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Abstract: The influence of hafnium metal (Hf) and sulfate ions (SO2−
4 ) on the acidic properties

of SiO2 mesopores synthesized by a non-hydrothermal method was studied using the following
characterization techniques; TG-DTG, XRD, BET, SEM, TEM, EDS, FTIR, n-butylamine titration, FTIR-
pyridine, and alcohol dehydration. The incorporation of 3.6% mol of Hf during the silicate synthesis
step caused the characteristic structural arrangement of MCM-41 to collapse. However, an increase in
the acid strength of the catalyst of up to 315 mV was observed, with Brönsted and Lewis-type acid
sites being mostly present therein. Furthermore, the acidity of Hf- and (SO2−

4 ) -modified SiO2 in the
dehydration of ethanol and methanol was evaluated, resulting in a selectivity towards ethylene and
dimethyl ether, respectively. Acid solids have enormous potential to produce important compounds
for the chemical industry using alternative routes other than petrochemical processes. They also
represent a significant advance for biorefineries.

Keywords: acidity; dehydration; ethylene; dimethyl ether

1. Introduction

Since the discovery of mesoporous like MCM-41, MCM-48, HMS, and SBA-15, count-
less application possibilities have been opened for these materials in the field of hetero-
geneous catalysis, especially when metal atoms are introduced in the silicate structure,
particularly organic and/or metallic species that promote interesting properties in silicates.
In particular, textural properties are favored with increased specific area, uniform porosity,
acidity, and thermal stability. These are some essential parameters that a solid material must
meet for its application in catalytic reactions. The mesoporous silicate type MCM-41 meets
these characteristics, with a hexagonal arrangement, surface area greater than 1000 m2/g,
and pore size of about 20 Å [1] facilitating the accessibility of bulky molecules to active sites
and the rapid diffusion of reagents and products inside and outside the porous structure,
leading to an increase in catalytic conversion which means a significant advantage over
microporous materials, such as zeolites [2]. Nowadays, mesoporous silicates have been
the subject of many studies to control their pore size, surface area, thermal stability, etc.
However, their lack of acid sites limits their application as catalysts, but if a transition metal
is introduced into the silicate structure, it generates a certain degree of acidity associated
with the nature of the chemical bonds of the metal and silica [3]. Ti, Zr, Al, W, Mo, and
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Cr are among the most studied metal ions, which provide acidity to silicates of the M41S
family [4–8]. A few numbers of studies have reported the influence of hafnium on the
structural properties and catalytic behavior of MCM-41-type silicates. Generally, these
studies focus on developing dielectric and micro electrical devices due to good thermal and
mechanical stability and interfacial compatibility of hafnium with silicon [9–11]. On the
other hand, hafnium oxide (HfO2) shares physicochemical characteristics similar to those
of zirconium oxide (ZrO2) [12–14]. Ahmed et al. [15] reported that SO2−

4 ions promote
stability of the tetragonal phase of ZrO2, so it is expected that HfO2 will have the same
behavior if SO2−

4 ions are introduced into the silicate structure. Bharali et al. [16] reported
that doping SiO2 with cerium and hafnium oxide increases thermal stability, acidity and/or
basicity of the solid material. The acid-base nature of this material was evaluated in the
decomposition of 4-methyl-2-pentanol into light olefins.

On the other hand, products from the dehydration of alcohols are a source of raw
materials of high commercial value, such as light olefins and ethers that have been used
as propellants, refrigerants, and fuels and could even be used as hydrogen sources for
clean energy generation [17,18]. The present study reports the modification of an MCM-41
type silicate with Hf and SO2−

4 ions to promote acidity in the mesoporous silicate and its
catalytic activity in the dehydration of alcohols.

2. Materials and Methods
Synthesis of Materials

Pure silicate was synthesized based on the methodology reported by Sepehrian et al. [19].
A known mass of cetyltrimethylammonium (CTABr, Aldrich, 99%), used as a structuring
agent, and distilled water were mixed for 15 min under constant stirring. Subsequently,
sodium silicate (Na2O7Si3, Aldrich) was added and stirred for 30 min at room temperature.
A 2M H2SO4 solution was added slowly dropwise to the resulting mixture until a pH
of 9 was obtained and stirring continued for another 4 h under ambient conditions. The
resulting precipitate was filtered, washed, and dried at 80 ◦C for 48 h, followed by a thermal
process at 600 ◦C for 6 h under a flow of extra-dry air.

