
Citation: Chen, X.; Guo, P. Spiking

Neural P Systems for Basic

Arithmetic Operations. Appl. Sci.

2023, 13, 8556. https://doi.org/

10.3390/app13148556

Academic Editor: Christos Bouras

Received: 10 June 2023

Revised: 12 July 2023

Accepted: 22 July 2023

Published: 24 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Spiking Neural P Systems for Basic Arithmetic Operations
Xiong Chen and Ping Guo *

College of Computer Science, Chongqing University, Chongqing 400044, China; 202214131129@stu.cqu.edu.cn
* Correspondence: guoping@cqu.edu.cn; Tel.: +86-137-5298-5479

Abstract: As a novel biological computing device, the Spiking Neural P system (SNPS) has powerful
computing potential. The application of SNPS in the field of arithmetic operation has been a hot
research topic in recent years. Researchers have proposed methods and systems for implementing
basic arithmetic operations using SNPS. This paper studies four basic arithmetic operations, improves
the parallelization of addition and multiplication methods, and designs more effective natural
number addition and multiplication SNPS, as well as SNPS for subtraction and for division of natural
numbers based on multiple subtractions. The effectiveness of the proposed SNPS is verified by
example. Compared with the same kind of SNPS, for the addition operation the number of neurons
used in our system is reduced by 50% and the time overhead is reduced by 33%, while for the
multiplication operation the number of neurons is reduced by 40%.

Keywords: arithmetic operations; spiking neural p systems; membrane computing; numerical
computing

1. Introduction

Membrane computing [1] is a branch of natural computing inspired by the structure
and functionality of living cells. In a research report in 1998, Gh. Păun, a member of
the Romanian Academy, proposed the P system, a distributed and parallel computing
model. Each membrane of a biological cell can be regarded as a separate computing unit
to perform the corresponding calculation. With the incredible number of cells in living
organisms and the low energy requirements for biochemical reactions, one of the greatest
advantages of membrane computing is that it enables corresponding computations with
maximum parallelism. The literature [2] shows that membrane computing is equivalent
to Turing machines, and its powerful parallel computing capability can effectively solve
the computing bottlenecks faced by current electronic computers. Research on arithmetic
operations based on membrane computing has been performed in cell-like P systems,
tissue-like P systems, and neural-like P systems.

In [3], the authors implemented arithmetic operations based on a membrane P System;
However, its membrane system structure was complex and did not make full use of the
maximum parallelism of membrane computation; In [4], the authors designed a natural
coding-based arithmetic P System to implement arithmetic operations, which greatly sim-
plified the membrane system structure; In [5], the authors designed a multi-layer membrane
P System to implement unsigned quadratic operations, which reduced the computational
complexity, while the authors of [6] designed a single-layer membrane P System to imple-
ment arithmetic operations, further simplifying the membrane structure and improving
computational efficiency. The authors of [7] designed a multi-layer membrane P System to
implement arithmetic operations with signed numbers, improving the application range
and execution efficiency of basic operations, while in [8–10] the authors designed a single-
layer membrane P System to implement expression evaluation in the domain of integers.
Reference [11] implemented basic arithmetic operations by the P System in the domain of
rational numbers, expanding the scope of application of arithmetic operations in P System
to further enhance the computing power of biological computers, while [12] investigated

Appl. Sci. 2023, 13, 8556. https://doi.org/10.3390/app13148556 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13148556
https://doi.org/10.3390/app13148556
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5239-8896
https://doi.org/10.3390/app13148556
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13148556?type=check_update&version=1

Appl. Sci. 2023, 13, 8556 2 of 31

the computational power of tissue P systems where each rule was assigned either a label
chosen from the alphabet or an empty label. The sequence of labels of rules applied during
halting of computation was defined as the result of the computation, and the set of all
results computed by a given tissue P system was called the control language. The results
indicated that the rule complexity is crucial in order for tissue P systems to achieve the
desired computational power. In [13], the authors constructed a novel computational model
called a homeostasis tissue-like P system. Based on the model, it solved the three-coloring
problem in linear time within the standard timeframe. Additionally, it addressed the SAT
problem using communication rules and multiset rewriting rules with a maximum length
of 3 in time-free mode.

In 2006, Dr. M. Ionescu et al. proposed the Spiking Neural P system [14], which utilizes
the phenomenon of neurons sending spikes to connected neurons through synapses. The
SNPS is composed of a set of neurons and their connections, which are typically abstracted
as a directed graph. Neurons are viewed as nodes in the graph, and the connections
between neurons are considered as directed edges. Under the control of the system clock
and the internal excitation rules of neurons, spike signals propagate along the synapses
(represented as directed arcs in the graph) to connected neurons. The execution of the
forgetting rules inside neurons simply consumes spikes. In the basic SNPS [14,15], all
spikes are indistinguishable and denoted by the same symbol “a”. The operation of the
system is synchronous and parallel, which means that all neurons with applicable rules
should be executed [16] at each time slice. This distributed and parallel computing model
has been shown to be computationally complete [15,17,18].

SNPS research in theory and application has achieved significant results, including
generating numbers and languages, simulating logic circuits, system universality, and
variants of spiking neural P systems. In [15], the authors showed that the basic SNPS as
a device for generating sets of numbers is computationally complete in both generation
mode and acceptance mode. In [16], the authors studied the language-generating capacity
of SNPS; the recursively enumerable languages are the inverse image projection of the
languages generated by SNPS. In [19], the authors investigated the minimum universality
of SNPS as a device for computing functions and generating numbers and provided the
minimum number of neurons to produce a universal SNPS using extension rules and
standard rules. A restricted-rule universal system requires 76 neurons, while a universal
system with extension rules only requires 50 neurons. In [20], the authors introduced a
variant of SNP where neurons only contain spikes and the rules are on synapses. When the
number of spikes in a given neuron matches the rule on the synapse, the rule is triggered.
Compared with the SNPS in [19], a number generator constructed based on this variant
SNPS requires only 39 neurons to achieve universality under standard rules, and only
30 neurons are needed when using extension rules. Many variants of SNPS have been
proven to be Turing universal, such as the asynchronous spiking neural P system with local
synchronization introduced in [21] and the SNPS with weights introduced in [22], where
the applicability of the spike rules is controlled by a given discharge threshold. When
integers are used to represent the weight, potential, and threshold parameters, this SNPS
is universal. When natural numbers are used for these parameters, the characteristic of
natural semilinear sets can be obtained. In [23], the aim was to address the limitations
of current SNP systems in handling specific real-world data technology. Neural network
structures and data processing methods were considered as a reference to improve upon
these limitations. By integrating these concepts with membrane computing, spiking neural
membrane computing models (SNMC models) were proposed. The paper successfully
demonstrated the Turing universality of the SNMC model as a number generator and
acceptor. The authors of [24] introduced neuron division and neuron budding into the
framework of the spiking neural P system. A neuron can be divided into two and every
budding can only produce one new neuron, proving that SNPS with neuron division
and neuron budding can solve NP-complete problems in polynomial time. The Directed
Hamiltonian Path (DHP) problem is an NP-hard problem, and the algorithm based on

Appl. Sci. 2023, 13, 8556 3 of 31

SNPS proposed by [25] effectively reduces the time complexity through massive parallelism.
In [26], the authors introduced fuzzy reasoning in SNPS to establish a connection between
P systems and fault diagnosis applications for the automatic implementation of complex
power system fault diagnosis. Reference [27] introduced a Spiking Neural P System with
spikes and anti-spikes. Biologically, spikes represent neural excitation while anti-spikes
represent neural inhibition. When a spike meets an anti-spike, they cancel each other
out and disappear. Based on this rule, the proof of Turing completeness of SNPS and the
required rules are simplified: all rules have a singleton regular expression that precisely
indicates the number of spikes or anti-spikes to be consumed.

Implementing addition, subtraction, multiplication and division on SNPS is the basis
for designing a biological CPU based on the SNP system. By encoding the number as
the time interval between two spikes, the literature [28] constructed four SNP systems for
calculating addition, subtraction, multiplication, and division, respectively. In [29], the
author encoded the number as spike sequences and designed an operation model based on
SNPS to realize the addition and subtraction of two natural numbers, the multiplication
of a fixed multiplicand, an arbitrary multiplier, and judging whether two numbers are
equal. The SNPS operation model designed in [30] can solve the product of any two natural
numbers with a binary bit length of k bits, and can solve the summation problem of n
natural numbers. In [31], simple arithmetic problems were addressed using the spiking
neural p system, including binary complement conversion, addition and subtraction of
signed integers, and multiplication of any two natural numbers.

The motivation of the present study is to design arithmetic SNPS that are fast and
contain fewer neurons and rule types. We encoded numbers as spike sequences and utilized
a single input neuron and a single output neuron to design a complete set of addition,
subtraction, multiplication, and division operations in SNPS based on extended rules. We
analyzed the number of neurons, types of rules, and required time slices for each system.
The main contributions of this paper include:

(1) Designing the SNPS ΠBASNP for k-bit binary addition. The system can complete
the addition of two k-bit binary numbers in 2k + 4 time slices using k + 8 neurons, three
types of instantaneous firing rules, and three types of forgetting rules.

(2) Designing the SNPS ΠBSSNP for k-bit binary subtraction. The system can complete
the subtraction of two k-bit binary numbers in 2k + 3 time slices using k + 13 neurons,
seven types of instantaneous firing rules, and four types of forgetting rules.

(3) Designing the SNPS ΠBMSNP for k-bit binary multiplication. The system can
complete the multiplication of two k-bit binary numbers in 3k + 5 time slices using 3k + 8
neurons, five types of instantaneous firing rules, and four types of forgetting rules.

(4) Designing the SNPS ΠBDSNP for k-bit binary division. The system can complete the
division of two k-bit binary numbers in 2k + quotient + 4 time slices using 5k + 12 neurons,
sixteen types of instantaneous firing rules, and thirteen types of forgetting rules.

Based on instance-based analysis, the effectiveness of the four SNPS designed in
this paper is verified. The rest of the paper is organized as follows. Section 2 briefly
introduces the basic knowledge and related research on SNPS, Section 3 presents the
designed addition, subtraction, multiplication, and division SNPS and instance analysis,
and Section 4 summarizes and analyzes various known arithmetic SNPS from multiple
dimensions. Finally, Section 5 summarizes the whole work.

The SNP operation model proposed in this paper uniformly uses a single input
and output neuron, and a new way of input data construction was constructed. In the
addition and multiplication computational models we constructed, we reduce the number
of neurons used compared to the addition and multiplication proposed in [30]. Based on
multiple subtraction operations, in this we paper achieve the division of any two natural
numbers, and the running time of this division model is positively correlated with the size
of the quotient.

Appl. Sci. 2023, 13, 8556 4 of 31

2. Related Research

Spiking neural P (SN P) systems are a class of discrete neuron-inspired computation
models where information is encoded by the numbers of spikes in neurons and the timing
of spikes. In a spiking neural P system a spike refers to an object in a neuron, which
represents the substance in a neuronal cell. In a spiking neural P system only one object is
allowed in each neuron; the number of objects (spikes) is used to encode (represent) the
corresponding information, such as the summand and addend in addition.

2.1. Spiking Neural P Systems

A Spiking Neural P system of degree m (m ≥ 1) is formally defined as
Formula (1) [14,17,29–32]:

Π = (O, σ1, σ2, . . ., σm, syn, in, out) (1)

where:

(1) O = {a} is a singleton alphabet, where a is called a spike; σ1, σ2, . . ., σm are neurons of
the form σi = (ni, Ri) in the Π system, with 1 ≤ i ≤m. Where ni ≥ 0 is the number of
spikes in neuron σi in the initial configuration, Ri is a finite set of rules of the following
two forms:

(i) spiking rule: E/ac→ap; d, where E is a regular expression over O, and c ≥ 1,
d ≥ 0, p ≥ 1, c ≥ p;

(ii) forgetting rule: E′/as→λ, where E′ is a regular expression over O, s ≥ 1,
furthermore, for each rule E/ac→ap; d in the rule set Ri of type (i), it holds
that L(E) ∩ L

(
E′
)
= , where L(E) is the language generated by E.

(2) syn ⊆ {σ1,σ2, . . . , σm} × {σ1,σ2, . . . , σm} is a finite set of synapses between neurons.
(σi, σj) ∈ syn means that there is a synaptic connection from σi to neuron σj. For any i,
1 ≤ i ≤ m, (σi, σi) /∈ syn;

(3) in, out ∈ {σ1,σ2, . . . , σm} indicate the input and output neurons, respectively. In
particular, we use σ0 to denote the environment of the system.

The explanation of the rules is as follows: if a firing rule E/ac→ap; d satisfies p = 1 and
a forgetting rule E′/as→λ satisfies E′ = as, they are respectively called a standard firing
rule and standard forgetting rule. If the firing rule E/ac→ap; d satisfies E = ac, it is usually
written as ac→ap; d. If the firing rule E/ac→ap; d satisfies d = 0, it is called a no-delay firing
rule and written as E/ac→ap. If the firing rule E/ac→ap; d satisfies both E = ac and d = 0, it
is abbreviated as ac→ap. Similarly, if the forgetting rule E′/as→λ satisfies E′ = as, it can be
abbreviated as as→λ.

The usage of a spiking rule is as follows: at a certain moment, if the neuron σi contains
spikes and there exists ak ∈ L(E) and k ≥ c, then the neuron σi can activate the spiking rule
E/ac→ap; d, consuming c spikes (leaving k − c spikes), and after d time slices, emit p spikes
to all the neurons it is connected to. Additionally, during the period of sending d spikes
after using this rule, the neuron σi is in a closed state, which means it cannot use any rules
or receive spikes from other neurons. Only after σi becomes open (after d time slices) can it
use rules and receive spikes. If a neuron sends spikes to a closed neuron, these spikes will
naturally disappear. For an output neuron, it can send spikes to the environment.

The usage of the forgetting rule is as follows: at a certain moment, if the neuron σi
contains k’ spikes and satisfies ak ′∈ L(E′) and k’ ≥ s, this neuron can use the forgetting rule
E′/as→λ, which consumes s spikes and does not generate new spikes.

If multiple spiking rules are satisfied in a single neuron, it will randomly choose one
of them to execute. For example, if there are two spiking rules in neuron σi, E1/ac→ap1;
d1 and E2/ac2→ap2; d2, with L(E1) ∩ L(E2) 6= , σi can only randomly choose one of them
to use. This is the uncertainty of rule usage. While the usage of rules in a single neuron is
serial, all neurons in the entire system work in parallel.

Appl. Sci. 2023, 13, 8556 5 of 31

To describe the temporal evolution of each neuron in the SNP system, it is assumed that
there is a unified clock in the system and timing is done using time slice. Its pattern at time
slice k can be defined as Ck = (r1

(k)/t1
(k), r2

(k)/t2
(k), . . ., rm

(k)/tm
(k)). Here, ri

(k) (1 ≤ i ≤ m)
denotes the number of spikes contained in neuron σi at time k and ti

(k) represents the number
of time slices needed for σi to reach an open state starting from time slice k. In particular,
the initial pattern of the system can be represented as C0 = {r1

(0)/0, r2
(0)/0, . . ., rm

(0)/0}.
Through the execution of rules, the transformation of the pattern of the Π system is called
computation. A pattern in which all neurons in the system are in an open state and no rules
can be used is called a termination pattern, and a computation that can reach a termination
pattern is called a terminable computation.

