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Abstract: Text classification is one of the fundamental tasks in natural language processing and
is widely applied in various domains. CNN effectively utilizes local features, while the Attention
mechanism performs well in capturing content-based global interactions. In this paper, we propose a
multi-layer feature fusion text classification model called CAC, based on the Combination of CNN
and Attention. The model adopts the idea of first extracting local features and then calculating
global attention, while drawing inspiration from the interaction process between membranes in
membrane computing to improve the performance of text classification. Specifically, the CAC model
utilizes the local feature extraction capability of CNN to transform the original semantics into a
multi-dimensional feature space. Then, global attention is computed in each respective feature space
to capture global contextual information within the text. Finally, the locally extracted features and
globally extracted features are fused for classification. Experimental results on various public datasets
demonstrate that the CAC model, which combines CNN and Attention, outperforms models that
solely rely on the Attention mechanism. In terms of accuracy and performance, the CAC model also
exhibits significant improvements over other models based on CNN, RNN, and Attention.

Keywords: text classification; convolutional neural networks (CNN); attention mechanism; multi-
layer feature fusion

1. Introduction

With the rapid development of internet technology, an increasing amount of textual
information is flowing into the internet. These massive amounts of text data contain
rich semantic information, which plays a significant guiding role in the activities and
development of society. Therefore, it has become particularly important to classify and
extract information from these textual data. Text classification technology, as one of the
most fundamental and essential tasks in the field of natural language processing, enables
people to process text data more conveniently and extract the most critical information
from it.

In recent years, with the continuous maturity of deep learning technology, significant
progress has been made in text classification. A series of deep learning models based on
convolutional neural networks (CNN), recurrent neural networks (RNN), and attention
mechanisms have been widely applied to text classification tasks. The core problem of
text classification lies in the extraction and representation of text features, in which deep
learning technology [1–3] has more advantages over traditional machine learning [4–7]
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methods. Its multi-layered and complex neural network structure can automatically learn
the hidden features of text from data, and therefore, it can achieve better classification
results than shallow learning models.

Convolutional neural networks (CNN) have always been the core and mainstream al-
gorithm in the field of image processing, which extracts different feature maps by applying
convolution kernels of different sizes and strides on the input image and performs certain
calculations. In 2014, Kim first introduced CNN into the field of natural language process-
ing and proposed the TextCNN model [8] for text classification. Subsequently, a series of
CNN-based text processing models [9–12] were proposed and applied to text classification
tasks, proving the powerful semantic feature extraction ability of CNN. However, due to
the limitations of the convolution kernel size, CNN has strong advantages in local feature
extraction, but is difficult to extract long-distance dependency relationships within text. In
order to tackle this problem, researchers have explored various approaches, such as increas-
ing the depth of the network [13,14] or incorporating multi-scale feature connections [15] to
indirectly extract long-range features. This has partially alleviated this limitation of CNN
and achieved some promising results. However, some researchers believe that increasing
the depth is not a good method [16]. Although increasing the depth can improve accuracy,
it also makes the model more complex, increases the number of parameters, produces
larger performance overhead, and is more prone to overfitting during training. This has
also spawned the emergence of models such as SVDCNN [17] and GCN [18].

Recurrent Neural Networks (RNNs), especially LSTM [19–21] and GRU [22–24], have
been the primary techniques in the field of text processing. RNNs use sequential time
steps to compute and propagate hidden features to represent and classify text [25–28],
which endows RNNs with the capability of memorization, making it better at modeling
sentence sequences. However, it is precisely this recurrent nature of RNNs that makes it
prone to gradient vanishing and exploding problems when processing long sequences,
and its sequential nature hinders parallel computing during training. To address these
issues, some researchers [29] have improved RNNs’ performance by incorporating the
Attention mechanism. Based on this, Google introduced the Transformer [30] and Bert [31]
models in 2017 and 2018, respectively, which entirely use the Attention mechanism to
calculate global dependency relationships between inputs and outputs and also support
more parallelization. In particular, BERT, a pre-trained model based on the Transformer,
has brought new breakthroughs to various natural language processing tasks, including
text classification, fully demonstrating the value of the Attention mechanism [32–36] in
global feature processing. However, Transformer-based models tend to be more complex
and require more data and higher computing resources.

This paper proposes a CAC classification model based on CNN and the Attention
mechanism, which fully leverages the local feature extraction capabilities of CNNs. By
introducing the Attention mechanism, the model avoids the limitations of CNN in global
dependency modeling and achieves a perfect combination of the advantages of both
approaches. While RNN networks can also be used for global feature extraction, there
have been many works that combine RNN with CNN [37–39] or RNN with Attention
mechanisms [40–42] to model and classify textual data. However, considering the issue
of feature forgetting and poor parallelization of RNN and the superior feature extraction
capabilities of attention compared to RNN, we have chosen to build the CAC model by
combining CNN with Attention. Unlike other CNN and Attention-based models [43–46],
our CAC model has a simpler structure and lower complexity.

