the corresponding main-
tenance level, and the output is the maintenance sequence and the total maintenance time
of the fleet.

Ti,j represents the time when the i component completes maintenance on the j main-
tenance equipment, and ti,j represents the time required for the i component to complete
maintenance on the j maintenance equipment, then

T1,1 = t1,1 (26)

T1,1 = T1,j−1 + t1,j j = 2, 3 . . . m (27)

T1,1 = Ti,1 + ti,1 i = 2, 3 . . . n (28)

Ti,j = max
(
Ti−1,j, Ti,j−1

)
+ ti,j i = 2, 3 . . . n, j = 2, 3 . . . m (29)

where Ti,j represents the time when the j subsystem of the i equipment completes main-
tenance, and ti,j represents the time required for the j subsystem of the i equipment to
be repaired.

If the maintenance schedule is given, the total maintenance time to complete the
maintenance according to the schedule can be obtained by the iterative calculation of the
above equations. After the input data, a maintenance schedule is randomly generated,
and its total maintenance time is calculated. Then, a new schedule is generated by a
displacement, and whether it is accepted or not is judged according to the acceptance rule,
which changes with the temperature. Eventually the algorithm converges to a solution
with a minimized total maintenance time. If t1 represents the total maintenance time of the
maintenance schedule generated after the disturbance, t2 represents the total maintenance
time of the original maintenance schedule, and T is the current temperature; then, the
acceptance rule can be expressed by Equation (30):

rand(0, 1) < e−(t1−t2)/T (30)

where rand(0, 1) is a random number between 0 and 1.
The operation steps of the maintenance scheduling algorithm are as follows:
Step 1: Input the calculation data, including the number of equipment n, the number

of maintenance processes m and the maintenance time of each maintenance;
Step 2: Initialize the temperature T0 and the annealing coefficient α and randomly

generate a maintenance schedule that meets the constraints as the initial solution;
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Step 3: Start the cooling cycle and perform several displacements at each temperature.
The specific displacement rule is to randomly exchange the maintenance order of two
components;

Step 4: After each displacement, calculate the total maintenance time corresponding
to the new solution according to the Equations (26)–(29), and then perform the acceptance
judgment according to the admission rules described in Equation (30);

Step 5: After the temperature gradually drops to the preset value of 0.1, jump out of
the annealing cycle;

Step 6: Repeat the above steps several times to explore the algorithm performance
under different initial conditions;

Step 7: Find the minimum total maintenance time and output the corresponding
maintenance schedule.

3.3. Process of Selective Maintenance Planning for Equipment Cluster Based on Two-Stage
Algorithm Driven by Task and Reliability

According to the solution framework shown in Section 3.1, this paper establishes a
two-stage algorithm-based selective maintenance planning method process for equipment
clusters driven by tasks and reliability, which mainly includes the following three steps:

Step 1: Analyze the structure of the equipment system to determine the reliability
indicators of the components in the system and the maintenance hours and costs required
for different maintenance strategies. The virtual age model is used to describe the effects of
maintenance activities on the health state of components in each equipment system of the
mission profile and to determine the survival probability of the components in the mission.

Step 2: According to the logical relationship of the components in the equipment
system, the mission reliability of the equipment system is obtained, the mission satis-
fied capability of the fleet is determined by combining the survival probability of the
components in the task, and a multiobjective selective maintenance model of the fleet is
established with the goal of maximizing the mission satisfied capability and minimizing the
maintenance cost.

Step 3: Taking the maintenance cost and the mission satisfied capability of the fleet
in the mission profile as objectives, the multiobjective selective maintenance model is
solved by using the multiobjective sparrow search algorithm, and a series of nondominated
maintenance strategy solution sets are obtained. With the maintenance time as the target,
the SA algorithm is used to optimize the solution set of the maintenance strategy and obtain
the maintenance schedule with the shortest maintenance time in the next mission.

In conclusion, the selective maintenance planning algorithm flow of the two-stage
equipment group is shown in Figure 4.