In terminating computations, there are two encoding methods for representing the
computation result [32,33]. The first method represents an operandas the number of time
slices between two spikes (one binary “1” is represented as one spike). The second method
represents the generated spike sequence as the computation result (one spike represents
the binary digit 1, and no spike represents the binary digit 0), thereby obtaining a binary
string. These results can be stored in the neurons of the SNPS or output to the environment.

2.2. Research on Arithmetic Operation of SNP

Arithmetic operations are the basis for solving other complex problems and have always
been a focus of SNPS research. In [28], the authors encoded the number as the time interval
between two spikes to construct four SNP systems for calculating addition, subtraction, multi-
plication, and division. The number of neurons used was 10, 12, 22, and 24, respectively, and
there were 4, 4, 12, and 15 rule types, respectively. In [29], numbers were coded into spike
sequences and realized in three parts: the addition and subtraction of two natural numbers,
the multiplication of fixed multiplicands and arbitrary multipliers, and the judgment of
whether two numbers were equal. In this operation model, the addition of two natural
numbers used three neurons and three rule types, subtraction used 1ten neurons and six
rule types, and multiplication used thirteen neurons and three rule types. In particular, the
multiplier was fixed at 26 and used three neurons and two rule types to judge whether
two numbers are equal. This article raised the open problem of how to design SNPS
to solve the multiplication of two arbitrary natural numbers. In [30], the authors better
answered the question about multiplication proposed by [29]. The designed operation
model can solve the product of any two natural numbers of k-bit length binary digits
(using k2 + 5k + 3 neurons and ten rule types while taking 4k + 2 time slices) and designed
an operation model that can solve the sum of n natural numbers (using 3k + 5 neurons
and nine rule types). In [31], simple arithmetic problems were addressed using SNPS,
including binary complement conversion (using six neurons and four rule types), addition
and subtraction of signed integers (using seven neurons and six rule types), and the multi-
plication of any two natural numbers (using k2/2 + 15k/2 + 4 neurons and six rule types).
The operation of signed numbers in [31] was realized based on the sign bit and complement,
and the subtraction operation was realized by adding the opposite number of the addend.
In [28,29,31], the system had multiple input neurons, while in [30] there was only a single
input neuron. In the SNP system mentioned above, the rules in neurons are all executed
within one time slice. However, the time required for different biological operations is
different as well. In [34], the authors introduced an SNP system with no time limit. This
system’s rule execution is time-independent and always produces the same result, and it
was proven that a time-free SNP system with extended rules is Turing-complete. In [35],
the authors studied and designed an adder, subtractor, multiplier, and divider based on
the non-time-limited SNP system proposed in [34] using 2, 2, 11, and 10 neurons and 2, 6,
15, and 16 rule types, respectively. In [36], the authors designed the adder and multiplier
of the SNPS with rules and weights using 2k + 4, 5k neurons and 13, k + 14 rule types,
respectively. Based on the SNPS with anti-spikes introduced in [27], the authors of [37] con-
sidered the design of general-purpose AND gates, OR gates, and NOT gates for symmetric
ternary systems. The three states correspond well to the 1, 0, and −1 of the symmetric

Appl. Sci. 2023, 13, 8556 6 of 31

ternary system, which could effectively solve the representation and operation of negative
integers. In [37], the authors realized the addition and subtraction of signed integers with
an anti-spike neural p system.

In this paper, we only deal with arithmetical operations between natural numbers.
For example, when a natural number n is represented in Formula (2), we obtain the
corresponding binary string bk−1. b1b0, where b0 is the least significant bit, bk−1 is the
most significant bit, and 2i is the order of 2i, with 0 ≤ i ≤ k − 1.

n = bk−12k−1 + + b121 + b020, 0 ≤ bi ≤ 1, 0 ≤ i ≤ k − 1 (2)

3. Arithmetic Operation in Spiking Neural P Systems

This part discusses in detail the four arithmetic SNPS designed in this paper. To
perform arithmetical operations on SNPS, we input the natural numbers into the system
which to be computed and output the computation results. In this paper, we use binary
strings to represent natural numbers, and we make the following assumptions:

(1) A unified clock is used to manage and maintain the operation process, with the unit
of time being the time slice. The execution of each rule in the SNPS only requires one
time slice.

(2) The binary strings involved in the operations have k digits. If a string has less than
k digits, it is padded with leading zeros to reach k digits.

(3) The SNPS can accept one binary digit per time slice. When a binary digit of 1 is
received, this means the system has received a spike; otherwise, no spike is received.
The system receives the input binary string from the least significant bit to the most
significant bit.

(4) In the addition, subtraction, and multiplication SNPS the system operation result is
outputted by the output neurons from low to high bits in the form of a binary string.
In the division SNPS the operation result is stored in a set of result neurons.

(5) In our designed SNPS we set parameter d in the rule description of Formula (1) to 0.
This means that both the spiking rule and the forgetting rule will be executed immedi-
ately once the conditions are satisfied.

The four SNP operational models proposed in this paper have all been proven to
function correctly. Our proof strategy involves tracking the changes in the number of spikes
in key neurons over time slices and providing spike count diagrams for the critical patterns
of neurons when necessary. For example, Section 3.1 illustrates the pattern of the adder at
t = k + 2, where the augend has already been input into the augend cache neuron group.
Finally, the system provides the computation result for each digit over the time slice.

3.1. Binary Addition in SNP Systems

The addition operation is the foundation of arithmetic operations. It involves adding
two binary numbers with the same order while considering the possibility of a carry from
the lower order. The basic idea of our designed binary addition SNPS is:

(1) By inputting the binary string of the addend from the lowest bit to the highest bit
using the input neuron σinput, if the i-th bit (0 ≤ i ≤ k − 1) in the input string is 1, the
neuron σinput generates one spike; otherwise, it generates no spike.

(2) After each bit of the augend is input, it is buffered in the system and waits for the
input of the addend. When the highest bit of the augend is input, the addend is
immediately input.

(3) When the i-th bit (0 ≤ i ≤ k − 1) of the augend reaches the addition neuron σAdd, the
i-th bit of the addend is taken out from the buffer and input to σAdd. The addition
operation is performed by the rules in σAdd.

Therefore, the spike neural p system ΠBASNP for the k-bit binary number addition
designed in this paper includes an input neuron, addition neuron, auxiliary neuron group,
augend input auxiliary neuron group, addend input auxiliary neuron group, and augend

Appl. Sci. 2023, 13, 8556 7 of 31

cache group of neurons. ΠBASNP is defined as in Formula (3), and the membrane structure
is shown in Figure 1.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 34

augend input auxiliary neuron group, addend input auxiliary neuron group, and augend
cache group of neurons. ΠBASNP is defined as in Formula (3), and the membrane structure
is shown in Figure 1.

In particular, in order to simplify the complex connections between neurons, the fol-
lowing conventions are used in the SNPS structure diagram in this paper:
• Neuron-to-neuron connections are indicated by thin arrows, for example, the con-

nection between σaux1 and σaux2 in Figure 1.
• Connections of neurons to groups of neurons are indicated by thick arrows. Specifi-

cally, if the front end of the thick arrow is a single neuron σ0, and the end is a neuron
group σx = {σ1, σ2, …, σn}, this means that each neuron σi(1 ≤ i ≤ n) in neuron σ0 is
connected to neuron group σx; on the contrary, if the front end of the thick arrow is a
neuron group σx, and the end is a single neuron σ0, this means that each neuron in
the neuron group σx has a connection to neuron σ0.

• Group-to-neuron connections are indicated by thick arrows. If the front end of the
thick arrow is a neuron group σx = {σ1, σ2, …, σn} and the end is a neuron group σx′ =
{σ1′, σ2′, …, σn′}, then two neurons in the same order from the group σx to the neuron
group σx′ are connected, that is, there is a connection from σi to σi′, 1 ≤ i ≤ n.

Figure 1. ΠBASNP structure diagram.

ΠBASNP = (O, σaux1, σaux2, …, σaux6, σnum1, σnum2, …, σnumk, syn, in, out) (3)

where:
(1) O = {a};
(2) σInput = (0,RInput), RInput = {a→a};
(3) σaux1 = (1,Raux1), Raux1 = {a→a};
(4) σaux2 = (1,Raux2), Raux2 = {a→a};
(5) σaux3 = (0,Raux3), Raux3 = {ak→a2};
(6) σaux4 = (0,Raux4), Raux4 = {ak→a2};
(7) σaux5 = (0,Raux5), Raux5 = {a→a; a3/a→λ};
(8) σaux6 = (0,Raux6), Raux6 = {a→λ; a3/a→a};
(9) σnumi = (0,Rnumi), Rnumi = {a→a}, 𝑖 ∈ 1,2, ⋯ , 𝑘 ;
(10) σAdd = (0,RAdd), RAdd = {a→a; a2/a→λ; a3/a2→a};

Figure 1. ΠBASNP structure diagram.

In particular, in order to simplify the complex connections between neurons, the
following conventions are used in the SNPS structure diagram in this paper:

• Neuron-to-neuron connections are indicated by thin arrows, for example, the connec-
tion between σaux1 and σaux2 in Figure 1.

• Connections of neurons to groups of neurons are indicated by thick arrows. Specifically,
if the front end of the thick arrow is a single neuron σ0, and the end is a neuron group
σx = {σ1, σ2, . . ., σn}, this means that each neuron σi (1 ≤ i ≤ n) in neuron σ0 is
connected to neuron group σx; on the contrary, if the front end of the thick arrow is a
neuron group σx, and the end is a single neuron σ0, this means that each neuron in the
neuron group σx has a connection to neuron σ0.

• Group-to-neuron connections are indicated by thick arrows. If the front end of the
thick arrow is a neuron group σx = {σ1, σ2, . . ., σn} and the end is a neuron group
σx ′ = {σ1′ , σ2′ , . . ., σn ′ }, then two neurons in the same order from the group σx to the
neuron group σx ′ are connected, that is, there is a connection from σi to σi ′ , 1 ≤ i ≤ n.

ΠBASNP = (O, σaux1, σaux2, . . ., σaux6, σnum1, σnum2, . . ., σnumk, syn, in, out) (3)

where:

(1) O = {a};
(2) σInput = (0,RInput), RInput = {a→a};
(3) σaux1 = (1,Raux1), Raux1 = {a→a};
(4) σaux2 = (1,Raux2), Raux2 = {a→a};
(5) σaux3 = (0,Raux3), Raux3 = {ak→a2};
(6) σaux4 = (0,Raux4), Raux4 = {ak→a2};
(7) σaux5 = (0,Raux5), Raux5 = {a→a; a3/a→λ};
(8) σaux6 = (0,Raux6), Raux6 = {a→λ; a3/a→a};
(9) σnumi = (0,Rnumi), Rnumi= {a→a}, i ∈ {1, 2, · · · , k};
(10) σAdd = (0,RAdd), RAdd = {a→a; a2/a→λ; a3/a2→a};

Appl. Sci. 2023, 13, 8556 8 of 31

(11) syn = {(Input,auxi)|i ∈ {5, 6}}∪{(aux1,aux2)}∪{(aux2,auxi)|i ∈ {1, 3, 4}}∪
{(aux3,aux6)}∪{(aux4,auxi)|i ∈ {2, 5}}∪{(aux5,num1)}∪{(numi,numi+1)|i ∈ {1, 2, . . . , k− 1}}}
∪{(numk,Add)};

(12) in = σinput;
(13) out = σ0 (indicates that the system outputs the calculation results to the environment)

In ΠBASNP, we divide the neurons except σInput and σAdd into several groups (see the
dashed box in Figure 1), and their functions are as follows:

• Neuron Input. The Input neuron receives binary strings from the environment and
converts them to spikes in ΠBASNP.

• Neuron Add. The bit-by-bit addition of binary strings is realized by spiking rules and
forgetting rules.

• Auxiliary neuron groups (aux1, aux2). Continuously send one spike to neurons aux3
and aux4 at each time slice.

• The augend is input to the auxiliary neuron group. Accurately input the spike train rep-
resenting the augend into the augend cache neuron group, and shield the interference
when the augend spike train is input.

• Addend input to auxiliary neuron group. Shield the input of the addend spike train,
and accurately input the spike train representing the addend to the neuron Add.

• The augend cache neuron group. Buffer the augend spike train, and send the augend
spike train to the neuron Add for operation in due course.

For ΠBASNP, Theorem 1 can be obtained.

Theorem 1. Input two natural numbers of length k (k ≥ 2) to the input neuron σInput of ΠBASNP
sequentially from low to high in binary form; this system can correctly calculate the sum of these
two natural numbers.

Proof of Theorem 1. Let t represent the system time and the unit be a time slice, that is, the
value of t increases by one every time a time slice is passed. Here, X and Y are any two
binary natural numbers with no more than k digits, and X = ∑k−1

.
i=0

xi2i, Y = ∑k−1
.
i=0

yi2i. We
provide input to ΠBASNP sequentially from low bit to high bit in binary form. When the
binary number received by ΠBASNP is 1, a spike a appears in σInput; otherwise, no spike
appears in σInput. From t = 1 to t = 2k, ΠBASNP receives spikes corresponding to x0 to xk−1
and y0 to yk−1 in sequence. When t > 2k + 1, ΠBASNP will not accept input. We use sp-xi to
represent the spike corresponding to the binary number xi, that is, when xi = 1, sp-xi = {a};
otherwise, sp-xi = {λ}. Similarly, sp-yi is used to represent the spike corresponding to the
binary number yi, which will be used in the following proofs. The execution process of
ΠBASNP is as follows.

(1) t = 0, start sending the corresponding spike sp-x0 of the lowest bit x0 of X to σInput.
(2) From t = 1 to t = k, the regular execution of ΠBASNP and the change of spikes in each

neuron include:

(i) σInput accepts sp-xi (0 ≤ i ≤ k − 1) and applies the corresponding rules to send
sp-xi to σaux5. During this period, σaux5 can only receive the spikes sent by
σInput, and apply the rules to send the received spikes to σnum1 in turn. Similarly,
σnumj (1 ≤ j ≤ k − 2) sends the received spikes to σnumj+1 in sequence.

(ii) σaux6 accepts the spikes sent by σInput, if sp-xi (0 ≤ i ≤ k − 2) = {a}, use the rule
a→λ to forget this spike.

(iii) σaux1 and σaux2 (starting to work at t = 1) each maintain one spike, and σaux3
and σaux4 each maintain k − 1 spikes at t = k.

(iv) There is no spike in σAdd.

(3) At time t = k + 1, the rule execution of ΠBASNP and the change of spikes in each
neuron include:

(i) σaux6 accepts sp-xk−1 and forgets sp-xk−2.

Appl. Sci. 2023, 13, 8556 9 of 31

(ii) σaux1 and σaux2 keep one spike each, σaux3 and σaux4 keep k spikes and apply
the rule ak→a2 to send two spikes to σaux5 and σaux6 respectively.

(iii) There is no spike in σAdd.

(4) At time t = k + 2, the rule execution of ΠBASNP and the change of spikes in each
neuron include:

(i) σInput accepts sp-y1 and sends sp-y0 to σaux5. σaux5 sends sp-xk−1 to σnum1 while
receiving sp-y0 and {a2} from σaux4. σnumj (1 ≤ j ≤ k − 1) accepts sp-xk-j and
sends sp-xk-j−1, and σnumk accepts sp-x0.