In the design of the model’s structure, we draw inspiration from the computational
principles of membrane computing [47,48]. Membrane computing is a hierarchical and
parallel computational model where individual computing units are encapsulated within
different membranes and communicate and interact through the membranes to exchange
information and perform computations, thus achieving highly parallel computing pro-
cesses. Building upon this, we incorporate the hierarchical structure, isolated computation,
and parallel computation features of membrane computing into the design of our model,
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combining the advantages of CNN and Attention. This enables the model to handle both
local features and extract global relationships. Furthermore, we simplify the stacked compu-
tational Attention structure to support multi-layer computations, significantly reducing the
computational complexity of the model. Experimental results on multiple text classification
datasets demonstrate that compared to CNN and Transformer, our novel model not only
converges faster but also achieves significantly improved accuracy.

The remainder of this paper is organized as follows. Section 2 focuses on the imple-
mentation process of our model, including its structure, parameter settings, and other
details. Section 3 presents the performance of our model on different datasets. In Section 4,
we performed ablation experiments to investigate the role of each component of our model.
Finally, we summarize the main contributions and limitations of this paper and suggest
future research directions.

2. Methodologies
2.1. Overview

Our model consists of five main modules in terms of structure, as shown in Figure 1,
from bottom to top: the input embedding layer, the feature extraction layer, the feature
fusion layer, the text representation layer, and the classification prediction layer.

Figure 1. The overall structure of the proposed CAC model.
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The input embedding layer is responsible for converting the text into vector representa-
tions, capturing the semantic information of words. By mapping words to high-dimensional
vector space, the word embedding layer represents words in the text as continuous and
semantically similar vectors, helping the model understand the relationships and meanings
between words. The feature extraction layer is the core part of the model, utilizing methods
such as convolutional neural networks and attention mechanisms to extract local and global
features from the text. The convolutional neural network extracts local features by sliding
windows over the text, capturing the local relationships between words. The attention
mechanism models the global interactions within the entire text sequence by learning the
importance weights of different positions, enabling the model to focus on key words or
phrases and capture the global semantic information. The feature fusion layer combines
the local and global features obtained from the feature extraction layer to comprehensively
consider information from different levels. By merging representations of different features,
the model can better capture multi-level semantic information in the text and improve the
accuracy and robustness of the classification task. The text representation layer encodes
and integrates the fused features to generate a vector representing the entire text. By repre-
senting the text as a fixed-length vector, the model can transform texts of different lengths
into a unified representation, facilitating subsequent classification prediction tasks. Finally,
the classification prediction layer uses the SoftMax classifier to map the text representation
to predefined categories, completing the text classification task.

In addition, in the structural design of the model, we incorporate computational
principles such as hierarchical structure, isolated computation, and parallel computation
inspired by membrane computing. In terms of hierarchical structure design, we treat the
input embedding layer, feature extraction layer, feature fusion layer, text representation
layer, and classification prediction layer as independent hierarchical modules, each with
its own computational units and structure. Each layer performs feature extraction in
different feature spaces. In isolated computation, similar to the membrane-isolated nature
of computational units in membrane computing, the local and global features of the text are
computed separately. Different computational rules are applied in each feature extraction
unit, and information is propagated, and feature fusion is achieved through interactions
between membranes. In parallel computation, multiple parallel feature extraction modules
are designed, with each module responsible for processing text information at different
scales, thereby improving computational efficiency and model performance.

To achieve richer feature representation, we employ different optimization strategies
and transformation rules, enabling each layer to perform feature propagation in different
feature spaces. Specifically, at the input layer, we enhance the sequential information of
the input sequence using learnable positional vectors. At the feature extraction layer, we
employ convolution and attention computations to capture both local and global relational
features within the sequence. To reduce computational complexity, we simplify the stacked
attention structure to support multi-layer computations. In the feature fusion layer, we
merge the features obtained from both global and local outputs. Finally, at the linear
classification layer, we utilize a standard fully connected neural network to map the feature
vectors to the predicted results.

In the following sections, we will provide a detailed explanation of the implementation
details and main functions of each module in the model.

2.2. Input Embedding Module

When modeling text-related data, the first step is to vectorize it. In machine learning,
common methods for text representation include one-hot encoding, bag-of-words model,
and TF-IDF. However, in deep learning, the most common approach is to map individual
words (or characters) to a low-dimensional dense vector space using an embedding layer
known as Token Embedding.

Unlike CNN models with n-gram or RNN models with temporal structures, these
models’ network structures already possess the capability to capture sequential features.
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However, this is not the case for models based on attention mechanisms. This is because
attention mechanisms, in their computational process, involve linear transformations of
a few matrices without considering the positional information of words in the text. In
self-attention mechanisms, the representation of each word is computed based on the
representations of all other words in the text, without explicit indication of which words
are closer or farther from the current word. Therefore, to enable attention-based models
to utilize the sequential information in the text, the addition of positional information
becomes crucial. The introduction of positional vectors addresses this issue. By adding
a positional vector to each word, the model can better differentiate words at different
positions in the text and capture the relationships and dependencies between words more
sensitively during the attention computation process.