In this section, several fleets composed of certain vehicle equipment systems are taken
as examples, and the selective maintenance planning method of the fleet based on the
two-stage algorithm proposed in this chapter is verified and analyzed. Assume that the
mission requires that all subsystems work properly and that subsystems fail independently
of each other. As the actual structure of the equipment system is complex and there are
many components, for the sake of simplicity, each subsystem can be regarded as a structure
composed of several key components in parallel, and the system reliability block diagram
is shown in Figure 5.
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Stage1: Maintenance planning based on MSSA algorithm Stage2: Maintenance scheduling considering time cost

Initialize the sparrow population

Start

Producer location update and sorting

Scrounger location update and sorting

Watcher location update and sorting

iter = iterm?
NO

The non-dominated solution set

YES

Initialize the simulated annealing algorithm

A random displacement

Update the schedule based on the rule

Calculate the maintenance time
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End 
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Figure 4. Selective maintenance planning algorithm flow of the two-stage equipment group.
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Figure 5. The vehicle system reliability block diagram.

4. Case Verification and Result Analysis
4.1. Case Verification

As shown in the figure, the equipment system consists of seven subsystems in series,
each component in the system can be regarded as a multistate component with indepen-
dent failure condition, and its mission capability is determined by the mission reliability
of each subsystem. Table 1 lists the relevant parameters of various components in the
system, including the shape parameter β of the Weibull life distribution, scale parameter η,
virtual age improvement factor m, maintenance cost corresponding to replacement and
maintenance (unit: 103 yuan) and maintenance time (unit: min). The duration of the next
mission is set to τ = 12 min, and the maximum maintenance level is set to 15. Assume that
the fleet consists of four vehicles of the same model.
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Table 1. Parameters of various components in the system.

S Ni β η C0 Cm T T0

S1 2 1.20 94 0.05 0.52 1.5 3
S2 2 1.40 70 0.04 2.40 2.4 3.5
S3 3 2.00 98 0.07 1.60 3.3 3
S4 4 1.50 105 0.08 0.80 3.6 4
S5 2 1.80 112 1.20 1.20 2.4 2
S6 2 1.15 89 1.41 1.41 2.0 3.5
S7 3 1.64 92 0.87 0.87 1.7 2.5

Si indicates the i-th subsystem of the equipment.

In order to make a selective maintenance decision on the fleet, the maintenance deci-
sion model is used to describe the problem, and the multiobjective sparrow search algorithm
is used to solve the problem. The sparrow population size is set to 400, the maximum
number of iterations is set to 1000 and the maintenance cost is capped at 35,000 yuan. After
maintenance, the lower limit of the mission satisfied capability of the fleet is 0.7, and the
upper limit of the storage of external files of the algorithm is 60.

Some specific parameter settings are as follows: The safety threshold of the producers
is set to 0.9. The mission duration is 12. The size of the sparrow population is 400. The
maximum iteration of MSSA is 1000. The annealing rate is 0.99. The initial temperature
and final temperature of SA are 1000 and 1, respectively.

In this section, multiple tests are conducted on the equipment system under different
initial health conditions, and the nondominated solution set is shown in Figure 6. Then,
the optimal maintenance schedule and maintenance time corresponding to these strategies
are obtained by SA algorithm. On this basis, the target space is divided into several parts
according to the maintenance cost index, and the maintenance plan is determined according
to the shortest maintenance time in each part.
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Figure 6. Nondominated solution set in four simulation experiments.
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Table 2 shows several plans selected by evaluating the maintenance time, as well as
the corresponding maintenance cost, task capability, maintenance time and maintenance
schedule of these options. The Gantt chart of the maintenance schedule of Option 1 is
shown in Figure 7. It can be seen that the mission satisfied capability of the fleet has a
high correlation with the maintenance cost, and the maintenance hours between different
schemes are similar after optimizing the maintenance schedule.

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

8
equipment3

equipment4

equipment1

equipment2

Figure 7. The Gantt chart of maintenance schedule.

Table 2. Options selected after evaluation of maintenance hours.

Option 1 Option 2 Option 3

Maintenance cost 9.28 14.38 22.63
Mission capability 0.72 0.83 0.91
Maintenance hour 40.27 42.21 42.69

Maintenance schedule 3-4-1-2 1-2-3-4 4-1-2-3
Cost-effectiveness ratio 0.0776 0.0577 0.0402

Figure 8 shows the distribution of the nondominated solution set obtained from the
four tests in Figure 6 in terms of the mission satisfied capability dimension. It can be seen
that the nondominated solution set obtained by the algorithm proposed in this section is
evenly distributed in the target space.

The simulation analysis process in the above case analysis is completed based on the
matlab platform, running on a PC configured with Intel(R) Core(TM) i7-9750H CPU and
Windows 10 operating system.