(ii) σaux6 forgets sp-xk−1 accepts both sp-y0 (from σInput) and {a2} (from σaux3).
(iii) σaux1 holds one spike, σaux2 gets three spikes (one spike from σaux1 and two

spikes from σaux4), σaux3 and σaux4 hold one spike.
(iv) There is no spike in σAdd.

At this point, the augend has been input into the augend cache neuron group and
we can obtain Figure 2, which shows the spikes contained in each neuron in the
configuration Ck+2.

(5) From t = k + 3 to t = 2k + 2, the rule execution of ΠBASNP and the change of spikes in
each neuron include:

(i) σInput sequentially accepts sp-yj (2 ≤ j ≤ k − 1) and simultaneously applies the
rules to send sp−yj−1 to σaux5 and σaux6. When the number of spikes in σaux5

is three, the rule a3/a→λ is activated and consumes one spike, so there will
always be two spikes in σaux5 and no spikes will be sent.

(ii) Since σaux6 keeps two spikes, when it receives a spike from σInput, it will apply
the rule a3/a→a to consume one spike and send one spike to σAdd, and make
σaux6 keep two spikes.

(iii) σaux1 sends 1 spike to σaux2, σaux2 receives one spike, σaux3 and σaux4 keep
one spike.

(iv) Starting from time t = k + 3, σAdd receives sp-xi and sp-yi (0 ≤ i ≤ k − 1) at
the same time. Readers can refer to [29] for details of the addition operation
in σAdd.

(v) From time t = k + 4, the environment starts to receive calculation results
in sequence.

(vi) From t = 2k + 1 time slice, σInput no longer accepts the input of the environment,
and only sends the spikes it contains to σaux5 and σaux6 by using the rules.

(vii) At t = 2k + 2, the highest bit xk−1 of X and yk−1 of Y reach the neuron
σAdd, if X + Y < 2k+1, the system will reach the termination pattern at t = 2k
+ 3; If X + Y ≥ 2k+1, the system will eventually reach the termination pattern
at t = 2k + 4.

Based on the above description, readers can verify that for k ≥ 2, the SNPS ΠBASNP
for addition constructed above can correctly solve the sum of two natural numbers
with a binary length of k, and the proof is complete. �

Figure 3 shows a ΠBASNP structure for three-bit binary addition. Based on this ΠBASNP,
the addition process of the natural numbers 7 and 5 is listed in Table 1, which shows the
number of spikes contained in each neuron in ΠBASNP(7,5). The two natural numbers
expressed in binary form are 1112, 1012, and 1112 + 1012 = 11002. In Figure 3, the augend
and the addend are input through the neuron Input, the auxiliary neuron group (aux1, aux2)
continuously sends a spike to the neuron aux3, aux4 respectively, the auxiliary neuron
group (aux4, aux5) controls the input of the augend 7 (111) to the augend cache neuron
group (num1, num2, num3), and the auxiliary neuron group (aux3, aux6) controls the input
of the addend 5 (111) to the neuron Add. Finally, the addition operation is performed in the
neuron Add.

Appl. Sci. 2023, 13, 8556 10 of 31

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 34

(ii) σaux1 and σaux2 keep one spike each, σaux3 and σaux4 keep k spikes and apply the
rule ak→a2 to send two spikes to σaux5 and σaux6 respectively.

(iii) There is no spike in σAdd.
(4) At time t = k + 2, the rule execution of ΠBASNP and the change of spikes in each neuron

include:
(i) σInput accepts sp-y1 and sends sp-y0 to σaux5. σaux5 sends sp-xk−1 to σnum1 while receiv-

ing sp-y0 and {a2} from σaux4. σnumj (1 ≤ j ≤ k − 1) accepts sp-xk-j and sends sp-xk-j−1,
and σnumk accepts sp-x0.

(ii) σaux6 forgets sp-xk−1 accepts both sp-y0 (from σInput) and {a2} (from σaux3).
(iii) σaux1 holds one spike, σaux2 gets three spikes (one spike from σaux1 and two spikes

from σaux4), σaux3 and σaux4 hold one spike.
(iv) There is no spike in σAdd.
At this point, the augend has been input into the augend cache neuron group and we

can obtain Figure 2, which shows the spikes contained in each neuron in the configuration
Ck+2.

Figure 2. The pattern Ck+2 of ΠBASNP at t = k + 2.

(5) From t = k + 3 to t = 2k + 2, the rule execution of ΠBASNP and the change of spikes in
each neuron include:
(i) σInput sequentially accepts sp-yj (2 ≤ j ≤ k − 1) and simultaneously applies the rules

to send sp−yj−1 to σaux5 and σaux6. When the number of spikes in σaux5 is three, the
rule a3/a→λ is activated and consumes one spike, so there will always be two
spikes in σaux5 and no spikes will be sent.

(ii) Since σaux6 keeps two spikes, when it receives a spike from σInput, it will apply the
rule a3/a→a to consume one spike and send one spike to σAdd, and make σaux6 keep
two spikes.

(iii) σaux1 sends 1 spike to σaux2, σaux2 receives one spike, σaux3 and σaux4 keep one spike.
(iv) Starting from time t = k + 3, σAdd receives sp-xi and sp-yi (0 ≤ i ≤ k − 1) at the same

time. Readers can refer to [29] for details of the addition operation in σAdd.
(v) From time t = k + 4, the environment starts to receive calculation results in se-

quence.

Figure 2. The pattern Ck+2 of ΠBASNP at t = k + 2.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 34

(vi) From t = 2k + 1 time slice, σInput no longer accepts the input of the environment,
and only sends the spikes it contains to σaux5 and σaux6 by using the rules.

(vii) At t = 2k + 2, the highest bit xk−1 of X and yk−1 of Y reach the neuron σAdd, if X + Y
< 2k+1, the system will reach the termination pattern at t = 2k + 3; If X + Y ≥ 2k+1,
the system will eventually reach the termination pattern at t = 2k + 4.

Based on the above description, readers can verify that for k ≥ 2, the SNPS ΠBASNP for
addition constructed above can correctly solve the sum of two natural numbers with a
binary length of k, and the proof is complete. □

Figure 3 shows a ΠBASNP structure for three-bit binary addition. Based on this ΠBASNP,
the addition process of the natural numbers 7 and 5 is listed in Table 1, which shows the
number of spikes contained in each neuron in ΠBASNP(7,5). The two natural numbers ex-
pressed in binary form are 1112, 1012, and 1112 + 1012 = 11002. In Figure 3, the augend and
the addend are input through the neuron Input, the auxiliary neuron group (aux1, aux2)
continuously sends a spike to the neuron aux3, aux4 respectively, the auxiliary neuron
group (aux4, aux5) controls the input of the augend 7 (111) to the augend cache neuron
group (num1, num2, num3), and the auxiliary neuron group (aux3, aux6) controls the input
of the addend 5 (111) to the neuron Add. Finally, the addition operation is performed in
the neuron Add.

In Table 1, the first column represents the system moment, and the second to the last
column represent each neuron in the system. Each row of Table 1 represents the number
of spikes in each neuron in the system at the corresponding moment. For example, the
number in the first column of the sixth row (step t = 5) is 0, indicating that the binary bit
currently input to the neuron Input is 0. The number from the eighth column to the tenth
column is 1, which successively indicates that the binary bit of the augend buffer neuron
group (num1, num2, num3) is 1 and the input of the augend 7 has been completed.

Figure 3. ΠBASNP for adding two three-digit numbers.

Figure 3. ΠBASNP for adding two three-digit numbers.

In Table 1, the first column represents the system moment, and the second to the last
column represent each neuron in the system. Each row of Table 1 represents the number
of spikes in each neuron in the system at the corresponding moment. For example, the
number in the first column of the sixth row (step t = 5) is 0, indicating that the binary bit
currently input to the neuron Input is 0. The number from the eighth column to the tenth

Appl. Sci. 2023, 13, 8556 11 of 31

column is 1, which successively indicates that the binary bit of the augend buffer neuron
group (num1, num2, num3) is 1 and the input of the augend 7 has been completed.

Table 1. ΠBASNP calculation process of the instance 1112 + 1012 = 11002.

Step t Input aux1 aux2 aux3 aux4 aux5 aux6 num1 num2 num3 Add Output

0 - 1 1 0 0 0 0 0 0 0 0 -
1 1 1 1 0 0 0 0 0 0 0 0 -
2 1 1 1 1 1 1 1 0 0 0 0 -
3 1 1 1 2 2 1 1 1 0 0 0 -
4 1 1 1 3 3 1 1 1 1 0 0 -
5 0 1 3 1 1 3 3 1 1 1 0 -
6 1 0 4 1 1 2 2 0 1 1 2 -
7 - 0 4 1 1 3 3 0 0 1 2 0
8 - 0 4 1 1 2 2 0 0 0 3 0
9 - 0 4 1 1 2 2 0 0 0 1 1

10 - 0 4 1 1 2 2 0 0 0 0 1

The ΠBASNP designed in this section can complete the addition of two k-bit binary
numbers within 2k + 4 time slices, and the number of neurons used is k + 8. The neurons in
ΠBASNP use three types of non-delay spiking rules and three types of forgetting rules.

3.2. Binary Subtraction in SNP Systems

Subtraction is another basic binary arithmetic operation. The idea is to subtract the
subtrahend from the minuend. Considering whether there is a borrow in the lower bit, we
subtract the values of the same order from two binary numbers. The idea of our designed
binary subtraction SNPS is:

(1) Through the input neuron Input, input the binary string of the minuend from the
lowest bit to the highest bit. When the i-th bit (0 ≤ i ≤ k − 1) in the input string is 1,
the neuron Input gets one spike, otherwise it does not get a spike.

(2) After each digit of the subtrahend is input, it will be cached in the system, waiting for
the input of the subtrahend. Input the subtrahend immediately after the highest bit of
the minuend is input.

(3) When the i-th bit of the subtrahend (0 ≤ i ≤ k − 1) reaches the subtraction neuron
Sub, the i-th bit of the minuend in the cache is taken out and put into the Sub, and the
subtraction operation is performed according to the rules in the Sub.

(4) Before the i-th bit of the minuend (0 ≤ i ≤ k − 1) reaches the subtraction neuron Sub,
3 spikes represent the number 1, and 0 spikes represent the number 0.

Therefore, the SNPS ΠBSSNP for binary subtraction designed in this paper includes
input neuron, subtraction neuron, auxiliary neuron group, subtrahend input auxiliary
neuron group, subtrahend input auxiliary neuron group, and minuend cache group of
neurons. The structure of ΠBSSNP is shown in Figure 4, and its formal definition is shown
in Formula (4).

ΠBSSNP = (O, σaux1, σaux2, . . ., σaux9, σnum1, σnum2, . . ., σnumk−1, σnumk,1, σnumk,2, σnumk,3, syn, in, out) (4)

where

(1) O = {a};
(2) σInput = (0,RInput), RInput = {a→a};
(3) σaux1 = (1,Raux1), Raux1 = {a→a};
(4) σaux2 = (1,Raux2), Raux2 = {a→a};
(5) σaux3 = (0,Raux3), Raux3 = {ak→a2};
(6) σaux4 = (0,Raux4), Raux4 = {ak→a2};
(7) σaux5 = (0,Raux5), Raux5 = {a→a; a3/a→λ};

Appl. Sci. 2023, 13, 8556 12 of 31

(8) σaux6 = (0,Raux6), Raux6 = {a→λ; a3/a→a};
(9) σaux7 = (1,Raux7), Raux7 = {a→a};
(10) σaux8 = (1,Raux8), Raux8 = {a→a};
(11) σaux9 = (0,Raux9), Raux9 = {a2k+1→a2};
(12) σnumi = (0,Rnumi), Rnumi = {a→a}, i ∈ {1, 2, · · · , k− 1};
(13) σnumk,i = (0,Rnumk,i), Rnumk,i = {a→a}, i ∈ {1, 2, 3};
(14) σSub = (0,RSub), RSub = {a→λ; a2/a→a; a3/a2→λ; a4→a; a5→λ; a6/a5→a};
(15) syn = {(Input,auxi)|i ∈ {5, 6}}∪{(aux1,aux2)}∪{(aux2,auxi)|i ∈ {1, 3, 4}}∪

{(aux3,aux6)}∪{(aux4,auxi)|i ∈ {2, 5}}∪{(aux6,Sub)}∪{(aux7,aux8)}∪{(aux7,aux9)}∪
{(aux7,Sub)}∪{(aux8,aux7)}∪{(aux9,aux7)}∪{(aux5,num1)}∪{(numi,numi+1)|i ∈
{1, 2, . . . , k− 2}}}∪{(numk−1,numk,i)|i ∈ {1, 2, 3}}∪{(numk,i,Sub)|i ∈ {1, 2, 3}};

(16) in = input;
(17) out = σ0;

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 34

Figure 4. ΠBSSNP structure diagram.

ΠBSSNP = (O, σaux1, σaux2, …, σaux9, σnum1, σnum2, …, σnumk−1, σnumk,1, σnumk,2, σnumk,3,
syn, in, out) (4)

where
(1) O = {a};
(2) σInput = (0,RInput), RInput = {a→a};
(3) σaux1 = (1,Raux1), Raux1 = {a→a};
(4) σaux2 = (1,Raux2), Raux2 = {a→a};
(5) σaux3 = (0,Raux3), Raux3 = {ak→a2};
(6) σaux4 = (0,Raux4), Raux4 = {ak→a2};
(7) σaux5 = (0,Raux5), Raux5 = {a→a; a3/a→λ};
(8) σaux6 = (0,Raux6), Raux6 = {a→λ; a3/a→a};
(9) σaux7 = (1,Raux7), Raux7 = {a→a};
(10) σaux8 = (1,Raux8), Raux8 = {a→a};
(11) σaux9 = (0,Raux9), Raux9 = {a2k+1→a2};
(12) σnumi = (0,Rnumi), Rnumi = {a→a}, 𝑖 ∈ 1,2, ⋯ , 𝑘 − 1 ;
(13) σnumk,i = (0,Rnumk,i), Rnumk,i = {a→a}, 𝑖 ∈ 1,2,3 ;
(14) σSub = (0,RSub), RSub = {a→λ; a2/a→a; a3/a2→λ; a4→a; a5→λ; a6/a5→a};
(15) syn = {(Input,auxi)| 𝑖 ∈ 5,6 }∪{(aux1,aux2)}∪{(aux2,auxi)| 𝑖 ∈1,3,4 }∪{(aux3,aux6)}∪{(aux4,auxi)| 𝑖 ∈2,5 }∪{(aux6,Sub)}∪{(aux7,aux8)}∪{(aux7,aux9)}∪{(aux7,Sub)}∪{(aux8,aux7)}∪{(aux9,aux7)}∪{

(aux5,num1)}∪{(numi,numi+1)| 𝑖 ∈ 1,2, … , 𝑘 − 2 }}∪{(numk−1,numk,i)| 𝑖 ∈1,2,3 }∪{(numk,i,Sub)|𝑖 ∈ 1,2,3 };

Figure 4. ΠBSSNP structure diagram.

In ΠBSSNP, the functions of each neuron (neuron group) are as follows:

• Input neuron Input. Input receives binary strings from the environment and converts
them to spikes in ΠBSSNP.

• Subtractive neuron Sub. The binary strings of the subtrahend and the minuend are
subtracted bit by bit in the neuron Sub.