As shown in Figure 1, the CAC model consists of two key components in the Input
Embedding module: Token Embedding and Positional Embedding. Token Embedding
assigns an index to each word based on a constructed vocabulary (Word Sequence), and
then uses an Embedding layer to represent each word as a word vector. On the other hand,
Positional Embedding encodes the positional information of each word (Position sequence),
and also utilizes an Embedding layer to convert the positional encoding into positional
vectors.

The presence of positional vectors enables the model to better understand the temporal
information within the text and accurately capture important contextual relationships. In
our model, we employ learnable embeddings to represent the positional encoding. As
shown in Figure 2, for a given word, its input representation E = [e1, e2, . . . , en] is obtained
by element-wise summation of the word embeddings T = [t1, t2, . . . , tn] and position
embeddings P = [p1, p2, . . . , pn] transformed by the Embedding layer. Each element of the
positional embeddings P is learnable, effectively preserving the position information. The
calculation formula is as follows:

E = LayerNorm
(

Dropout
(

T ∗
√

d + P
))

, (1)

where E, T, and P are all n× d matrices, where n represents the length of the sentence
sequence, and d represents the dimensionality of the vectors. In the calculation process,
a series of operations are performed on the input word vectors. First, we scale the word
vector matrix T by a factor of

√
d to adapt the range of values to the training process of

the model, ensuring better convergence. Next, we perform an element-wise addition of
the scaled word vector matrix T and the position vector matrix P to introduce positional
information of the words in the sentence. With the addition of positional vectors, the model
can better distinguish words at different positions in the sentence and more sensitively
capture the relationships and dependencies between words in the subsequent feature
extraction process.

Figure 2. Computational process of input embedding.
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To address the issues of overfitting and vanishing gradients, we have incorporated
Dropout and LayerNorm techniques. Dropout randomly sets a fraction of the neuron
outputs to zero, reducing overfitting in neural networks. LayerNorm, on the other hand,
is used to normalize the input tensors, ensuring a standardized distribution of data and
further enhancing the stability and generalization ability of the model.

After these steps, our model obtains the feature representation E of the input sequence,
which serves as the input for the next module of feature extraction. By scaling the word
vectors, introducing positional vectors, and applying Dropout and LayerNorm, we are able
to better utilize the information in the text sequence and extract rich semantic features,
thereby improving the performance of the model.

2.3. Feature Extraction Process

In order to better learn the local features of text, we introduce convolutional neural
networks based on the Attention mechanism. Specifically, we use a hierarchical design in
the feature extraction module, allowing the model to better calculate features in different
dimensional spaces. Each layer consists of a local feature extractor and a global feature
extractor, where the local feature extractor uses convolutional neural networks to extract
local features, while the global feature extractor calculates global features through the
Attention mechanism. With this hierarchical design, our model can capture both local and
global features of the text, thus better understanding the semantic information of the text.

2.3.1. Convolutional Neural Network Layer

Convolutional neural networks (CNNs) have been widely used in both computer
vision and natural language processing fields and have become a mature feature extractor.
Compared with recurrent neural networks, the sliding window operation of CNNs is
order-independent, and different convolutional kernels have no influence on each other,
thus exhibiting very high parallel freedom. In addition, by controlling the number of
convolutional kernels, it is possible to achieve channel size scaling, thereby achieving
the goal of scaling feature dimensions. To take advantage of these benefits of CNNs, we
introduce a layered structure based on CNNs in the feature extraction module, mapping
the original text features to different feature spaces and reducing the dimensionality of
word vectors to reduce the number of parameters and computation at each layer.

The introduction of text convolution also allows the model to better utilize the po-
sitional information of the sequence. The feature vectors output by the convolutional
layer contain positional information (depending on the convolution order of the kernels).
Unlike traditional convolutional structures, we do not include a Max Pooling layer after
the convolutional layer (which only retains the maximum value in the feature extraction),
as Max Pooling would lead to the loss of crucial positional encoding information in the
feature representation. This way, our model can better capture the local features of the text,
thereby improving its performance.

In our model, the role of the convolutional layer is to perform convolutional operations
on the word embedding matrix to extract corresponding local features. The process of
CNN extracting local features is illustrated in Figure 3. In the model implementation,
we use multiple convolutional kernels of different sizes to extract n-gram features of
different lengths. By setting different kernel sizes, we can capture word combinations of
different lengths and obtain richer local feature information which helps to increase the
model’s robustness and generalization ability. At the same time, the output dimension
of the convolutional layer is reduced by adjusting the number of convolutional kernels.
The specific calculation process of a CNN is as follows. For each parallel convolutional
layer, we perform n-gram convolution between the input sentence word embedding matrix
E ∈ Rn×d (n is the sentence length, d is the word embedding dimension) and different-sized
convolutional kernels C = [c1, c2, . . . , cd/l ], generating local feature outputs of different
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layers, where ci ∈ Rk×d (k is the kernel size, l is the parallel layer number). The computation
process of the feature map matrix Ml ∈ Rn×(d/l) can be referred to as Equation (2):

Ml = E ~ C, (2)

where ~ represents the convolution operation of ci on E. Specifically, the calculation of
values in the feature map is shown in Equation (3):

mi = f (ci ∗ E + b), (3)

where f is the nonlinear activation function of the convolution layer and b is the bias term.