The introduction of hafnium atoms into the pure silicate was carried out during
synthesis, at the stage after pH adjustment, at this stage a solution of hafnium tetrachloride
(HfCl4, Aldrich, 98%) was added slowly dropwise until 3.6 and 5.0% mol of metal on the
silicate was obtained. The solution was stirred for a period of 4 h at room temperature.
The filtering, drying, and calcination process of the Hf-modified SiO2 was carried out
under the same conditions used for the pure silicate. The resulting materials were labeled
as; SiO2, 3.6Hf/SiO2, and 5.0Hf/SiO2, respectively. A portion of the 3.6Hf/SiO2 catalyst
was sulfated with a theoretical content of 12 wt.% sulfate ions by the incipient moisture
method and heat treated at 500 ◦C for 3 h in extra-dry air flow. This material was labeled
as 12SHf/SiO2.

The catalysts were characterized by thermal analysis using TA instruments STD 2690
Simultaneous DCS-TGA with a heating ramp of 5 ◦C min−1, by X-ray diffraction at low
angles on a SIEMENS D5000 diffractometer in the range of 1◦ < 2θ < 10◦ with a scanning
speed of 0.01◦ min−1 and diffraction patterns at 10◦ < 2θ < 80◦ on a BRUKER AXS X
diffractometer model D8 ADVANCE. Textural properties of the catalysts were determined
by nitrogen physisorption in a Quantachrome model Autosorb-1 instrument. Fourier
transform infrared spectroscopy was performed in the 400–4000 cm−1 range with 16 scans
using an ATR cell in a Perkin Elmer Spectrum 100 spectrophotometer. Morphological
characterization of the materials was carried out by scanning electron microscopy using
a JEOL model 5800LV microscope and transmission electron microscopy using a Philips CM
200 microscope and a JEM-2200FS microscope with a spherical aberration corrector in STEM
mode. The nature and acid strength of the solids were determined by pyridine adsorption
using a Bruker Vector 22 FTIR spectrophotometer, and the acid strength of the sites was
determined by potentiometric titration with n-butylamine. Finally, acidity of solids was
evaluated through ethanol dehydration at 300, 325 and 350 ◦C. The methanol dehydration
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at 350 ◦C. Catalytic activity tests were performed using a mass of 100 mg of catalyst
in a microplant operating at atmospheric pressure and continuous flow to 40 mL/min
coupled to a Shimadzu-FID gas chromatograph equipped with a 30 m × 0.32 mm SPB-1
capillary column and 1 µm SUPELCO film with flame ionization detector (FID).

3. Results and Discussion
3.1. Thermal Analysis

Thermogravimetric analysis (TG-DTG) results of the 3.6Hf/SiO2 and 5.0Hf/SiO2
precursors are shown in Figure 1. The total weight loss of the precursors occurred in
three stages; in the first stage, weight loss occurred from room temperature to 150 ◦C due
to removal of water physically adsorbed in the porous structure of the materials [20,21].
The second stage occurred between 150–400 ◦C, attributed to the decomposition of the
structuring agent used in the synthesis [20–22]. At this temperature range, the weight
loss of 3.6Hf/SiO2 was 19.3% compared to that of 5.0Hf/SiO2, which was 33.4% due to
a higher loading of hafnium atoms, indicating that a large part of the structuring agent
has been removed. De Souza et al. [20] reported that at this temperature range, oxidation
of low molecular weight hydrocarbons occurs, generating CO2, NO2, and H2O, as well
as the elimination of surfactants. Finally, the last stage of weight loss was in the range of
400–600 ◦C, which corresponds to the evacuation of residues of organic compounds that
strongly interact with inorganic species in the catalytic supports, as well as the condensation
of silanol groups on the surface of the material [19,20]. On the other hand, the TG curve
shows that the mesoporous silicate 5.0Hf/SiO2 has a large amount of silanol groups
coexisting at this temperature range, so a higher weight loss is attributed to dehydroxylation
compared to the silicate 3.6Hf/SiO2. The DTG curve shows signals attributed to the release
of matter in the range of 50–600 ◦C related to the above-described stages associated with
weight loss in the precursors.
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Figure 1. Thermal analysis of synthesized materials: (a) 3.6Hf/SiO2, (b) 5.0Hf/SiO2.