• Auxiliary neuron groups (aux1, aux2, aux7, aux8, aux9). Continuously send a spike to
neurons aux3, aux4, and Sub at each time slice.

Appl. Sci. 2023, 13, 8556 13 of 31

• Minuend input auxiliary neuron group. The subtrahend is controlled to be accurately
input into the minuend cache neuron, and the interference when the subtrahend is
input is shielded.

• Minus input auxiliary neuron group. The subtrahend is controlled to be accurately
input to the neuron Sub, and the interference when the subtrahend is input is shielded.

• Minuend cache neuron groups. The minuend is cached so that the corresponding
binary bits of the minuend and the subtrahend are synchronously sent to the neuron
Sub for operation.

It can be seen from the following theorem that ΠBSSNP can complete the subtraction
of two k-bit binary strings as input.

Theorem 2. For the binary subtractor implemented by the SNPS shown in Figure 4, two natural
numbers of length k (k ≥ 2) are input to its input neuron σInput in binary form from low to high,
and this system can find the difference between two natural numbers.

Proof of Theorem 2. Let t represent the time slice length, t = 0 be the initial state of the
system, X and Y be two arbitrary natural numbers, and X = ∑k−1

.
i=0

xi2i, Y = ∑k−1
.
i=0

yi2i.
Readers can easily find that the input device composed of neurons σInput and neurons
σaux1, σaux2, . . ., σaux6 is the same as in Section 3.1; will not be repeated here. ΠBSSNP
implementation process is different from the adder in Section 3.1 as follows.

(1) t = k + 1, the spike in σnumj (1 ≤ j ≤ k − 1) is sp-xk−j−1, and at the next time slice,
σnumk−1 will move to σnumk,1, σnumk,2, σnumk,3 send spikes in σnumk−1, respectively.

(2) σaux7, σaux8 maintain a spike and σaux7 sends a spike to σSub at each time slice. At
t = k + 1, there are k spikes in σaux9. There are no spikes in σSub.

(3) When t = k + 2, the minuend is input into the minuend cache neuron group, and the
pattern Ck+2 of ΠBSSNP is as shown in Figure 5.

(4) From t = k + 3 to 2k + 2, σSub simultaneously receives sp-xi and sp-yi (0 ≤ i ≤ k − 1)
sequentially. Readers can refer to [13] for details of the subtraction operation in σSub.

(5) Starting from time t = k + 4, the environment starts to receive the calculation results
in sequence.

(6) t = 2k + 2, there are 2k + 1 spikes in σaux9, and the rule a2k+1→a2 is executed, which
will consume 2k + 1 spikes and send two spikes to σaux7.

(7) t = 2k + 3, there is 1 spike in σaux9, three spikes in σaux7, and one spike in σaux8, which
will not change after that.

Because subtraction does not need to consider the carry operation of adding the
highest digits of two natural numbers, there is no need to wait another time for the system
to reach the termination pattern. It is not difficult for readers to verify that the system will
reach the termination pattern at t = 2k + 3.

Based on the above description, readers can verify that for k ≥ 2, the SNPS ΠBSSNP
for subtractor constructed above can correctly solve the difference between two natural
numbers with a binary length of k, and the proof is complete. �

Figure 6 shows a ΠBSSNP structure for a three-bit binary subtraction. Based on this
ΠBSSNP, the subtraction process of natural numbers 5 and 2 is listed in Table 2, which
shows the number of spikes contained in each neuron in ΠBSSNP (5,2). The two natural
numbers expressed in binary form are: 1012, 0102, and 1012 − 0102 = 0112. In Figure 6, the
augend and the addend are input through the neuron Input, the auxiliary neuron group
(aux1, aux2) continuously sends a spike to the neuron aux3, aux4, respectively, and the
auxiliary neuron group (aux1, aux2) continuously sends a spike to the subtraction neuron
Sub, the subtrahend input auxiliary neuron group (aux4, aux5) controls the subtrahend
5 (101) input to the subtrahend cache neuron group (num1, num2, num3,1, num3,2, num3,3),
the subtrahend input auxiliary neuron group (aux3, aux6) controls subtrahend 2 (010) input
to neuron Sub, and finally subtraction operation is performed in neuron Sub.

Appl. Sci. 2023, 13, 8556 14 of 31

In Table 2 column 1 likewise represents the system moment and columns 2–1 represent
each neuron in the system. Each row of Table 2 represents the number of spikes in each
neuron in the system at the corresponding moment. For example, the number in the first
column of row 6 (step t = 5) is 1, indicating that the binary bit currently input to the neuron
Input is 1. The numbers from the 11th column to the 13th column are 1, 0, 1, respectively,
indicating that the binary bits of the minuend cache neuron group (num1, num2, num3,1,
num3,2, num3,3) are 1, 0, 1 respectively, and the input of minuend 5 (101) has been completed.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 34

Figure 5. The pattern Ck+2 of ΠBSSNP at t = k + 2.

(4) From t = k + 3 to 2k + 2, σSub simultaneously receives sp-xi and sp-yi (0 ≤ i ≤ k − 1) se-
quentially. Readers can refer to [13] for details of the subtraction operation in σSub.

(5) Starting from time t = k + 4, the environment starts to receive the calculation results
in sequence.

(6) t = 2k + 2, there are 2k + 1 spikes in σaux9, and the rule a2k+1→a2 is executed, which will
consume 2k + 1 spikes and send two spikes to σaux7.

(7) t = 2k + 3, there is 1 spike in σaux9, three spikes in σaux7, and one spike in σaux8, which
will not change after that.
Because subtraction does not need to consider the carry operation of adding the high-

est digits of two natural numbers, there is no need to wait another time for the system to
reach the termination pattern. It is not difficult for readers to verify that the system will
reach the termination pattern at t = 2k + 3.

Based on the above description, readers can verify that for k ≥ 2, the SNPS ΠBSSNP for
subtractor constructed above can correctly solve the difference between two natural num-
bers with a binary length of k, and the proof is complete. □

Figure 6 shows a ΠBSSNP structure for a three-bit binary subtraction. Based on this
ΠBSSNP, the subtraction process of natural numbers 5 and 2 is listed in Table 2, which shows
the number of spikes contained in each neuron in ΠBSSNP (5,2). The two natural numbers
expressed in binary form are: 1012, 0102, and 1012 − 0102 = 0112. In Figure 6, the augend and
the addend are input through the neuron Input, the auxiliary neuron group (aux1, aux2)
continuously sends a spike to the neuron aux3, aux4, respectively, and the auxiliary neuron

Figure 5. The pattern Ck+2 of ΠBSSNP at t = k + 2.

Table 2. ΠBSSNP calculation process of the instance 1012 − 0102 = 0112.

Step t Input aux1 aux2 aux3 aux4 aux5 aux6 aux7 aux8 aux9 num1 num2 num3, i (i = 1,2,3) Sub Output

0 - 1 1 0 0 0 0 1 1 0 0 0 0 0 -
1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 -
2 0 1 1 1 1 1 1 1 1 1 0 0 0 1 -
3 1 1 1 2 2 0 1 1 1 2 1 0 0 1 -
4 0 1 1 3 3 1 1 1 1 3 0 1 0 1 -
5 1 1 3 1 1 2 2 1 1 4 1 0 1 1 -
6 0 0 4 1 1 3 3 1 1 5 0 1 0 4 -
7 - 0 4 1 1 2 2 1 1 6 0 0 1 2 1
8 - 0 4 1 1 2 2 1 1 7 0 0 0 5 1
9 - 0 4 1 1 2 2 3 1 1 0 0 0 1 0

The ΠBSSNP designed in this section can complete the subtraction of two k-bit bi-
nary numbers within 2k + 3 time slices, and the number of neurons used is k + 13. The
neurons in ΠBSSNP use a total of seven types of non-delay spiking rules and four types
of forgetting rules.

Appl. Sci. 2023, 13, 8556 15 of 31

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 34

group (aux1, aux2) continuously sends a spike to the subtraction neuron Sub, the subtra-
hend input auxiliary neuron group (aux4, aux5) controls the subtrahend 5 (101) input to the
subtrahend cache neuron group (num1, num2, num3,1, num3,2, num3,3), the subtrahend input
auxiliary neuron group (aux3, aux6) controls subtrahend 2 (010) input to neuron Sub, and
finally subtraction operation is performed in neuron Sub.

In Table 2 column 1 likewise represents the system moment and columns 2–1 repre-
sent each neuron in the system. Each row of Table 2 represents the number of spikes in
each neuron in the system at the corresponding moment. For example, the number in the
first column of row 6 (step t = 5) is 1, indicating that the binary bit currently input to the
neuron Input is 1. The numbers from the 11th column to the 13th column are 1, 0, 1, re-
spectively, indicating that the binary bits of the minuend cache neuron group (num1, num2,
num3,1, num3,2, num3,3) are 1, 0, 1 respectively, and the input of minuend 5 (101) has been
completed.

Figure 6. ΠBSSNP for subtraction of two three-digit numbers.

Figure 6. ΠBSSNP for subtraction of two three-digit numbers.

3.3. Binary Multiplication in SNP Systems

The basic idea of multiplication is to multiply each bit of two binary numbers, and
the multiplied results will be added to be the final result according to the weight. In [30],
the authors provide an SNPS for solving the product of any natural number within two
k-bits. The SNPS for multiplication in their paper uses a large number of neurons, and the
total time required for the calculation is not provided in detail. The basic idea of the binary
multiplicative SNPS we designed is:

(1) Through the input neuron Input, inputting the binary string of the multiplicand from
the lowest bit to the highest bit. When the i-th bit (0 ≤ i ≤ k − 1) in the input string
is 1, the neuron Input gets one spike; otherwise, it does not get a spike.

(2) After each bit of the multiplicand is input, it is cached in the system. When all bits
of the multiplicand are input, store the multiplicand in the multiplicand neuron
group and wait for the input of the multiplier. After inputting the highest bit of the
multiplicand, the multiplier is entered immediately.

(3) After each bit of the multiplier is input, it is cached in the system and sent to the
multiplicand neuron to perform multiplication with the corresponding binary bit of
the multiplicand.

(4) The stored multiplicand information in the multiplicand neuron group is not changed
by the operation in (3).

(5) Neuron Add calculates a binary bit of the multiplication result at every moment.

Appl. Sci. 2023, 13, 8556 16 of 31

Therefore, the binary SNPS ΠBMSNP for multiplication designed in this paper includes
input neurons, addition neurons, auxiliary neuron groups, multiplicand input auxiliary
neuron groups, and multiplier input auxiliary neuron groups, along with a multiplicand
cache neuron group, multiplicand neuron group, and multiplier cache neuron group. The
structure of ΠBMSNP is shown in Figure 7, and its formal definition is shown in Formula (5).

Appl. Sci. 2023, 13, x FOR PEER REVIEW 17 of 34

Figure 7. ΠBMSNP structure diagram.

ΠBMSNP =(O, σaux1, σaux2,…, σaux6, σcand1, σcand2, …, σcandk, σmut1, σmut2, …, σmutk, σbit1, σbit2, …,
σbitk, syn, in, out)

(5)

where
(1) O = {a};
(2) σInput = (0,RInput), RInput = {a→a};
(3) σaux1 = (1,Raux1), Raux1 = {a→a};
(4) σaux2 = (1,Raux2), Raux2 = {a→a};
(5) σaux3 = (0,Raux3), Raux3 = {ak→a2};
(6) σaux4 = (0,Raux4), Raux4 = {ak→a2};
(7) σaux5 = (0,Raux5), Raux5 = {a→a; a3/a→λ};
(8) σaux6 = (0,Raux6), Raux6 = {a→λ; a3/a→a};
(9) σcandi = (0,Rcandi), Rcandi = {a→a; a2→λ; a3→a2}, 𝑖 ∈ 1,2, ⋯ , 𝑘 ;
(10) σmuti = (0,Rmuti), Rmuti = {a→a}, 𝑖 ∈ 1,2, ⋯ , 𝑘 ;
(11) σbiti = (0,Rbiti), Rbiti = {a→λ; a3/a→a}, 𝑖 ∈ 1,2, ⋯ , 𝑘 ;
(12) σAdd =(0,RAdd), RAdd = {a2j/aj→λ; a2j+1/aj+1→a}, 𝑗 ∈ 0,1,2, ⋯ , 𝑛 ;
(13) syn = {(Input,auxi)| 𝑖 ∈ 5,6 }∪{(aux1,aux2)}∪{(aux2,auxi)| 𝑖 ∈1,3,4 }∪{(aux3,aux6)}∪{(aux4,auxi)| 𝑖 ∈ 2,5 }∪{(aux4,candi)| 𝑖 ∈1,2, ⋯ , 𝑘 }∪{(aux5,cand1)}∪{(aux6,mut1)}∪{(candi,candi+1)| 𝑖 ∈ 1,2, … , 𝑘 −1 }∪{(muti,muti+1) | 𝑖 ∈ 1,2, … , 𝑘 − 1 }∪{(biti,biti+1)|𝑖 ∈ 1,2, … , 𝑘 − 1 }∪{(candi,bitk-i+1) | 𝑖 ∈ 1,2, … , 𝑘 }∪{(muti,biti) | 𝑖 ∈ 1,2, … , 𝑘 }∪{(biti,Add) | 𝑖 ∈ 1,2, … , 𝑘 };

Figure 7. ΠBMSNP structure diagram.

ΠBMSNP =(O, σaux1, σaux2,. . ., σaux6, σcand1, σcand2, . . ., σcandk, σmut1, σmut2, . . ., σmutk, σbit1, σbit2, . . ., σbitk, syn, in, out) (5)

where

(1) O = {a};
(2) σInput = (0,RInput), RInput = {a→a};
(3) σaux1 = (1,Raux1), Raux1 = {a→a};
(4) σaux2 = (1,Raux2), Raux2 = {a→a};
(5) σaux3 = (0,Raux3), Raux3 = {ak→a2};
(6) σaux4 = (0,Raux4), Raux4 = {ak→a2};
(7) σaux5 = (0,Raux5), Raux5 = {a→a; a3/a→λ};
(8) σaux6 = (0,Raux6), Raux6 = {a→λ; a3/a→a};
(9) σcandi = (0,Rcandi), Rcandi = {a→a; a2→λ; a3→a2}, i ∈ {1, 2, · · · , k};
(10) σmuti = (0,Rmuti), Rmuti = {a→a}, i ∈ {1, 2, · · · , k};
(11) σbiti = (0,Rbiti), Rbiti = {a→λ; a3/a→a}, i ∈ {1, 2, · · · , k};

Appl. Sci. 2023, 13, 8556 17 of 31

(12) σAdd =(0,RAdd), RAdd = {a2j/aj→λ; a2j+1/aj+1→a}, j ∈ {0, 1, 2, · · · , n};
(13) syn = {(Input,auxi)|i ∈ {5, 6}}∪{(aux1,aux2)}∪{(aux2,auxi)|i ∈ {1, 3, 4}}∪

{(aux3,aux6)}∪{(aux4,auxi)|i ∈ {2, 5}}∪{(aux4,candi)|i ∈ {1, 2, · · · , k}}∪
{(aux5,cand1)}∪{(aux6,mut1)}∪{(candi,candi+1)|i ∈ {1, 2, . . . , k− 1}}∪{(muti,muti+1) | i ∈
{1, 2, . . . , k− 1}}∪{(biti,biti+1)|i ∈ {1, 2, . . . , k− 1}}∪{(candi,bitk-i+1) | i ∈ {1, 2, . . . , k}}
∪{(muti,biti) | i ∈ {1, 2, . . . , k}}∪{(biti,Add) | i ∈ {1, 2, . . . , k}};

(14) in = input;
(15) out = Add;

In ΠBMSNP, the functions of each neuron (neuron group) are as follows:

• Input neuron Input. Input receives binary strings from the environment and converts
them to spikes in ΠBMSNP.