Figure 3. CNN performs local feature extraction and mapping of the input embedding vector.

The convolution operation maps the original text sequence from the word space to
a semantic feature space with higher information content. In this way, we can obtain the
output matrices of the convolution layers, i.e., [M1, M2, . . . , Ml ]. These output matrices
contain various local features in the input sequence, such as word combinations, phrases,
and sentence structures. Through these features, we can better capture the semantic
information of the text, thereby improving the performance of text classification tasks.

2.3.2. Attention Mechanism Layer

In text classification tasks, each word contributes differently to the textual features.
Therefore, the introduction of attention mechanisms can adjust the weight coefficients (i.e.,
the values of attention distribution) of key words in self-attention computation, allowing
the model to focus more on important information for better results. The incorporation
of attention mechanisms enables the model to globally reprocess the locally extracted
features obtained through convolution. The attention calculation layer consists of two main
components: multi-head attention and a two-layer feed-forward neural network. Among
them, multi-head attention is the most critical part, as it captures semantic information
from different aspects of the input sequence through multiple attention heads. Adaptive
feature weighting and aggregation are performed within each attention head, resulting in
the final attention representation. The overall structure of the attention calculation process
is illustrated in Figure 4.
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Figure 4. Attention performs global attention calculations.

From the structure depicted in the diagram, it can be observed that Multi-Head
Attention performs multiple self-attention computations (multiple heads) on the same
input word vectors. This approach aims to capture important features from different
subword spaces, thereby enhancing the model’s ability to gather diverse information. Self-
attention is a mechanism used to calculate the weighted sum of each element based on
all elements in the input sequence, enabling the capture of relationships and importance
between elements. The computation formula for self-attention is as follows:

Attention(Q, K, V) = so f tmax
(

QKT
√

dk

)
V (4)

Within each output headi of self-attention, important features corresponding to differ-
ent subword spaces can be obtained. By concatenating these outputs and multiplying them
with a mapping matrix Wo (aimed at compressing the output matrix), we can obtain the
output of the entire Multi-Head Attention:

MultiHead (Q, K, V) = Concat(head1,head2, . . . , headh)Wo, (5)

headi = Attention(Qi, Ki, Vi), (6)

where Qi = QWQ
i , Ki = KWK

i , Vi = VWV
i , i ∈ [1, h] and Q, K, V ∈ Rn×d/l , from the

input embedding Ml , mapping matrix WQ
i ∈ Rd/l×dk , WK

i ∈ Rd/l×dk , WV
i ∈ Rd/l×dv ,

Wo ∈ Rhdv×d/l . In this study, we set h = 4 parallel Self-Attention layers to perform global
attention calculation on the local feature maps (Input Embedding) from the convolutional
layer, where dk = dv = d/h = 64 in each head.
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By employing the multi-head attention mechanism, we partition the original high-
dimensional feature space into multiple lower-dimensional subspaces and independently
compute attention within each subspace. This approach enriches the representation of
feature information while reducing the computational burden on the model. Through the
attention calculation layer, we obtain the final output matrix [O1, O2, . . . , Ol ] of the feature
extraction module. This output matrix synthesizes the feature information from multiple
low-dimensional subspaces, with each subspace capturing different semantic aspects of the
original text. Consequently, it significantly enhances the model’s expressive power and
improves its robustness and performance when dealing with diverse types of textual data.

2.4. Feature Fusion and Representation

In the task of text classification, both convolutional neural networks (CNNs) and
attention mechanisms serve as crucial feature extraction modules, capable of capturing
rich local and global features. However, in practical applications, we have observed that
fusing local and global features can further enhance the model’s performance. Therefore, in
this paper, we employ a residual connection to integrate the outputs of the convolutional
and attention layers, aiming to strengthen the model’s generalization ability. Specifically,
we define a residual connection function that adds the outputs of the convolutional and
attention layers and feeds them into a fully connected neural network (FFN) with two
hidden layers, thereby enhancing the model’s representational power. The calculation
formula for this residual connection function is as follows:

FFN(Concat(O1, O2, . . . , Ol)) + Concat(M1, M2, . . . , Ml) (7)

In terms of text representation, various methods are commonly employed to transform
the input text sequence into a fixed-length vector representation for further processing by
the model. Common approaches include taking the maximum or mean value. In the case of
the BERT model, a special token “[CLS]” is added to the original input sequence, and after
training the model, the vector corresponding to “[CLS]” is extracted as the representation
of the entire text. Maximum representation emphasizes key information and may be more
effective for tasks that prioritize important keywords or features. The output vector of the
“[CLS]” token contains rich semantic information but may not fully consider features from
different positions in the text sequence. On the other hand, mean representation focuses
more on the fusion of overall features and is suitable for more global tasks. Therefore, in
this paper, we choose to perform a mean operation on the word vectors after the residual
connection to obtain a vector representation of the entire sentence sequence.