3.2. X-ray Diffraction

X-ray diffraction patterns at low angles are shown in Figure 2a. The pure material
(SiO2) shows a signal at 2.5◦ on the 2-theta scale (associated with the 100 plane) that charac-
terizes a hexagonal arrangement similar to that reported for a mesoporous material of the
M41S family [20], while for the 3.6Hf/SiO2 material a broad peak is observed in the range
of 1.5–3◦ on the 2 theta scale attributed to a poorly ordered structural arrangement. The
structural arrangement observed in SiO2 and 3.6Hf/SiO2 collapses when these materials
are impregnated with 12 wt.% sulfate ions and when a higher hafnium atom loading is
added to SiO2 in the synthesis step. On the other hand, Figure 2b, diffraction patterns
between 20 and 80◦ on the 2-theta scale, shows hafnium-modified silicates with a broad
peak at ~21◦ on the 2-theta scale, which characterizes an amorphous SiO2, additionally
for pure silicate a peak at 31◦ on the 2-theta scale was observed, which corresponds to
amorphous silica [23]. The Incorporation of Hf and SO2−

4 on pure SiO2 promotes a decrease
in peak intensity and broadening of said peak, attributed to the homogeneous incorpora-
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tion of HfO2 in the silicate structure since no signal of the metal oxide is identified. On
the other hand, this behavior can also be attributed to the calcination temperature used,
which prevented the formation of the crystalline phase of hafnium. Kim and Yong [24]
reported that the crystalline structure formation of HfO2 requires calcination temperatures
over 900 ◦C.
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Figure 2. X-ray diffraction of catalysts: (a) low angles (1◦ ≤ 2θ≤ 8◦); (b) high angles (20◦ ≤ 2θ≤ 80◦).

3.3. Textural Properties

Figure 3a shows nitrogen adsorption-desorption isotherms of the hafnium and sulfate
ion-modified silicates. The 3.6Hf/SiO2 and 5.0Hf/SiO2 materials exhibit type-IV adsorption
isotherms, confirming the mesoporosity of the solids [25], with pore sizes about 20–22 Å
(Figure 3b). The presence of sulfate ions in the 12SHf/SiO2 material caused a change
in the isotherm type to type III, which characterizes non-porous or macroporous solids
with an average pore diameter around 64 Å. The increase in the average pore diameter is
due to the destruction of the porous wall by the presence of sulfuric acid H2SO4, used as
a source of SO2−

4 ions for the material. On the one hand, the acid strength of the catalyst
increased, but as a result, the silicate structural arrangement collapsed, as observed in the
X-ray diffractogram in Figure 2a.
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Table 1 summarizes the textural parameters determined by the BET and BJH method.
The specific area of 3.6Hf/SiO2 was 782 m2g−1, and the average pore diameter was 26 Å.
By increasing the hafnium oxide content (5.0Hf/SiO2), the specific area increases 50 m2g−1,
which is attributed to the fact that the amorphous hafnium oxide has a certain degree of
porosity contributing to the increase of the specific area of the composite. Also, a reduction
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in the average pore diameter and pore volume was observed, confirming a higher formation
of amorphous crystals of HfO2 on the external or internal surface of the silicate compared
to 3.6Hf/SiO2. On the contrary, the specific area of 12SHf/SiO2 was abruptly reduced
to 152 m2g−1 as well as the pore volume, however, the average pore diameter increased
considerably compared to 3.6Hf/SiO2 due to the presence of SO2−

4 ions on the walls of the
hafnium silicate, which cause damage to the structural arrangement (Figure 3b).

Table 1. Textural properties of hafnium silicates.