• Addition neuron Add. The result of multiplying the multiplier by the multiplicand’s
bits is summed in the Add neuron.

• Auxiliary neuron groups (aux1, aux2). Continuously send a spike to neurons aux3 and
aux4 at each time slice.

• The multiplicand is input to the auxiliary neuron group. Control the multiplicand to
be accurately input into the summand buffer neuron, shield the interference during
multiplication input, and save the multiplicand in the multiplicand neuron group
when the input of the highest bit of the multiplicand is completed.

• Multiply the input auxiliary neuron group. The control multiplier is accurately input
into the multiplier cache neuron group, and the interference when the multiplier is
input is shielded.

• Group of multiplicand cache neurons. Cache multiplicand.
• Group of multiplier cache neurons. The multiplier is buffered, and each binary bit of

the control multiplier is multiplied by the multiplicand.
• Group of multiplicand neurons. The multiplicand is stored, and the multiplication

operation of the multiplier and each binary bit of the multiplicand is performed.

It can be seen from the following theorem that ΠBMSNP can complete the multiplication
of two k-bit binary strings as input.

Theorem 3. For the binary multiplier realized by the SNPS shown in Figure 7, two natural
numbers of length k (k ≥ 2) are input to its input neuron σInput in binary form from low to high,
and this system can correctly calculate the product of two natural numbers.

Proof of Theorem 3. Let t represent the time slice length, t = 0 the initial state of the system,
X and Y two arbitrary natural numbers, and m and n two natural numbers less than or
equal to k; then:

X = ∑m−1
.
i=0

xi2i, Y = ∑n−1
j=0 yj2j, Z = X× Y

X× Y = (∑m−1
.
i=0

xi2i)× (∑n−1
.
i=0

yj2j)

=
m−1

∑
i=0

n−1

∑
j=0

xiyj2i+j =
m−1

∑
.
i=0

y0xi2i+0 +
m−1

∑
.
i=0

y1xi2i+1 + . . . +
m−1

∑
.
i=0

yn−1xi2i+n−1

From the above formula, it can be concluded that the operation of solving X × Y can
be converted into solving n times the product of m digits and 1 digits, and the result of the
product is shifted to the left by j bits according to the weight j of the multiplier yj; then, the
result of n times is shifted to the left summation. In fact, in the [30] the author did the same,
using k2 neurons to store the results of the n operations, and the storage process required
k auxiliary neurons. The left shift of the product of the m-bit and 1-bit is achieved by
adjusting the connections of neurons and finally adding the corresponding results n times.

In the SNPS for multiplication designed in this section, k2 neurons are not used to
store the results of these n operations. This paper uses a new control method to make
full use of the parallelism of neuron calculations, and sequentially outputs the converted

Appl. Sci. 2023, 13, 8556 18 of 31

operation results Z from low to high. Finally, the correct operation result is obtained.
The operation process of the SNPS multiplier shown in Figure 7 can be divided into the
following three parts:

• Input the natural number X;
• Compute each bit of Z in parallel while inputting Y;
• Output each bit of Z from low to high in turn.

The execution process of ΠBMSNP is as follows:

(1) From t = 0 to t = k + 1, the regular execution of ΠBMSNP and the change of spikes in
each neuron include:

(i) σInput accepts sp-xi (0 ≤ i ≤ k − 1) and applies the corresponding rules to
send sp-xi to σaux5. During this period, σaux5 can only receive the spikes
sent by σInput, and apply the rules to send the received spikes to σcand1 in
turn. Similarly, σcandj (1 ≤ j ≤ k − 2) sends the received spikes to σcandj+1
and σbitj respectively.

(ii) σaux6 accepts the spikes sent by σInput, if sp-xi (0 ≤ i ≤ k − 1) = {a}, use the rule
a→λ to forget this spike.

(iii) σbitj (1 ≤ j ≤ k − 2) accepts spikes sent by σcandj (1 ≤ j ≤ k − 2) and forgets
them using the rule a→λ.

(iv) σaux1 and σaux2 (starting to work at t = 1) each maintain one spike, and σaux3
and σaux4 each maintain k spikes at t = k + 1.

(v) t = k + 1, σaux3 use the rule ak→a2 to send two spikes to σaux6, and σaux4 use the
rule ak→a2 to send two spikes to σaux5 and σcandj (1 ≤ j ≤ k) respectively. σInput
accepts sp-y0 and sends sp-y0 to σaux6 according to the corresponding rules.

(vi) There is no spike in σadd, σmuti (1 ≤ i ≤ k).

(2) t = k + 2, the rule execution of ΠBMSNP and the change of spikes in each neuron include:

(i) σInput accepts sp-y1 and sends sp-y0 to σaux5, σaux6 respectively. σaux5 sends
sp-xk−1 to σcand1 while receiving sp-y0 and {a2} from σaux4. σcandj (1 ≤ j ≤ k−1)
accepts sp-xk-j and sends sp-xk-j−1, and σcandk accepts sp-x0. σcandj (1 ≤ j ≤ k)
receives the two spikes sent by σaux4, and σcandj(1 ≤ j ≤ k) use the rule a3→a2

or a→λ to send sp-xj−1 to σbitj.
(ii) σaux6 forgets sp-xk−1 accepts both sp-y0 (from σInput) and {a2} (from σaux3).
(iii) σaux1 holds one spike, σaux2 gets three spikes (one spike from σaux1, two spikes

from σaux4), σaux3 and σaux4 hold one spike.
(iv) There is no spike in σadd, σmuti (1 ≤ i ≤ k). At this point, the multiplicand has

been input into the multiplicand cache neuron group, and we can get Figure 8,
which shows the spikes contained in each neuron in the pattern Ck+2.

(3) t = k + 3, the multiplicand has been input into the multiplicand neuron group, and
the spike changes in each neuron of ΠBMSNP are shown in Figure 9:

(i) σInput accepts sp-y2 and sends sp-y1 to σaux5 and σaux6, respectively.
(ii) There are no spikes in σaux1 and four spikes in σaux4.
(iii) σaux3 and σaux4 maintain one spike each.
(iv) σaux5 receives the sp-y1 sent by σInput, and use the corresponding rules in σaux5

to forget sp-y0.
(v) σaux6 receives the sp-y1 sent by σInput and applies the corresponding rules in

σaux6 to send sp-y0 to σmut1.
(vi) σmut1 receives sp-y0 sent by σaux6.
(vii) There is no spike in σcandi (1 ≤ i ≤ k), σmutj (2 ≤ j ≤ k).
(viii) sp-xi−1 is received in σbiti (1 ≤ i ≤ k).

(4) From t = k + 4 to 3k + 5, the rule execution of ΠBMSNP and the change of spikes in
each neuron include:

Appl. Sci. 2023, 13, 8556 19 of 31

(i) σInput sequentially accepts sp-yj (3 ≤ j ≤ k − 1) and simultaneously use the
rules to send sp-yj−1 to σaux5 and σaux6.

(ii) When the number of spikes in σaux5 is 3, the rule a3/a→λ is activated and
consumes one spike, so there will always be two spikes in σaux5 and no spikes
will be sent.

(iii) There is no spike in σcandi (1 ≤ i ≤ k).
(iv) σaux6 sends sp-yj (1 ≤ j ≤ k − 1) to σmut1 sequentially.
(v) σmuti (1 ≤ i ≤ k) sends sp-yt+i-(k+5) to σmuti+1 and σbiti respectively. Where t is

the current moment of ΠBMSNP. If t + i − (k + 5) < 0, it means that there is no
spike in σmuti, and no spike will be sent to σmuti+1 and σbiti.

(vi) t = k + 4, σbit1 receives the sp-y0 sent by σmut1, and performs the product
operation of sp-y0 and sp-x0 in σbit1, and sends the operation result to σAdd at
the next time slice. Note that after the operation in σbit1, sp-x0 is still stored in
the neuron.

(vii) t = k + 5, σbit1 receives the sp-y1 sent by σmut1, performs the product operation
of sp-y1 and sp-x0 in σbit1, and sends the operation result to σAdd at the next
time slice. σAdd receives the product operation result of sp-y0 and sp-x0, namely
z0, and sends z0 to the environment at the next time slice.

(viii) t = k + 6, z0 is received in the environment. σAdd is summing the following
operation results: sp-y0 × sp-x1, sp-y1 × sp-x0, the summation result is z1, and
the carry is kept in σAdd. The ongoing multiplication operation of ΠBMSNP:
sp-y0 × sp-x2, sp-y1 × sp-x1, sp-y2 × sp-x0 they will be sent to σAdd for summing
operation at the next time, and the operation result is z2.

(ix) Similarly, t = k + 7, z1 is received in the environment. t = k + 8, z2 is received in
the environment. t = k + i (9 ≤ i ≤ 2k + 3), zi−6 is received in the environment.
t = 3k + 4, z2k−2 is received in the environment. Considering that a carry may
occur when operating z2k−2, the system reaches the termination configuration
at t = 3k + 5. Based on the above description, readers can verify that, for k ≥ 2,
the SNPS multiplication constructed above can correctly solve the product of
two natural numbers with a binary length of k, and the proof is complete. �

Figure 10 shows a ΠBMSNP structure for three-bit binary multiplication. Based on this
ΠBMSNP, the multiplication process of the natural numbers 7 and 5 is listed in Table 3, which
displays the spike counts in each neuron for each configuration in ΠBMSNP(7,5). These two
natural numbers are expressed in binary form as: 1112, 1012, and 1112 × 1012 = 1000112.
In Figure 10, the multiplicand and the multiplier are input through the neuron Input,
the auxiliary neuron group (aux1, aux2) continuously sends a spike to neurons aux3 and
aux4 respectively, the multiplicand is input to the auxiliary neuron group (aux4, aux5)
to control the multiplicand 7 (111) to be input to the multiplicand cache neuron group
(cand1, cand2, cand3), and after inputting the highest bit of the multiplier, it is stored in
the multiplicand neuron group (bit1, bit2, bit3) and the multiplier is input to the auxiliary
neuron group (aux3, aux6) to control the multiplier 5 (101) input to the multiplier cache
neuron group (mut1, mut2, mut3. Multiplication is performed in the multiplier neuron, and
the final neuron Add sums the results and outputs them to the environment.

In Table 3, column 1 likewise represents the system moment and columns 2 to last
represent each neuron in the system. Each row of Table 3 represents the number of spikes
in each neuron in the system at the corresponding moment. For example, the number in
the first column of row 9 (step t = 8) is 0, indicating that the binary bit currently input to
the neuron Input is 0. During the computation process of 1112 × 1012, from t = 1 to t = 3,
each binary digit of the multiplicand 111 appears in the neuron input sequentially from low
to high. At t = 6, the multiplicand is stored in the multiplier neuron group (bit1, bit2, bit3).
From t = 4 to t = 6, each binary digit of the multiplier 101 appears in the neuron input
sequentially from low to high. At t = 8, the spike count from the 12th column to the 14th
column (mut1, mut2, mut3) is 1, 0, 1 respectively, representing the multiplier as 101. In the

Appl. Sci. 2023, 13, 8556 20 of 31

last column, from t = 9, the numbers 1, 1, 0, 0, 0, 1 are sequentially output to represent the
final calculation result of 100011.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 20 of 34

Figure 8. The pattern Ck+2 of ΠBMSNP at t = k + 2.

(3) t = k + 3, the multiplicand has been input into the multiplicand neuron group, and
the spike changes in each neuron of ΠBMSNP are shown in Figure 9:
(i) σInput accepts sp-y2 and sends sp-y1 to σaux5 and σaux6, respectively.
(ii) There are no spikes in σaux1 and four spikes in σaux4.
(iii) σaux3 and σaux4 maintain one spike each.
(iv) σaux5 receives the sp-y1 sent by σInput, and use the corresponding rules in σaux5 to

forget sp-y0.
(v) σaux6 receives the sp-y1 sent by σInput and applies the corresponding rules in σaux6

to send sp-y0 to σmut1.
(vi) σmut1 receives sp-y0 sent by σaux6.
(vii) There is no spike in σcandi (1 ≤ i ≤ k), σmutj (2 ≤ j ≤ k).
(viii) sp-xi−1 is received in σbiti (1 ≤ i ≤ k).

Figure 8. The pattern Ck+2 of ΠBMSNP at t = k + 2.
Appl. Sci. 2023, 13, x FOR PEER REVIEW 21 of 34

Figure 9. The pattern Ck+3 of ΠBMSNP at t = k + 3.

(4) From t = k + 4 to 3k + 5, the rule execution of ΠBMSNP and the change of spikes in each
neuron include:
(i) σInput sequentially accepts sp-yj (3 ≤ j ≤ k − 1) and simultaneously use the rules to

send sp-yj−1 to σaux5 and σaux6.
(ii) When the number of spikes in σaux5 is 3, the rule a3/a→λ is activated and con-

sumes one spike, so there will always be two spikes in σaux5 and no spikes will
be sent.

(iii) There is no spike in σcandi (1 ≤ i ≤ k).
(iv) σaux6 sends sp-yj (1 ≤ j ≤ k − 1) to σmut1 sequentially.
(v) σmuti (1 ≤ i ≤ k) sends sp-yt+i-(k+5) to σmuti+1 and σbiti respectively. Where t is the current

moment of ΠBMSNP. If t + i − (k + 5) < 0, it means that there is no spike in σmuti, and
no spike will be sent to σmuti+1 and σbiti.

(vi) t = k + 4, σbit1 receives the sp-y0 sent by σmut1, and performs the product operation
of sp-y0 and sp-x0 in σbit1, and sends the operation result to σAdd at the next time
slice. Note that after the operation in σbit1, sp-x0 is still stored in the neuron.

(vii) t = k + 5, σbit1 receives the sp-y1 sent by σmut1, performs the product operation of
sp-y1 and sp-x0 in σbit1, and sends the operation result to σAdd at the next time slice.

σAdd receives the product operation result of sp-y0 and sp-x0, namely z0, and sends z0
to the environment at the next time slice.

Figure 9. The pattern Ck+3 of ΠBMSNP at t = k + 3.

Appl. Sci. 2023, 13, 8556 21 of 31Appl. Sci. 2023, 13, x FOR PEER REVIEW 23 of 34

Figure 10. ΠBMSNP of multiplying two three-digit numbers.

Table 3. ΠBMSNP calculation process of the instance 1112×1012 = 1000112.