4.2. Result Analysis

Combined with the operation results of the above example, it can be concluded that
the selective maintenance planning of the fleet under the age reduction model in this paper
has the following characteristics:

(1) Fleet mission satisfied capability has a high correlation with the cost of maintenance
tasks invested, and the benefit of unit maintenance cost invested decreases with the
increase in fleet mission satisfied capability. The mission satisfied capability of the
equipment cluster is determined by the health status of each equipment unit. The
higher mission satisfied capability has higher requirements on the health status of
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each equipment; so, it needs to invest a lot in maintenance costs. In the case of a
high requirement of mission satisfied capability and sufficient budget, more cost
should be invested in exchange for higher mission success rate. In the case of low
mission satisfied capability requirements and tight budgets, maintenance strategies
with slightly lower mission satisfied capability can be selected to reduce costs.

(2) There is little difference in maintenance hours corresponding to different maintenance
strategies. Since a reasonable maintenance schedule is established to maximize the
use of maintenance time, when the fixed maintenance hours are longer than the
hours associated with the maintenance level, the corresponding maintenance hours of
different maintenance strategies are not different; so, the maintenance hours can be
considered as a supernumerary optimization objective.

Figure 8. The distribution of the nondominated solution set.

In summary, the two-stage selective maintenance planning algorithm for the fleet
proposed in this chapter can quickly solve the nondominated solution set that is evenly
distributed in the target space, evaluate the solution set and give the maintenance schedule
with the shortest maintenance time so as to provide the mission and health condition driven
decision scheme and its theoretical basis for the selective maintenance task of a fleet.

5. Conclusions

Based on the maintenance planning problem of fleets driven by mission and relia-
bility, this paper studies the selective maintenance decision-making method considering
the health conditions of the fleet and the requirements of missions. Firstly, a selective
maintenance model based on virtual age reduction is established according to the problem
background, and then a phased problem-solving framework is presented. Finally, a multi-
objective optimization algorithm is used to solve the model, and a maintenance strategy
solution set satisfying the mission requirements is given. The specific work is summarized
as follows:

(1) A selective maintenance decision model of fleets based on virtual age reduction was
constructed. In the process of model establishment, the traditional research structure
of “unit–system” in maintenance planning was extended to the three-level research
structure of “unit–system–fleet”, considering the cooperation of different equipment
in missions. Based on the Kijima II imperfect maintenance model, this model uses
virtual age to evaluate the health condition of equipment. A cost-based maintenance
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evaluation method is proposed considering the service age improvement coefficient,
and the mission satisfied capability of a fleet is described by the survival probability.

(2) The two-stage problem-solving framework of “decision–evaluation” and the corre-
sponding solution method were proposed. The problem is decomposed into two
parts: the multiobjective optimization decision of mission satisfied capability and
maintenance cost and the strategy evaluation based on maintenance hours consider-
ing the convergence rate of the algorithm so as to simplify the difficulty of solving
the problem. Based on the sparrow search algorithm, the discrete and multiobjective
improvement is made, and the NSGA-II nondominated sorting method and elitist
strategy are integrated so that the solution set of nondominated maintenance strat-
egy distributed uniformly in the target space can be quickly obtained. Then, the SA
algorithm is used to evaluate the maintenance strategy and give the corresponding
optimal maintenance schedule and the minimized maintenance time so as to obtain a
series of optimal maintenance strategies that satisfy the mission requirements.

(3) In terms of the application of the method, we verified the case of a vehicle fleet,
established its selective maintenance decision model and solved it by using the two-
stage algorithm proposed in this chapter. A series of selective maintenance schemes
of the vehicle fleet uniformly distributed in the target space were obtained, and the
effectiveness of the method was verified. The above research methods can be applied
to the dynamic selective maintenance decision problem of repairable fleets driven by
mission and reliability, optimize maintenance task planning, reduce maintenance cost,
improve availability and mission success probability and provide guidance for other
similar problems.

However, fleets in the real world commonly consist of different types of units. In
terms of future directions, a fleet with lager size and different types of vehicles can be take
into consideration, which will increase the size of the problem. In addition, future research
can focus on the maintenance planning of fleets in multiwave missions and consider the
dynamic changes in factors such as task requirements and maintenance resources so as to
achieve the optimal performance of the fleet in the overall task.
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