Material Area (m2g−1) Average Pore Diameter (Å) Pore Volume (cm3/g)

3.6Hf/SiO2 784 26 0.47
5.0Hf/SiO2 831 22 0.45
12SHf/SiO2 152 64 0.24

3.4. Scanning Electron Microscopy

Figure 4 shows the morphology of pure SiO2, materials modified with 3.6 and 5%
mol hafnium, and the material impregnated with 12 wt% sulfate ions. 5.0Hf/SiO2 and
12SHf/SiO2 exhibit irregular morphologies with a tendency to agglomerate particles of
variable size, forming large cavities between the agglomerates. Only 3.6Hf/SiO2 shows
a morphology of homogeneous particles similar to that observed in pure silicate. All the
materials exhibited porosities classified as mesopores and macropores that correlate with
the characterization results shown in Figure 3b.
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EDS analyses of 3.6Hf/SiO2 and 12SHf/SiO2 are shown in Figure 5, both samples
comprising Si, O, and Hf. Additionally, sulfur (S) was identified in the spectrum of the
12SHf/SiO2 material, corresponding to the presence of SO2−

4 ions used to increase the acid
strength of 3.6Hf/SiO2. Hong et al. [26] carried out an EDS analysis on MCM-41 showing
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elemental compositions of silicon (Si) and oxygen (O) similar to those observed in these
spectra. Table 2 shows the atomic percentage of the elements constituting the catalysts. This
quantification of elements was carried out in different sections of the samples, showing
that Hf and S are not homogeneously distributed. However, as the analysis confirmed the
presence of Hf (3.42%), the amorphous structural form of HfO2 is verified.
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Table 2. Elemental composition of the catalysts.

3.6Hf/SiO2 12SHf/SiO2

Element Weight (%) Element Weight (%)

O 40.03 O 40.48
Si 32.83 Si 36.24
Hf 27.14 Hf 4.56
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3.5. Transmission Electron Microscopy

Figure 6 shows the micrograph of the synthesized catalysts. SiO2 shows a structural
arrangement consisting of uniform channels similar to that reported by for a mesoporous
MCM-41 type silicate. However, the signals of the (110) and (200) planes obtained by XRD
of the pure mesoporous silicate are not well defined, thus confirming that the material has
an incipient structural arrangement similar to MCM-41 but poorly ordered. On the other
hand, the presence of 3.6% mol of Hf in the silicate caused the loss of the structural ordering
observed in the SiO2 micrograph due to the formation of amorphous HfO2. Higher metal
loadings lead to amorphous structured materials. This same behavior was also observed
with the 3.6Hf/SiO2-sulfate material directly impregnated with 12 wt% SO2−

4 ions.
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Figure 6. Transmission electron micrograph of the catalysts: (a) 5.0Hf/SiO2; (b) 12SHf/SiO2;
(c) 3.6Hf/SiO2; (d) SiO2.

3.6. FTIR Spectroscopy

Infrared spectra of the synthesized materials are shown in Figure 7. All three materials
have signals at 460 cm−1, corresponding to metal-oxygen bonds, specifically Si-O and
Hf-O bonds [13,23,27]. Inverted peaks at 810 and 1080 cm−1 correspond to symmetrical
and asymmetrical molecular vibrations of Si-O-Si bonds [1]. O’Dell et al. [11] reported
that the Si-O-Hf bond is located at 960 cm−1. However, there is an overlap with a broad
band at 1080 cm−1, which corresponds to Si-O-Si bond vibrations, not allowing for a clear
Si-O-Hf bond identification. However, the IR spectrum of the 5Hf/SiO2 material showed
a band of higher intensity in this region that confirmed the presence of Hf bonded to
oxygen and silicon, which is supported by the EDS analysis results (Figure 5). On the
other hand, the IR spectrum of the 12SHf/SiO2 material shows two bands: a first band
overlapped in the region of 1000–1200 cm−1, and a second band, although of very low
intensity, observed in the region of 600–620 cm−1. Guo and Wang [28] reported comparable
results for Na2SO4/SiO2 with a spectrum showing symmetric tension vibrations at 617 y
1126 cm−1 corresponding to S-O bonds. In addition to the FT-IR analysis, an IR spectrum
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of sodium sulfate (Na2SO4) was added as reference to support the presence of sulfate ions
in the 12SHf/SiO2 material as observed in the EDS analysis (Figure 5).
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3.7. Potentiometric Titration with n-Butylamine