Step t Input aux1 aux2 aux3 aux4 aux5 aux6 cand1 cand2 cand3 mut1 mut2 mut3 bit1 bit2 bit3 Add Output
0 - 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -
2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 -
3 1 1 1 2 2 1 1 1 0 0 0 0 0 0 0 0 0 -
4 1 1 1 3 3 1 1 1 1 0 0 0 0 0 0 0 0 -
5 0 1 3 1 1 3 3 3 3 3 0 0 0 0 0 0 0 -
6 1 0 4 1 1 2 2 0 0 0 1 0 0 2 2 2 0 -
7 - 0 4 1 1 3 3 0 0 0 0 1 0 3 2 2 0 -
8 - 0 4 1 1 2 2 0 0 0 1 0 1 2 3 2 1 -
9 - 0 4 1 1 2 2 0 0 0 0 1 0 3 2 3 1 1

10 - 0 4 1 1 2 2 0 0 0 0 0 1 2 3 2 2 1
11 - 0 4 1 1 2 2 0 0 0 0 0 0 2 2 3 2 0
12 - 0 4 1 1 2 2 0 0 0 0 0 0 2 2 2 2 0
13 - 0 4 1 1 2 2 0 0 0 0 0 0 2 2 2 1 0
14 - 0 4 1 1 2 2 0 0 0 0 0 0 2 2 2 0 1

Figure 10. ΠBMSNP of multiplying two three-digit numbers.

Table 3. ΠBMSNP calculation process of the instance 1112 × 1012 = 1000112.

Step t Input aux1 aux2 aux3 aux4 aux5 aux6 cand1 cand2 cand3 mut1 mut2 mut3 bit1 bit2 bit3 Add Output

0 - 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -
2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 -
3 1 1 1 2 2 1 1 1 0 0 0 0 0 0 0 0 0 -
4 1 1 1 3 3 1 1 1 1 0 0 0 0 0 0 0 0 -
5 0 1 3 1 1 3 3 3 3 3 0 0 0 0 0 0 0 -
6 1 0 4 1 1 2 2 0 0 0 1 0 0 2 2 2 0 -
7 - 0 4 1 1 3 3 0 0 0 0 1 0 3 2 2 0 -
8 - 0 4 1 1 2 2 0 0 0 1 0 1 2 3 2 1 -
9 - 0 4 1 1 2 2 0 0 0 0 1 0 3 2 3 1 1
10 - 0 4 1 1 2 2 0 0 0 0 0 1 2 3 2 2 1
11 - 0 4 1 1 2 2 0 0 0 0 0 0 2 2 3 2 0
12 - 0 4 1 1 2 2 0 0 0 0 0 0 2 2 2 2 0
13 - 0 4 1 1 2 2 0 0 0 0 0 0 2 2 2 1 0
14 - 0 4 1 1 2 2 0 0 0 0 0 0 2 2 2 0 1

The ΠBMSNP designed in this section can complete the multiplication of two k-bit
binary numbers within 3k + 5 time slices, and the number of neurons used is 3k + 8. The
neurons in ΠBMSNP use a total of five types of non-delay spiking rules and four types of
forgetting rules.

Appl. Sci. 2023, 13, 8556 22 of 31

3.4. Binary Division in SNP Systems

Division is a basic method of arithmetic operation. The basic idea of division opera-
tions is to subtract the divisor from the dividend until the remainder is less than the divisor.
At present, nobody has proposed an SNPS which encodes numbers as spike sequences for
division. The basic idea of the binary division SPNS designed in this paper is as follows:

(1) Through the input neuron, input the binary string of the dividend from the lowest bit
to the highest bit. When the i-th bit (0 ≤ i ≤ k − 1) in the input string is 1, the neuron
input gets one spike; otherwise, it does not get one spike.

(2) After each digit of the dividend is input, it will be cached in the system. When all
digits of the dividend are input, the dividend is stored in the dividend neuron group.
Wait for the input of the divisor. Input the divisor immediately after the highest digit
of the dividend is input.

(3) After the divisor input is completed, save the divisor in the divisor neuron group.
After the highest digit of the divisor is input, the control neuron group immedi-
ately sends the divisor to the dividend neuron group for subtraction. The stored
dividend information in the dividend neuron group will be changed due to the
subtraction operation.

(4) For each subtraction operation, send a spike to the resulting neuron group.
(5) Continue to carry out (4) in parallel until the highest bit of the dividend neuron group

sends a borrow message to the control neuron group.

Therefore, the binary SNPS ΠBDSNP for division designed in this paper includes input
neurons, result neuron groups, auxiliary neuron groups, dividend input auxiliary neuron
groups, divisor input auxiliary neuron groups, and dividend cache neuron groups, along
with a divisor neuron group, divisor cache neuron group, and divisor neuron group. The
structure of ΠBDSNP is shown in Figure 11, and its formal definition is shown in Formula (6).

ΠBDSNP = (O, σaux1, σaux2,. . ., σaux11, σs1, σs2,. . ., σsk, σdivs1, σdivs2,. . ., σdivsk, σctr1, σctr2, . . ., σctrk, σdivd1, σdivd2, . . ., σdivdk, σans1, σans2, . . ., σansk,syn, in, out) (6)

where

(1) O = {a};
(2) σInput = (0,RInput), RInput = {a→a; a3→a; a5→λ};
(3) σaux1 = (1,Raux1), Raux1 = {a→a};
(4) σaux2 = (1,Raux2), Raux2 = {a→a};
(5) σaux3 = (0,Raux3), Raux3 = {a2k−1→a};
(6) σaux4 = (0,Raux4), Raux4 = {a→a};
(7) σaux5 = (0,Raux5), Raux5 = {a→a; a2→λ; a3→a; a5→λ};
(8) σaux6 = (0,Raux6), Raux6 = {ak→a2; ak+1→a3};
(9) σaux7 = (0,Raux7), Raux7 = {a2→λ; a3→a3};
(10) σaux8 = (2,Raux8), Raux8 = {a4→λ} ∪ {ai→a5,i ∈ {5, 6} } ∪ {a9→λ};
(11) σaux9 = (0,Raux9), Raux9 = {ai→λ | i ∈ {1, 2, 4} } ∪ {ai→a5 | i ∈ {5, 6, 7, 8}; a9→λ};
(12) σaux10 = (0,Raux10), Raux10 = {a4→λ; a5→a; a9→λ};
(13) σaux11 = (0,Raux11), Raux11 = {a→a; a4→λ; a5→λ};
(14) σsi = (0,Rsi), Rsi = {a→a; a2→λ; a3→a2; a4→a3} ∪ {aj→λ | j ∈ {5, 7, 8}} | i ∈ {1, 2, · · · , k};
(15) σdivs1 = (0,Rdivs1), Rdivs1 = {aj→λ | j ∈ {1, 2}} ∪ {a5→a4; a8/a5→a5}
(16) σdivsi = (0,Rdivsi), Rdivsi = {aj→λ | j ∈ {1, 2}} ∪ {aj→a4 | j ∈ {5, 6}} ∪ {aj/a5→a5 |

j ∈ {8, 9} } | i ∈ {2, 3, · · · , k};
(17) σctri = (0,Rctri), Rctri = {a4→λ; a5→a; a9→λ} | i ∈ {1, 2, · · · , k};
(18) σdivd1 = (0,Rdivd1), Rdivd1 = {a→λ; aj/a→λ | j ∈ {3, 5}} ∪ {aj/a5→λ | j ∈ {7, 9}} ∪

{a8/a4→a4; a10/a8→λ};
(19) σdivdi = (0,Rdivdi), Rdivdi = {a→λ; aj/a→λ | j ∈ {3, 5}; aj/a5→λ,j ∈ {7, 9}; a8/a4→a4;

a10/a8→λ; a11/a7→a4; aj/a10→a4 | j ∈ {12, 14}; a13/a11→λ}, i ∈ {2, 3, · · · , k};
(20) σansi = (0,Ransi), Ransi = {a2→a}, i ∈ {1, 2, · · · , k};

Appl. Sci. 2023, 13, 8556 23 of 31

(21) syn = {(Input,aux5)}∪{(aux1,auxi)|i ∈ {2, 6}}∪{(aux2,auxi)|i ∈ {1, 3}}∪{(aux3,auxi)|i ∈
{4, 6}}∪{(aux4,aux5)}∪{(aux5,sk)}∪{(aux6,auxi)|i ∈ {1, 5, 7}}∪{(aux6,si)|i ∈ {1, 2, . . . , k}}
∪{(aux7,auxi)|i ∈ {9, 10}}∪{(aux8,aux9)}∪{(aux8,ctr1)}∪{(aux9,aux8)}∪
{(aux9,divs1)}∪{(aux10,aux11)}∪{(aux11,ans1)}∪{(s1,aux9)}∪{(si+1,si)|i ∈ {1, 2, . . . , k− 1}}∪
{(si,divdi)|i ∈ {1, 2, . . . , k}}∪{(si,divsi)|i ∈ {1, 2, . . . , k}}∪{(divsi,divsi+1)|i ∈
{1, 2, . . . , k− 1}}∪{(divsi,divdi)|i ∈ {1, 2, . . . , k}}∪
{(ctri,divsi+1)|i ∈ {1, 2, . . . , k− 1}}∪{(ctri,ctri+1)|i ∈ {1, 2, . . . , k− 1}}∪{(ctri,divdi)|
i ∈ {1, 2, . . . , k}}∪{(ctrk,aux11)}∪{(divdi,divdi+1)|i ∈ {1, 2, . . . , k− 1}}∪{(divdk,ctri)|i ∈
{1, 2, . . . , k}}∪{(divdk,auxi)|i ∈ {9, 10, 12}}∪{(ansi,ansi+1)|i ∈ {1, 2, . . . , k− 1}};

(22) in = input;
(23) out = ansi|i ∈ {1, 2, · · · , k};

Appl. Sci. 2023, 13, x FOR PEER REVIEW 25 of 34

Figure 11. ΠBMSNP structure diagram.

ΠBDSNP = (O, σaux1, σaux2,…, σaux11, σs1, σs2,…, σsk, σdivs1, σdivs2,…, σdivsk, σctr1, σctr2, …, σctrk,
σdivd1, σdivd2, …, σdivdk, σans1, σans2, …, σansk,syn, in, out)

(6)

where
(1) O = {a};
(2) σInput = (0,RInput), RInput = {a→a; a3→a; a5→λ};
(3) σaux1 = (1,Raux1), Raux1 = {a→a};
(4) σaux2 = (1,Raux2), Raux2 = {a→a};
(5) σaux3 = (0,Raux3), Raux3 = {a2k−1→a};
(6) σaux4 = (0,Raux4), Raux4 = {a→a};
(7) σaux5 = (0,Raux5), Raux5 = {a→a; a2→λ; a3→a; a5→λ};
(8) σaux6 = (0,Raux6), Raux6 = {ak→a2 ; ak+1→a3};
(9) σaux7 = (0,Raux7), Raux7 = {a2→λ; a3→a3};
(10) σaux8 = (2,Raux8), Raux8 = {a4→λ} ∪ {ai→a5,𝑖 ∈ 5,6 } ∪ {a9→λ};
(11) σaux9 = (0,Raux9), Raux9 = {ai→λ | 𝑖 ∈ 1,2,4 } ∪ {ai→a5 | 𝑖 ∈ 5,6,7,8 ; a9→λ};
(12) σaux10 = (0,Raux10), Raux10 = {a4→λ; a5→a; a9→λ};
(13) σaux11 = (0,Raux11), Raux11 = {a→a; a4→λ; a5→λ};
(14) σsi = (0,Rsi), Rsi = {a→a; a2→λ; a3→a2; a4→a3} ∪ {aj→λ | 𝑗 ∈ 5,7,8 } | 𝑖 ∈ 1,2, ⋯ , 𝑘 ;
(15) σdivs1 = (0,Rdivs1), Rdivs1 = {aj→λ | 𝑗 ∈ 1,2 } ∪ {a5→a4; a8/a5→a5}
(16) σdivsi = (0,Rdivsi), Rdivsi = {aj→λ | 𝑗 ∈ 1,2 } ∪ {aj→a4 | 𝑗 ∈ 5,6 } ∪ {aj/a5→a5 | 𝑗 ∈ 8,9 } | 𝑖 ∈ 2,3, ⋯ , 𝑘 ;
(17) σctri = (0,Rctri), Rctri = {a4→λ; a5→a; a9→λ} | 𝑖 ∈ 1,2, ⋯ , 𝑘 ;
(18) σdivd1 = (0,Rdivd1), Rdivd1 = {a→λ; aj/a→λ | 𝑗 ∈ 3,5 } ∪ {aj/a5→λ | 𝑗 ∈ 7,9 } ∪ {a8/a4→a4;

a10/a8→λ};

Figure 11. ΠBMSNP structure diagram.

In ΠBDSNP, the functions of each neuron (neuron group) are as follows:

• Input neuron Input. Input receives binary strings from the environment and converts
them to spikes in ΠBDSNP.

• Cache groups of neurons. Temporarily cache the dividend and the divisor. After the
highest digit of the dividend is input into the system, the auxiliary neuron will save the
dividend in the dividend neuron group. After the highest digit of the divisor is input
into the system, the auxiliary neuron will save the divisor in the divisor neuron group.

• Auxiliary neuron group. The control dividend and divisor are stored in the dividend
neuron group and the divisor neuron group, respectively.

• Dividend neuron group. Save the dividend, perform the operation of subtracting the
divisor, and send a signal to the control neuron group if the subtraction is not enough.

Appl. Sci. 2023, 13, 8556 24 of 31

• Divisor group of neurons. Save the divisor, and send the divisor to the dividend
neuron group for subtraction.

• Groups of control neurons. Control the process of subtracting the dividend and the
divisor, and stop when the result of the subtraction operation is less than the divisor.

• Resulting neuron groups. Counts the number of subtraction operations performed.

It can be seen from the following theorem that ΠBDSNP can complete the division of
two k-bit binary strings as input.

Theorem 4. For the binary divider realized by the SNPS shown in Figure 11, two natural numbers
of length k (k ≥ 2) are input to its input neuron σInput in binary form from low to high, and this
system can correctly calculate the quotient of two natural numbers.

Proof of Theorem 4. Let t represent the time slice length, t = 0 the initial state of the system,
X and Y any two natural numbers, X the dividend, and Y the divisor. Because division can
be regarded as subtraction of the same number continuously, as shown in Figure 11, the
binary divider is designed based on the idea of multiple subtraction; its operation process
can be divided into the following three parts:

• Input dividend X and divisor Y;
• Loop controls the dividend to subtract the divisor until the dividend is smaller than

the divisor;
• Count the number of subtractions, and convert the result into a binary form.

The execution process of ΠBDSNP is as follows:

(1) t = 0, start sending the corresponding spike sp-x0 of the lowest bit x0 of X to σInput.
(2) From t = 1 to t = k, the regular execution of ΠBDSNP and the change of spikes in each

neuron include:

(i) σInput accepts sp-xi (0 ≤ i ≤ k −1) and use the corresponding rules to send
sp-xi to σaux5. During this period, σaux5 will only receive the spikes sent by
σInput, and use the rules to send the received spikes to σsk in turn. Similarly,
σsj (3 ≤ j ≤ k) sends the received spikes to σsj−1 in sequence.

(ii) σaux1 and σaux2 maintain one spike each.
(iii) t = k, σaux3 and σaux6 each contain k − 1 spikes.
(iv) There are no spikes in σs1, σs2, σauxi | i ∈ {4, 5, 7, 8, 9, 10, 11}, σdivsi, σctri, σdivdi,

σansi | i ∈ {1, 2, . . . , k}.
(3) t = k + 1, the rule execution of ΠBDSNP and the change of spikes in each neuron include:

(i) σInput accepts sp-y0 and sends sp-y0 to σaux5 according to the corresponding
rules. σaux5 accepts sp-xk−1 and sends sp-xk−2, σsj (3 ≤ j ≤ k) accepts sp-xk−j
and sends sp-xk−j−1, and σs2 accepts sp-x0.