After the aforementioned steps, we obtain higher-level feature representations of
the given text sequence. These feature representations are then passed to subsequent
fully connected layers, where a series of linear transformations and activation functions
are applied to further extract and combine features. Finally, a softmax layer is used for
classification prediction, producing a probability distribution over the categories to which
the text belongs. The entire process can be viewed as an end-to-end training process,
optimizing network parameters through the backpropagation algorithm to maximize
prediction accuracy.

2.5. Feed Forward, LayerNorm and Dropout

Our model incorporates several techniques to enhance its performance. These include
adding two feed-forward neural networks (FFN) in the text convolutional layer, attention
layer, and feature fusion representation layer, as well as utilizing LayerNorm, Dropout,
and residual connections. In the feed-forward neural networks, we employ the gelu [49]
non-linear activation function, which introduces non-linearity and alters the output space
of features, thus improving the model’s performance. Specifically, for the input of the FFN,
we first map it to a higher-dimensional space using a fully connected layer, apply the gelu
activation function, and then map it back to the original dimensionality using another fully
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connected layer, as shown in Equation (8). This allows the model to better learn non-linear
features and enhance its ability to handle complex data.

FFN(x) = gelu(xW1 + b1)W2 + b2 (8)

In addition to FFN, we also introduce LayerNorm and Dropout to enhance the ro-
bustness and generalization ability of our model. LayerNorm enables the normalization
of features for each sample, ensuring similar mean and variance distributions across di-
mensions, thereby reducing the problem of internal covariate shift. Dropout randomly
sets a portion of neuron outputs to zero, preventing the model from overfitting to specific
input data. Lastly, we employ residual connections, where the original input is added to
the features processed by the FFN. This can expedite the convergence of the model and
mitigate the issue of gradient vanishing. Therefore, the output for each component is given
as follows:

LayerNorm(x + Dropout(Sublayer(x))) (9)

With the series of operations described above, our model is able to obtain richer feature
representations, thereby enhancing its performance in handling complex tasks. These
techniques not only expedite the convergence speed during training but also effectively
prevent overfitting and gradient vanishing issues, thereby strengthening the network’s
sensitivity to data.

3. Results

To validate the effectiveness of our proposed new model, we conducted experiments
on multiple widely used text datasets. We compared the performance of our model against
several baseline models to provide a comprehensive evaluation of its capabilities.

3.1. Datasets

Our experiments covered five widely used public datasets, including Yelp Review
Polarity, AG’s News, Yelp Review Full, and DBpedia. By validating our model on these
public datasets, we ensure the reliability and reproducibility of the results. These datasets
also provide a relative standard benchmark for evaluating and comparing the performance
of different models on specific tasks. Additionally, other researchers can easily access the
same datasets for validation purposes. Table 1 presents the basic characteristics of the
datasets.

Table 1. Details of all used experimental datasets.

Data Set Classes Training Set Test Set

Yelp Review Polarity 2 560,000 38,000

AG’s News 4 120,000 7600

Yelp Review Full 5 650,000 50,000

DBPedia 14 560,000 70,000
The unit size of the data set is rows.

Yelp Review Polarity: The Yelp Review dataset consists of reviews from Yelp. It was
curated by Zhang et al. [9] in 2015 from the Yelp Dataset Challenge. This dataset is a binary
sentiment classification dataset, where the reviews are categorized as either positive or
negative sentiment.

AG’s News: This dataset originates from ComeToMyHead, an academic news search
engine, and it consists of news articles from over 2000 news sources. The dataset was
created by Zhang et al. [9] in 2015 from these news articles and contains 120,000 training
samples and 7600 testing samples. Each sample is a short text categorized into one of four
classes: World, Sports, Business, and Sci/Tech.
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Yelp Review Full: This dataset shares the same origin as the Yelp Review Polarity
dataset and was also constructed by Zhang et al. [9]. The Yelp Review Full dataset is a
multi-class dataset consisting of 5 categories. In contrast to the Yelp Review Polarity dataset,
Yelp Review Full provides a more fine-grained sentiment rating ranging from 1 to 5.

DBPedia: The DBpedia ontology classification dataset was constructed by Zhang
et al. [9] based on DBpedia 2014. It is an English ontology classification dataset. The dataset
consists of 14 different categories, including Company, EducationalInstitution, Artist,
Athlete, OfficeHolder, MeanOfTransportation, Building, NaturalPlace, Village, Animal,
Plant, Album, Film, and WrittenWork.

These datasets cover different domains and sources, aiming to thoroughly evaluate
the performance of our model in diverse scenarios. These datasets have diverse charac-
teristics, including different data sizes and numbers of categories, providing us with a
wide testing environment. Firstly, these datasets have varying data sizes, ranging from
small-scale datasets to large-scale datasets. Small-scale datasets help us quickly validate
the effectiveness and stability of the model, while large-scale datasets validate the model’s
generalization ability and test its scalability in handling large-scale problems. Secondly,
these datasets cover different numbers of categories. Some datasets involve binary classifi-
cation tasks, while others involve multi-class classification problems. Such diversity allows
us to test the performance of the model in handling different categories and label quantities,
helping us comprehensively evaluate the model’s ability for diverse classification tasks.
By conducting experiments and comparisons on these datasets, we can gain in-depth
understanding and evaluation of the applicability and advantages of our proposed model
in various scenarios.