(ii) There are k spikes in σaux3

(iii) There are k spikes in σaux6, and the rule ak→a2 will be used to send two spikes
each to σauxi| i ∈ {1, 5, 7} and σsj (1 ≤ j ≤ k).

(4) t = k + 2, the rule execution of ΠBDSNP and the change of spikes in each neuron include:

(i) σInput accepts sp-y1 and sends sp-y0 to σaux5. σaux5 sends sp-xk−1 to σsk while
receiving sp-y0 and {a2} from σaux6. σsj (1 ≤ j ≤ k) receives sp-xj−1 and {a2}
from σaux6.

(ii) There are three spikes in σaux1 and k + 1 spikes in σaux3.
(iii) There is one spike in σaux6. There are two spikes in σaux7, and we use the rule

a2→λ to forget these two spikes. At this time, the dividend has been input into
the cache neuron group, and they will be sent to the dividend neuron group
for storage at the next moment.

(5) t = k + 3, σdivdj (1 ≤ j ≤ k) receives sp-xj−1, at this time sp-xj−1 = {a2} means xj−1 is 1,
sp-xj−1 = {λ} means that xj−1 is 0.

Appl. Sci. 2023, 13, 8556 25 of 31

(6) From t = k + 4 to t = 2k + 3, the regular execution of ΠBDSNP and the change of spikes
in each neuron include:

(i) σsj (1 ≤ j ≤ k) sends the received spikes to σsj−1 in sequence.
(ii) t = 2k, there are 2k−1 spikes in σaux3, the rule a2k−1→a executes, sending one

spike to σaux4.
(iii) t = 2k + 1, there are k + 1 spikes in σaux6, the rule ak+1→a3 is executed, and they

are sent to σauxi| i ∈ {1, 5, 7} and σsj (1 ≤ j ≤ k) respectively two spikes.
(iv) When t = 2k + 2, σaux5 receives three spikes from σaux6 and one spike from

σaux4. There are four spikes in σaux1. There are three spikes in σaux7. σsj (1 ≤j ≤ k)
will receive three spikes from sp-yj−1 and σaux6. σsj (1 ≤ j ≤k) will send two
spikes to σdivdj and σaux9. At this point, the divisors have been entered into the
cache neuron group, and they will be sent to the divisor neuron group for
storage at the next moment. sp-yj−1 (1 ≤ j ≤ k) = {a3} means that xj−1 is 1, and
sp-xj−1 = {λ} means that xj−1 is 0.

(v) t = 2k + 3, σdivsj (1 ≤ j ≤ k) receives the sp-yj−1 sent by sj, and the divi-
sor is stored in the divisor neuron group. There are five spikes in σaux9
(three from σaux7 and two from itself). There are five spikes in σaux10 (three
from σaux7 and two from σs1). There are no spikes in σctrj (1 ≤ j ≤ k). σdivdj
(1 ≤ j ≤ k), receiving two spikes sent by sj, after executing the corresponding rules
in σdivdj, sp-xj−1 = {a4} it means that xj−1 is 1, and sp-xj−1 = {a2} means that xj−1 is
0. We can obtain Figure 12 now that both the dividend and the divisor have
been entered into the system, which shows the spikes contained within the
individual neurons in the pattern C2k+3.

(7) After t = 2k + 4, the regular execution of ΠBDSNP and the change of spikes in each
neuron include:

(i) t = 2k + 4, σdivs1 receives five spikes from σaux10, σdivs1 receives five spikes from
σaux9, and prepares to send sp-y0 to σdivs1. σctr1 sends one spike to σdivs2 and
σdivd1 and σctr2, respectively.

(ii) t = 2k + 5, the difference operation between sp-x0 and sp-y0 is being performed
in σdivd1, and the operation result is kept in σdivd1. If a borrow occurs, four
spikes will be sent to σdivd2 to participate in the calculation of sp-x1 and sp-y1
at the next time slice.σdivs2 receives four spikes from σdivs1 and one spike from
σctr1, and prepares to send sp-y1 to σdivs2. σctr2 sends one spike to σdivs3 and
σdivd2 and σctr3, respectively.

(iii) t = 2k + 6, the difference operation between sp-x1 and sp-y1 is being performed
in σdivd2, and the operation result is kept in σdivd2. If a borrow occurs, four
spikes will be sent to σdivd3 to participate in the calculation of sp-x2 and sp-y2
at the next time slice.

(iv) Similarly, it is not difficult to verify that t = 3k + 4, the difference operation of
sp-xk−1 and sp-yk−1 is going on in σdivdk. So far, the first subtraction operation
is completed. If σdivdk does not send 4 spikes to σaux12 (X ≥ Y), σaux11 will
send one spike to σaux12, and σaux12 will send this spike to σans1 at the next
time slice.

(v) Because the neurons of σdivdi(1 ≤ i ≤ k) work in parallel, when t = 3k + 5, the
second subtraction operation is completed. If σdivdk does not send four spikes
to σaux12 (X ≥ Y), σaux11 will send one spike to σaux12, and σaux12 will send this
spike to σans1 at the next time slice.

(vi) The system will keep running until σdivdk sends four spikes to σaux12, indicating
that the current dividend is smaller than the divisor.

Appl. Sci. 2023, 13, 8556 26 of 31Appl. Sci. 2023, 13, x FOR PEER REVIEW 28 of 34

Figure 12. The pattern C2k+3 of ΠBDSNP at t = 2k + 3.

(7) After t = 2k + 4, the regular execution of ΠBDSNP and the change of spikes in each neu-
ron include:
(i) t = 2k + 4, σdivs1 receives five spikes from σaux10, σdivs1 receives five spikes from σaux9,

and prepares to send sp-y0 to σdivs1. σctr1 sends one spike to σdivs2 and σdivd1 and σctr2,
respectively.

(ii) t = 2k + 5, the difference operation between sp-x0 and sp-y0 is being performed in
σdivd1, and the operation result is kept in σdivd1. If a borrow occurs, four spikes will
be sent to σdivd2 to participate in the calculation of sp-x1 and sp-y1 at the next time
slice.σdivs2 receives four spikes from σdivs1 and one spike from σctr1, and prepares
to send sp-y1 to σdivs2. σctr2 sends one spike to σdivs3 and σdivd2 and σctr3, respectively.

(iii) t = 2k + 6, the difference operation between sp-x1 and sp-y1 is being performed in
σdivd2, and the operation result is kept in σdivd2. If a borrow occurs, four spikes will
be sent to σdivd3 to participate in the calculation of sp-x2 and sp-y2 at the next time
slice.

(iv) Similarly, it is not difficult to verify that t = 3k + 4, the difference operation of sp-
xk−1 and sp-yk−1 is going on in σdivdk. So far, the first subtraction operation is com-
pleted. If σdivdk does not send 4 spikes to σaux12 (X ≥ Y), σaux11 will send one spike
to σaux12, and σaux12 will send this spike to σans1 at the next time slice.

(v) Because the neurons of σdivdi(1 ≤ i ≤ k) work in parallel, when t = 3k + 5, the second
subtraction operation is completed. If σdivdk does not send four spikes to σaux12 (X
≥ Y), σaux11 will send one spike to σaux12, and σaux12 will send this spike to σans1 at
the next time slice.

(vi) The system will keep running until σdivdk sends four spikes to σaux12, indicating
that the current dividend is smaller than the divisor.

Through the above description, it is not difficult to see that the number of subtrac-
tions performed by this system will be sent to the neuron σans1 successively over time, and
the rule in the neuron σansi(1 ≤ i ≤ k) is a2→a, which means every 2 enters 1; then, when the

Figure 12. The pattern C2k+3 of ΠBDSNP at t = 2k + 3.

Through the above description, it is not difficult to see that the number of subtractions
performed by this system will be sent to the neuron σans1 successively over time, and the
rule in the neuron σansi (1 ≤ i ≤ k) is a2→a, which means every 2 enters 1; then, when the
system reaches the termination pattern, the result of X quotient Y is stored in the neurons
σans1, σans2, . . ., σansk in binary form from low to high.

Based on the above description, readers can verify that for k ≥ 2 the SNP divider
constructed above can correctly solve the quotient of two natural numbers with binary
length k, and the proof is completed. �

Figure 13 shows the structure of a ΠBDSNP for three-digit binary division. Based on
this ΠBDSNP, the division process of natural numbers 6 and 2 is listed in Table 4 which
shows the number of spikes contained in each neuron in ΠBDSNP(6,2). These two natural
numbers are expressed in binary form: 1102, 0102, 1102 ÷ 0102 = 0112. In Figure 13, the
dividend and the divisor are input through the neuron Input, and both the dividend and
the divisor are input to the cache neuron through the input auxiliary neuron group Tuple
(s1, s2, s3). The dividend is stored in the dividend neuron group (div1, div2, div3), while the
divisor is stored in the divisor neuron group (divs1, divs2, divs3), and the control neuron after
the input is completed The group immediately sends the divisor to the dividend neuron
group for continuous subtraction operations and sends one spike to the result neuron group
each time until the highest bit of the dividend neuron group sends a borrow message to the
control neuron group, and the final result is stored in the result group of neurons.

In Table 4, likewise, column 1 represents the system moment and columns 2 to 1
represent each neuron in the system. Each row of Table 4 represents the number of spikes
in each neuron in the system at the corresponding moment. It is not difficult to see that
when t = 18 the resulting neuron group (the last three columns) in Table 4 has calculated
the result (011) of dividing the last column of natural numbers 6 and 2.

Appl. Sci. 2023, 13, 8556 27 of 31

Appl. Sci. 2023, 13, x FOR PEER REVIEW 29 of 34

system reaches the termination pattern, the result of X quotient Y is stored in the neurons
σans1, σans2, ..., σansk in binary form from low to high.

Based on the above description, readers can verify that for k ≥ 2 the SNP divider con-
structed above can correctly solve the quotient of two natural numbers with binary length
k, and the proof is completed. □

Figure 13 shows the structure of a ΠBDSNP for three-digit binary division. Based on
this ΠBDSNP, the division process of natural numbers 6 and 2 is listed in Table 4 which
shows the number of spikes contained in each neuron in ΠBDSNP(6,2). These two natural
numbers are expressed in binary form: 1102, 0102, 1102 ÷ 0102 = 0112. In Figure 13, the divi-
dend and the divisor are input through the neuron Input, and both the dividend and the
divisor are input to the cache neuron through the input auxiliary neuron group Tuple (s1,
s2, s3). The dividend is stored in the dividend neuron group (div1, div2, div3), while the di-
visor is stored in the divisor neuron group (divs1, divs2, divs3), and the control neuron after
the input is completed The group immediately sends the divisor to the dividend neuron
group for continuous subtraction operations and sends one spike to the result neuron
group each time until the highest bit of the dividend neuron group sends a borrow mes-
sage to the control neuron group, and the final result is stored in the result group of neu-
rons.

In Table 4, likewise, column 1 represents the system moment and columns 2 to 1 rep-
resent each neuron in the system. Each row of Table 4 represents the number of spikes in
each neuron in the system at the corresponding moment. It is not difficult to see that when
t = 18 the resulting neuron group (the last three columns) in Table 4 has calculated the
result (011) of dividing the last column of natural numbers 6 and 2.

Figure 13. ΠBSSNP for subtraction of two three-digit numbers. Figure 13. ΠBSSNP for subtraction of two three-digit numbers.

Table 4. ΠBDSNP calculation process of the instance 1102÷0102 = 0112.

Step t Input aux5 aux6 aux7 aux8 aux9 s3 s2 s1 divs1 divs2 divs3 divd1 divd2 divd3 aux10 aux11 ans3 ans2 ans1

0 - 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 1 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 3 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
5 1 0 1 2 2 0 3 3 2 0 0 1 0 0 0 0 0 0 0 0
6 0 1 2 0 2 0 0 0 0 2 2 2 0 2 2 0 0 0 0 0
7 - 0 4 0 2 0 1 0 0 0 0 0 0 2 2 0 0 0 0 0
8 - 4 1 3 2 0 3 4 3 0 0 0 0 2 2 0 0 0 0 0
9 - 0 1 0 5 5 0 0 0 2 3 2 2 5 4 0 0 0 0 0
10 - 0 1 0 5 5 0 0 0 5 3 0 2 4 4 0 0 0 0 0
11 - 0 1 0 5 5 0 0 0 5 8 0 7 4 4 0 0 0 0 0
12 - 0 1 0 5 5 0 0 0 5 8 6 7 10 4 0 0 0 0 0
13 - 0 1 0 5 5 0 0 0 5 8 6 7 8 9 1 0 0 0 0
14 - 0 1 0 5 5 0 0 0 5 8 6 7 10 13 1 1 0 0 0
15 - 0 1 0 5 5 0 0 0 5 8 6 7 8 7 1 1 0 0 1
16 - 0 1 0 5 5 0 0 0 5 8 6 7 10 11 1 1 0 0 2
17 - 0 1 0 9 9 0 0 0 5 8 6 7 8 9 5 5 0 1 1
18 - 0 1 0 0 0 0 0 0 0 3 5 8 10 12 0 0 0 1 1

The ΠBDSNP designed in this section can complete the division of two k-bit binary
numbers within 2k + 4 time slices, and the number of neurons used is 5k + 12. The neurons
in ΠBDSNP use a total of sixteen types of non-delay spiking rules and thirteen types of
forgetting rules.

4. Comparison of Arithmetic Operations Realized by Various SNP Systems

In this section, we analyze and compare the excellent SNPS proposed in recent years
for basic arithmetic operations; the results are shown in Table 5. The statistical dimensions
include the number of input neurons (NIN), the encoding method of operands (Encoding),

Appl. Sci. 2023, 13, 8556 28 of 31

the number of neurons used by the four basic operations (addition, subtraction, multipli-
cation, and division), the number of time slices required to complete the operation, and
the number of rule types (NRT). In operand input, when one input neuron is used it takes
a long time to input two operands sequentially, but fewer neurons are used. When two
input neurons are used, the input time consumed by parallel input of two operands is
short, while the number of neurons is increased. There are two commonly used operand
encodings: spike time interval-based encoding and spike sequence-based encoding. Spike
time interval-based encoding is the conversion of a numerical value into time slices in the
interval between two spikes, while spike sequence-based encoding is the conversion of
numeric values into a specific sequence of characters, such as a binary sequence. When
the system is input, the operand (value) is encoded into a corresponding spike sequence or
spike interval. The calculation process is to process the spike. When the system outputs,
the spike sequences or spike interval is decoded into a value. The number of rule types
used refers to the number of rules using different representations, e.g., the rule a→a is only
considered as 1 rule type even if it occurs in multiple neurons. The statistical results in bold
in Table 5 are taken from the literature, while the rest are taken from the present study.

Table 5. The number of neurons, time slices required, and number of rule types used for four
arithmetic approaches.

Article Input Type Encoding Add Sub Mut Div Rule Types

[28] multiple inputs time interval 10/- 12/- 21/- 25/- 4/4/12/15
[35] multiple inputs time-free 2/- 2/- 11/- 10/- 2/6/15/16
[29] multiple inputs spike train 3/(k + 1) 10/(k + 2) 13/(k + 7) -/- 3/6/3/-

[31] multiple inputs spike train 7/(k + 2) 7/(k + 2) (k2/2 + 15k/2 + 4)/
(2k + 5) -/- 6/6/6/-

[30] single input spike train (3k + 5)/(3k + 4) -/- (k2 + 5k + 3)/(4k + 2) -/- 9/-/10/-

[36] single input spike train (2k + 4)/(3k + 1) -/- 5k/(3k + 5) -/- (5k − 1)/-
/(9/2k + 7)/-

This
work single input spike train (k + 8)/(2k + 4) (k + 13)/(2k + 3) (3k + 8)/(3k + 5) (5k + 12)/

(4k + quotient + 4) 6/11/9/29

Note: A/B, A represents the number of neurons used, B represents the number of time slices required for the
operation. C/D/E/F, C represents the number of rules used for addition. Similarly, D, E, and F denote the number
of rules used for subtraction, multiplication, and division, respectively.

In Table 5, for example, the SNPS designed in [29] has multiple input neurons and the
digital encoding method is spike sequences. The additive SNP system uses three neurons,
the time required for the addition of two natural numbers with a length of k bits is k + 1,
and the number of rules is three. Note that while the number of neurons required for
multiplication in [29] is thirteen and the time required is k + 7, this multiplication SNPS
can only fix one of the multipliers, which is fixed at 26. Due to the lack of an SNPS for
implementing division operations in [29], the number of neurons, computation time, and
number of rule types required for the division operation are marked with ‘-’.

In [28], the authors used the time interval encoding method, and the input number was
represented by the time interval between two spike signals received by the input neuron.
This is because the required time is related to the value of the input number, not its binary
length, meaning that it cannot obtain the number of time slices required for the calculation.
Similarly, [35] used the time-free encoding method to remove the precise execution time
of the rules, making the solution of the problem independent of the execution time of the
rules; thus, the time required for calculation cannot be obtained.

Refs. [17,31] used spike sequence encoding and two input neurons, meaning that the
two operands do not need to be stored in the provided system, ensuring that the number
of neurons used by addition and subtraction operations is constant and the calculation
consumes a number of time slices k + 1 (or k + 2). The difference between the multiplication
of [29] and [15] is that in [29] a multiplier is fixed to 26, while in [31] both multipliers can
be input by input neurons, meaning that there is a significant number difference between
the neurons and the time slices of consumption. Neither [29] nor [31] provide an SNPS for
the division operation.

Appl. Sci. 2023, 13, 8556 29 of 31

The work in [30,36] and in this paper, all of which employ spike sequence encoding
and one input neuron, are comparable. Because the SNPS in this paper only saves the first
operand, the calculation starts when the second operand arrives, which time improves
the parallelism of the relevant neurons in the calculation process. Thus, for the number of
neurons used in this paper both the time and computation time are less than the results
in [30,36]. In addition, this paper presents SNPS for subtraction and division operations,
which solves the open problem of how to design a divider based on the SNP system
proposed in [30].

On the other hand, in the SNPS with one input neuron, the input of two k-bit operands
requires 2k spikes; thus, considering the transmission of spikes and the output of calculation
results, the basic arithmetic operation SNPS requires at least 2k + 2 time slices, meaning that
the SNPS addition and multiplication designed in this paper have reached the optimum
in terms of time consumption. Because the first operand of the input needs to be saved,
and considering both the input neuron and the calculation neuron, the SNPS needs at least
k + 2 neurons; thus, the SNPS addition and multiplication designed in this paper use a
number of neurons that is close to optimum.

From the above analysis, we can see that, under the same encoding and input approach,
the basic arithmetic operation SNPS designed in this paper has obvious advantages.

5. Conclusions and Future Work

Basic arithmetic operations are the basis of numerical calculations. In basic arithmetic
operations, it is of great significance to study the simplification of computing components,
reduce computing resources, and improve computing efficiency. Based on this, the present
paper studies the problem of constructing a family of SNPS to realize the four basic arith-
metic operations of addition, subtraction, multiplication, and division using only a single
input neuron. Specifically: (1) by improving the parallelism of addition, this paper con-
structs a k-bit binary addition and multiplication with one input neuron. Among them,
the number of neurons used by the adder is k + 8 and it takes 2k + 4 time slices, which is
50% and 33% less than similar systems, respectively; (2) the number of neurons used in the
multiplication constructed in this paper is 3k + 8, and it takes 3k + 5 time slices, while the
number of neurons used is 40% less than that of similar excellent systems; (3) a subtractive
SNPS is designed, in which the number of neurons used and the time consumption are
k + 13 and 2k + 3 time slices, respectively; (4) based on multiple subtraction, an SNPS
for division for solving the quotient of two natural numbers of any binary length is con-
structed. The number of neurons required is 5k + 13 and the maximum time-consuming
is 4k + quotient + 4 time slices, which solves the open problem proposed in [30] of how to
design an SNPS to compute the division of two natural numbers. This paper designs a
complete set of basic arithmetic operation SNPS, and has obvious advantages in the same
type of system.

The system designed in this paper only considers the basic arithmetic operations of
natural numbers, and further research can extend it to integers and even decimals. On the
other hand, the SNPS for division that we have designed here is not optimal, and further
work could optimize the system to reduce the time consumption and the number of neurons
used. We are currently developing software for simulating the operation process of SNPS
to accelerate the development of related SNPS systems and verify whether these systems
are effective. In addition, an SNPS for expression evaluation, which requires the system to
take different operations to complete compound operations, is being further developed.

Author Contributions: Conceptualization, X.C. and P.G.; Formal analysis, X.C. and P.G.; Investi-
gation, P.G.; Methodology, P.G.; Supervision, P.G.; Validation, X.C.; Writing—original draft, X.C.;
Writing—review and editing, X.C. and P.G. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Appl. Sci. 2023, 13, 8556 30 of 31

Informed Consent Statement: Not applicable.

Data Availability Statement: Contact the authors for the full dataset.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Păun, G. Computing with membranes. J. Comput. Syst. Sci. 2000, 61, 108–143. [CrossRef]
2. Păun, G. A Quick Introduction to Membrane Computing. J. Logic. Algebr. Progr. 2010, 79, 291–294. [CrossRef]
3. Atanasiu, A. Arithmetic with Membranes. In Proceedings of the Workshop on Multiset Processing, Argeş, Romania,

21–25 August 2000.
4. Ciobanu, G. A Programming Perspective of the Membrane Systems. Int. J. Comput. Commun. 2006, 1, 13. [CrossRef]
5. Guo, P.; Chen, J. Arithmetic Operation in Membrane System. In Proceedings of the 2008 International Conference on BioMedical

Engineering and Informatics, Sanya, China, 27–30 May 2008.
6. Guo, P.; Zhang, H. Arithmetic Operation in Single Membrane. In Proceedings of the 2008 International Conference on Computer

Science and Software Engineering, Wuhan, China, 12–14 December 2008.
7. Guo, P.; Luo, M. Signed Numbers Arithmetic Operation in Multi-Membrane. In Proceedings of the 2009 First International

Conference on Information Science and Engineering, Nanjing, China, 26–28 December 2009.
8. Guo, P.; Liu, S.J. Arithmetic Expression Evaluation in Membrane Computing with Priority. Adv. Mater. Res. 2011, 225–226,

1115–1119. [CrossRef]
9. Guo, P.; Chen, H.Z.; Zheng, H. Arithmetic Expression Evaluations with Membranes. Chin. J. Electron 2014, 23, 55–60.
10. Guo, P.; Chen, H.Z. Arithmetic Expression Evaluation by P Systems. Appl. Math. Inform. Sci. 2014, 7, 549–553. [CrossRef]
11. Guo, P.; Zhang, H.; Chen, H.Z.; Chen, J.X. Fraction Arithmetic Operations Performed by P Systems. Chin. J. Electron 2013, 22,

690–694.
12. Zhang, X.; Liu, Y.; Luo, B.; Pan, L. Computational Power of Tissue P Systems for Generating Control Languages. Inf. Sci. 2014,

278, 285–297. [CrossRef]
13. Ionescu, M.; Paun, G.; Yokomori, T. Spiking Neural P Systems. Fund. Inform. 2006, 71, 279–308.
14. Luo, Y.; Zhao, Y.; Chen, C. Homeostasis Tissue-Like P Systems. IEEE Trans. NanoBiosci. 2021, 20, 126–136. [CrossRef]
15. Păun, G. Spiking Neural P Systems. In Power and Efficiency; Springer: Berlin/Heidelberg, Germany, 2007; pp. 153–169.
16. Chen, H.; Freund, R.; Ionescu, M.; Paun, G.; Perez-Jimenez, M.J. On String Languages Generated by Spiking Neural P Systems.

Fund. Inform. 2007, 75, 141–162.
17. Chen, H.; Ionescu, M.; Ishdorj, T.-O.; Păun, A.; Păun, G.; Pérez-Jiménez, M.J. Spiking Neural P Systems with Extended Rules:

Universality and Languages. Nat. Comput. 2008, 7, 147–166. [CrossRef]
18. Metta, V.P.; Krithivasan, K.; Garg, D. Computability of spiking neural P systems with anti-spikes. New. Math. Nat. Comput. 2012,

8, 283–295. [CrossRef]
19. Păun, A.; Păun, G. Small Universal Spiking Neural P Systems. BioSystems 2007, 90, 48–60. [CrossRef]
20. Song, T.; Pan, L.; Păun, G. Spiking Neural P Systems with Rules on Synapses. Theor. Comput. Sci. 2014, 529, 82–95. [CrossRef]
21. Song, T.; Pan, L.; Păun, G. Asynchronous Spiking Neural P Systems with Local Synchronization. Inf. Sci. 2013, 219,

197–207. [CrossRef]
22. Wang, J.; Hoogeboom, H.J.; Pan, L.; Păun, G.; Pérez-Jiménez, M.J. Spiking Neural P Systems with Weights. Neural. Comput. 2010,

22, 2615–2646. [CrossRef]
23. Liu, X.; Ren, Q. Spiking Neural Membrane Computing Models. Processes 2021, 9, 733. [CrossRef]
24. Pan, L.; Păun, G.; Pérez-Jiménez, M.J. Spiking Neural P Systems with Neuron Division and Budding. Sci. China Inf. Sci. 2011, 54,

1596–1607. [CrossRef]
25. Xue, J.; Liu, X. Solving Directed Hamilton Path Problem in Parallel by Improved SN P System. In Proceedings of the International

Conference on Pervasive Computing and the Networked World, Istanbul, Turkey, 28–30 November 2012; pp. 689–696. [CrossRef]
26. Rong, H.; Yi, K.; Zhang, G.; Dong, J.; Paul, P.; Huang, Z. Automatic Implementation of Fuzzy Reasoning Spiking Neural P Systems

for Diagnosing Faults in Complex Power Systems. Complexity 2019, 2019, 2635714. [CrossRef]
27. Pan, L.; Păun, G. Spiking Neural P Systems with Anti-Spikes. Int. J. Comput. Commun. 2009, 4, 273. [CrossRef]
28. Zeng, X.; Song, T.; Zhang, X.; Pan, L. Performing Four Basic Arithmetic Operations with Spiking Neural P Systems. IEEE Trans.

NanoBiosci. 2012, 11, 366–374. [CrossRef]
29. Naranjo, G.; Ángel, M.; Leporati, A. Performing Arithmetic Operations with Spiking Neural P Systems. In Proceedings of the

Seventh Brainstorming, Sevilla, Spain, 27 February 2009.
30. Zhang, X.-Y.; Zeng, X.-X.; Pan, L.-Q.; Luo, B. A spiking neural P system for performing multiplication of two arbitrary natural

numbers. Jisuanji Xuebao 2009, 32, 2362–2372.
31. Peng, X.-W.; Fan, X.-P.; Liu, J.-X.; Wen, H. Spiking Neural P Systems for Performing Signed Integer Arithmetic Operations. J. Chin.

Comput. Syst. 2013, 34, 360–364.
32. Zhang, G.; Rong, H.; Paul, P.; He, Y.; Neri, F.; Pérez-Jiménez, M.J. A Complete Arithmetic Calculator Constructed from Spiking

Neural P Systems and Its Application to Information Fusion. Int. J. Neural. Syst. 2021, 31, 2050055. [CrossRef]

https://doi.org/10.1006/jcss.1999.1693
https://doi.org/10.1016/j.jlap.2010.04.002
https://doi.org/10.15837/ijccc.2006.3.2291
https://doi.org/10.4028/www.scientific.net/AMR.225-226.1115
https://doi.org/10.12785/amis/072L26
https://doi.org/10.1016/j.ins.2014.03.053
https://doi.org/10.1109/TNB.2020.3025921
https://doi.org/10.1007/s11047-006-9024-6
https://doi.org/10.1142/S1793005712500032
https://doi.org/10.1016/j.biosystems.2006.06.006
https://doi.org/10.1016/j.tcs.2014.01.001
https://doi.org/10.1016/j.ins.2012.07.023
https://doi.org/10.1162/NECO_a_00022
https://doi.org/10.3390/pr9050733
https://doi.org/10.1007/s11432-011-4303-y
https://doi.org/10.1007/978-3-642-37015-1_60
https://doi.org/10.1155/2019/2635714
https://doi.org/10.15837/ijccc.2009.3.2435
https://doi.org/10.1109/TNB.2012.2211034
https://doi.org/10.1142/S0129065720500550

Appl. Sci. 2023, 13, 8556 31 of 31

33. Păun, G.; Pérez-Jiménez, M.J.; Rozenberg, G. Spike trains in spiking neural P systems. Int. J. Found. Comput. Sci. 2006, 17,
975–1002. [CrossRef]

34. Pan, L.; Zeng, X.; Zhang, X. Time-Free Spiking Neural P Systems. Neural. Comput. 2011, 23, 1320–1342. [CrossRef]
35. Liu, X.; Li, Z.; Liu, J.; Liu, L.; Zeng, X. Implementation of Arithmetic Operations with Time-Free Spiking Neural P Systems. IEEE

Trans. NanoBiosci. 2015, 14, 617–624. [CrossRef] [PubMed]
36. Wang, H.; Zhou, K.; Zhang, G. Arithmetic Operations with Spiking Neural P Systems with Rules and Weights on Synapses. Int. J.

Comput. Commun. 2018, 13, 574. [CrossRef]
37. Peng, X.; Fan, X.; Liu, J.; Wen, H.; Liang, W. Spiking Neural P Systems with Anti-Spikes for Performing Balanced Ternary Logic

and Arithmetic Operations. J. Chin. Comput. Syst. 2013, 34, 832–836. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1142/S0129054106004212
https://doi.org/10.1162/NECO_a_00115
https://doi.org/10.1109/TNB.2015.2438257
https://www.ncbi.nlm.nih.gov/pubmed/26335555
https://doi.org/10.15837/ijccc.2018.4.3265
https://doi.org/10.4028/www.scientific.net/AMR.505.378

	Introduction
	Related Research
	Spiking Neural P Systems
	Research on Arithmetic Operation of SNP

	Arithmetic Operation in Spiking Neural P Systems
	Binary Addition in SNP Systems
	Binary Subtraction in SNP Systems
	Binary Multiplication in SNP Systems
	Binary Division in SNP Systems

	Comparison of Arithmetic Operations Realized by Various SNP Systems
	Conclusions and Future Work
	References