Prior to conducting experiments, we performed data preprocessing on the raw datasets
to provide clean, standardized, and manageable data, laying the foundation for subsequent
experiments and training. After undergoing steps such as data cleaning and tokenization,
the raw dataset can be used to construct processed training and testing sets. One crucial
step is building the vocabulary. Since our model does not utilize pre-trained parameters,
we need to train the model based on the constructed vocabulary. To convert sentences in
the training set into numerical representations, we assign an index to each word in the
sentence sequence. By building the vocabulary, we iterate through each sentence in the
dataset and map each word to a unique integer index. As a result, the original text sequence
is transformed into an integer sequence, where each integer represents the index of a word
in the vocabulary, serving as input to the model. Through this data preprocessing process,
we transform the original text data into numerical representations that are compatible with
the model, preparing them for subsequent experiments and training. This also ensures the
use of a clear and consistent data representation during model training and evaluation.

3.2. Experiment Settings
3.2.1. Experiment Platform

The experiments in this paper were conducted under the following conditions: an
Ubuntu server equipped with an Intel 12th generation Core i7-12700 CPU and 16 GB of
memory. The GPU used was an NVIDIA GeForce RTX2080Ti with 11 GB of VRAM. The
programming language used was Python 3.7, with PyTorch version 1.13.0 and CUDA
version 11.

3.2.2. Model Parameter Configuration

The model used in this study was implemented based on the PyTorch framework.
In the Input Embedding layer, word embedding vectors were obtained by adding learn-
able word vectors and positional vectors, both with a dimension of 768. The maximum
supported sequence length for the model was set to 512. The Feature Extraction layer
consisted of 1 CNN layer and 3 stacked Attention layers. The CNN had parallel structures
with kernel sizes of 1, 3, and 5, while the Attention layer had 4 attention heads. To reduce
computational complexity, the word embedding vector dimension of 768 was reduced
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to 256 in both the CNN and Attention structures, and after the Feature Fusion layer, the
extracted features from each layer were combined back to 768 dimensions. LayerNorm was
applied for normalization after the embedding layer, CNN layer, multi-head attention layer,
and linear transformation layer. Dropout with a rate of 0.5 was used for regularization.
During the training phase, the Adam optimizer was used with an initial learning rate of
1 × 10−3 and weight decay of 1 × 10−4. The batch size was adjusted based on the dataset
size and computer performance. The model was trained for 100 epochs. The activation
function used in the model was the gelu linear activation function.

3.2.3. Evaluation Metrics

The model parameters are continuously updated through gradient descent during
iterations on the training set. The training set data is used to optimize and update the
model parameters, while the test set is used to evaluate the performance of the model
without participating in the parameter optimization process. We calculate the accuracy of
the model on various test sets and compare it with other baseline models. The formula for
calculating accuracy is as follows:

Accuracy =
Correctly Classified Samples

Total Number of Samples
(10)

3.3. Comparison with Baseline Models
3.3.1. Baseline Models

To evaluate the performance of our model, we conducted comparative analysis with
multiple types of text classification models on the datasets. Through these comparative
experiments, we were able to comprehensively assess the performance of our model in
different tasks and determine its practicality in the field.

The baseline models we selected are mainly divided into three categories: CNN-based
classification models, RNN-based classification models, and attention-based classification
models.

• The CNN-based baseline comparison models are mainly Word-level CNN, Char-level
CNN [9] and VDCNN [13].

• The RNN-based baseline comparison models are mainly standard LSTM [9] and
D-LSTM [26].

• The attention-based baseline comparison models are mainly Bi-BloSAN [50] and
LEAM [51].

3.3.2. Comparison Analysis

We compared the classification accuracies of the CAC model and several baseline models
on each dataset. The results showed that our proposed model achieved higher accuracy than
the other models on most datasets. Table 2 summarizes the accuracy results of different base-
line models compared to our proposed model on each dataset. Based on these experimental
results, we can conclude that the CAC model has a high performance in text classification
tasks and can serve as a strong benchmark model for future research and applications.

Table 2. Classification accuracy (%) of different models on different datasets.

Model Yelp Review Polarity AG’s News Yelp Review Full DBPedia

Word-level CNN
Char-level CNN

VDCNN

95.40 91.45 59.84 98.58
94.75 90.49 61.60 98.34
95.72 91.33 64.72 98.71

LSTM
D-LSTM

94.74 86.06 58.17 98.55
92.60 92.10 59.60 98.70

Bi-BloSAN
LEAM

94.56 93.32 62.13 98.77
95.31 92.45 64.09 99.02

Our Model 96.62 93.64 65.38 98.92
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To provide a more intuitive visualization of the performance differences between
different models on the datasets, we plotted the comparison results in a bar chart, as shown
in Figure 5. This visualization method allows for a clearer view of the classification accuracy
performance of different models on different datasets.

Figure 5. Comparative analysis of the proposed model and model variation on different datasets.

Based on the experimental results above, we can see that our model has a significant
advantage in classification accuracy compared to CNN-based text classification models.
Our model outperforms both shallow CNN models (word-level and char-level) and deep
VDCNN models. This indicates that our model can better learn local features of the text
through multi-scale CNN convolution, and better calculate global relationships through
attention mechanisms. Additionally, our model is able to capture the local position order of
words through CNN and enhance it by adding pre-embedded position vectors, thus better
preserving the order information between words.

Compared to RNN-based classification models, our model consistently outperforms
standard LSTM and its improved variant (D-LSTM) on all tasks. This suggests that our
model is more suitable for extracting sequential features compared to traditional RNN
models, which is due to the incorporation of position vectors and CNN that provide
advantages in extracting sequence features. In addition, our model introduces a multi-head
attention mechanism that better avoids the problem of gradient vanishing during long
sequence computation compared to RNN, enabling our model to extract features from long
sequences more effectively.

Compared to the attention-based classification models, our model also has a strong
competitive advantage. Although LEAM is slightly ahead of our model on the DBpedia
dataset, this may be due to the fact that LEAM uses joint training of word and label. How-
ever, our model performs stably on most datasets, because our model adopts a hierarchical
structure to extract features from different dimensions and uses a local-to-global strategy
to achieve better results in semantic feature extraction. In addition, our model can better
utilize CNN convolution to learn local features of text and calculate global relationships
through attention mechanism, thus achieving better performance.

After conducting a series of comparative experiments, we can conclude that our
proposed CAC model has a significant advantage in semantic feature extraction. This is
because our model uses a parallel structure to extract features from different dimensions
and adopts a strategy of first extracting local features and then computing global relation-
ships, thus better capturing both local and global information of the text. Compared to
traditional classification models based on CNN, RNN, or Attention, our model performs



Appl. Sci. 2023, 13, 8550 14 of 19

better and achieves higher classification accuracy on most datasets, while also exhibiting
good robustness. Therefore, our proposed CAC model has high competitiveness and
practical value in text classification tasks.

3.4. Performance Comparison with Transformer

In order to comprehensively evaluate the performance of the CAC model, we con-
ducted an in-depth comparison analysis with the standard Transformer classification
model.

3.4.1. Baseline Models

In the experiment, we employed the Encoder structure of the Transformer as the
standard feature extractor and used the Concat and Mean methods for feature fusion and
representation, which are the same as the CAC model. Regarding parameter settings,
we utilized a Transformer structure consisting of 6 stacked Encoders, with each Encoder
having 8 attention heads (h = 8). To ensure consistency in the experiment, we adjusted the
computation of position embeddings in the Transformer to use learnable position vectors,
similar to the CAC model. The word embedding dimension and input sequence length
were set to 768 and 512, respectively. We also employed the same data preprocessing
methods and dictionary as the CAC model. The number of training epochs was set to 100,
and the learning rate was set to 1e-3. Other parameter settings remained consistent with
the CAC model.

3.4.2. Results and Analysis

We conducted experiments on the Yelp Review Polarity, AG’s News, Yelp Review Full,
and DBPedia datasets to calculate and analyze the results of the Transformer model and
the CAC model. We plotted the accuracy and average loss curves of the models across each
epoch, as shown in Figure 6.

By analyzing the curves of accuracy and loss mentioned above, we can further analyze
and explain the advantages of the CAC model over the Transformer model in terms of
performance and efficiency.

Firstly, looking at the accuracy curve, our CAC model can converge faster and achieve
higher accuracy during the iterations. This indicates that the CAC model is more efficient
in learning and adapting to the training data, capturing data features and patterns more
quickly. In contrast, the Transformer model has a slower convergence rate and may require
more training iterations to reach the same level of accuracy.

Secondly, the curve of loss values demonstrates the effectiveness of our proposed CAC
model during the optimization process. As the model iterates, the loss values of the CAC
model gradually decrease and stabilize, indicating that the model can better fit the training
data and make more accurate predictions in the classification task. On the other hand, the
loss values of the Transformer model may decrease at a slower rate, requiring more training
time to reach the same level of loss.

Taking all the observations into consideration, we can conclude that the CAC model
exhibits better performance and efficiency in handling text classification tasks while main-
taining accuracy and reducing computational resources and time consumption. The CAC
model leverages CNN structures and position embeddings to capture local features and
sequence information more effectively, improving the model’s performance. Additionally,
the use of multi-head attention mechanisms and residual connections enhances the model’s
learning capacity and generalization ability. Therefore, the CAC model is a superior choice,
providing better performance in text classification tasks.
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Figure 6. Experimental results of CAC model and Transformer model. The left side is the change of
the accuracy rate, and the right side is the change of the loss value.

4. Ablation Study

This section aims to explore the effectiveness of various modules in our proposed
model. Thus, we conducted ablation studies based on the AG’s News dataset. We individu-
ally removed the residual connections between the position vectors, the CNN local feature
extraction structure, the output features of CNN, and the output features of the attention
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mechanism to observe their impact on model accuracy. The experimental results are shown
in Table 3.

Table 3. Ablation studies of the CAC model.

Model Accuracy

w/o Position Embedding 93.1
w/o CNN 89.81
w/o Residual Connection 90.76
Proposed model 93.64

Removing Position Embedding: The operation of the attention mechanism is actually
achieved through linear transformations of matrices, which makes it unable to capture the
sequential information of the text when used alone. To address this issue, the concept of
position embedding was introduced to enable models based on attention mechanisms to
leverage the sequential information of the text. Our proposed model combines the convolu-
tional structure, which allows the model to extract local contextual information from the
sentences. Through the convolutional layer, the model can capture the relative positions
and sequential relationships of words in the text, thereby compensating for the lack of
sequence temporal information that self-attention mechanisms cannot capture without po-
sition embeddings. The experimental results in Table 3 show that the accuracy of the model
does not decrease significantly when we remove the position embeddings. This suggests
that the model can capture sufficient sequence information through the convolutional layer
and does not rely on position embeddings. However, when we remove the convolutional
layer, there is a noticeable decrease in accuracy, further demonstrating the effectiveness of
introducing the convolutional structure. Additionally, position embeddings are usually im-
plemented using fixed-length learnable vectors, which limits the flexibility of the model in
handling long sequence inputs. Moreover, position embeddings often introduce additional
parameters, and if a large embedding vector length is required for processing long texts, the
model’s parameter size and computational overhead will significantly increase. Through
our experiments, we have shown that the CAC model can completely remove position
embeddings when faced with such issues to adapt to more complex tasks without the need
for redesigning embeddings. This reduces the complexity of the model and improves its
efficiency and scalability.

Removing CNN: In this study, we replaced the original CNN structure with a simple
linear mapping matrix that can map the raw input to different dimensional spaces to
replace the functionality of CNN. From the results in the table, it can be observed that when
the CNN structure is removed, the model’s accuracy significantly decreases, indicating the
important role of CNN in our model. As mentioned earlier, the CNN structure enhances
the model’s ability to capture the sequential order, and removing the CNN structure results
in a decrease in this capability. The key function of the CNN structure in the model
is to extract local features at different scales from the sequence and map the extracted
features to different low-dimensional semantic feature spaces, enhancing the attention
mechanism’s ability to extract local features and enabling the entire model to capture richer
semantic information. Without the CNN structure, the model relies solely on the attention
mechanism for feature extraction, which greatly impacts the overall feature extraction
capability of the model.

Removing Residual Connection: When the residual connection between the output
features of the CNN and the output features of the attention mechanism is removed, a
noticeable decrease in the model’s accuracy is observed. In deep learning, it is generally the
case that the deeper the network, the stronger the model’s representational power and the
better its performance. However, increasing network depth can also introduce optimization-
related issues such as vanishing gradients and exploding gradients. To address these issues,
we employed methods such as LayerNorm regularization, dropout, and the gelu activation
function in the model. Building upon these techniques, we creatively connected the
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local features extracted by the CNN and the global features extracted by the attention
mechanism, greatly enhancing the model’s convergence and generalization capabilities
through residual connections. The experiments have demonstrated the effectiveness of this
connection method.

5. Conclusions

This paper proposes a new text classification model. As a fundamental task in natural
language processing, text classification finds wide applications in various domains, includ-
ing topic identification in social media, sentiment analysis and opinion mining, content
and comment analysis; categorizing articles, blogs, and editorials in the news domain;
financial sentiment analysis, market prediction, credit assessment, fraud detection in the
financial domain; medical literature classification, disease diagnosis, adverse drug event
detection in the medical and biological domain; as well as automated customer service and
user support systems in the customer service domain. These are just a few examples of the
practical applications of text classification models. In reality, text classification techniques
have important applications and impacts in many fields. The purpose of building this new
model is to apply it across industries and enhance work efficiency.

We propose a multi-layer feature fusion text classification model called CAC, which
combines the advantages of CNN and Attention. This integration enhances the performance
of text classification by leveraging the strengths of both approaches. Our main contributions
include:

(1) We propose a novel text classification model that combines CNN and Attention for
parallel feature extraction. This architecture fully utilizes the advantages of CNN in lo-
cal feature extraction and Attention in global attention calculation, thereby enhancing
the model’s feature extraction capability.

(2) We adopt a “local-first, global-later” approach, preserving the sequential information
of the text during the feature extraction process and capturing semantic relationships
at different levels in the text. Through this approach, our model gains a better under-
standing of the text’s semantics, thereby improving text classification performance.

(3) Extensive experiments have demonstrated that our model achieves outstanding per-
formance on multiple datasets. Compared to methods based on CNN, RNN, and
attention models, our model has shown its effectiveness and superiority in terms of
accuracy and performance in text classification tasks.

This study successfully applies the proposed architecture to the field of natural lan-
guage text processing. However, there are still many research directions worth exploring
in the future. Since the model incorporates CNN modules, we can further investigate the
advantages and potential applications of this model structure in image processing. For
example, it may be applicable in image classification, object recognition, object detection,
and other areas. By combining the fields of text processing and image processing, we can
explore more cross-domain applications. For instance, we can attempt multimodal tasks
using our proposed model structure, such as joint analysis and understanding of images
and text.
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