Maximum Acid Strength (M.A.S.) of catalysts was determined by potentiometric
titration with n-butylamine. The first reading recorded, in mV, indicates the acidic character
of the materials. Pizzio et al. [29] lassified surface acidity of solid catalysts into very strong
acid sites (E > 100 mV), strong acid sites (0 < E < 100 mV), weak acid sites (−100 < E < 0 mV),
and very weak acid sites (E < −100 mV). Figure 8 shows the M.A.S. developed by SiO2,
3.6Hf/SiO2 and 12SHf/SiO2. SiO2 lacks acid sites, which is confirmed by the −42-mV
reading, but when hafnium was introduced into the silicate the surface acid strength of
the material increased to 321 mV. The higher the hafnium oxide content, the higher the
M.A.S. On the other hand, sulfate ions impregnated in the 3.6Hf/SiO2 material cause
a significant increase in the acidity of the catalyst. From these results it is inferred that
catalysts 3.6Hf/SiO2 and 12SHf/SiO2 will be promising for carrying out acidity-demanding
reactions, such as alcohol dehydration and other reactions like those typically found in
petroleum refineries.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 12 

the region of 600–620 cm−1. Guo and Wang [28] reported comparable results for 

Na2SO4/SiO2 with a spectrum showing symmetric tension vibrations at 617 y 1126 cm−1

corresponding to S-O bonds. In addition to the FT-IR analysis, an IR spectrum of sodium 

sulfate (Na2SO4) was added as reference to support the presence of sulfate ions in the 

12SHf/SiO2 material as observed in the EDS analysis (Figure 5). 

Figure 7. FTIR spectroscopy of the catalysts.

3.7. Potentiometric Titration with n-Butylamine 

Maximum Acid Strength (M.A.S.) of catalysts was determined by potentiometric titra-

tion with n-butylamine. The first reading recorded, in mV, indicates the acidic character of

the materials. Pizzio et al. [29] lassified surface acidity of solid catalysts into very strong acid 

sites (E > 100 mV), strong acid sites (0 < E < 100 mV), weak acid sites (−100 < E < 0 mV), and 

very weak acid sites (E < −100 mV). Figure 8 shows the M.A.S. developed by SiO2, 3.6Hf/SiO2

and 12SHf/SiO2. SiO2 lacks acid sites, which is confirmed by the −42-mV reading, but when 

hafnium was introduced into the silicate the surface acid strength of the material increased 

to 321 mV. The higher the hafnium oxide content, the higher the M.A.S. On the other hand, 

sulfate ions impregnated in the 3.6Hf/SiO2 material cause a significant increase in the acidity

of the catalyst. From these results it is inferred that catalysts 3.6Hf/SiO2 and 12SHf/SiO2 will

be promising for carrying out acidity-demanding reactions, such as alcohol dehydration 

and other reactions like those typically found in petroleum refineries.

Figure 8. Maximum acid strength of catalysts determined by potentiometric titration with n-butyl 

amine.

3.8. FTIR-Pyridine Spectroscopy 

The nature of acid sites of the catalysts was determined by IR spectroscopy with 

adsorption-desorption of pyridine (Figure 9). IR-pyridine spectra of 3.6Hf/SiO2 show 

Lewis-type signals at 1445 and 1609 cm−1, while 12SHf/SiO2 exhibited signals at 1580 and

1595 cm−1, which are associated with a solid with Lewis’s acid sites. Said acidity is 

Figure 8. Maximum acid strength of catalysts determined by potentiometric titration with n-butyl amine.

3.8. FTIR-Pyridine Spectroscopy

The nature of acid sites of the catalysts was determined by IR spectroscopy with
adsorption-desorption of pyridine (Figure 9). IR-pyridine spectra of 3.6Hf/SiO2 show
Lewis-type signals at 1445 and 1609 cm−1, while 12SHf/SiO2 exhibited signals at
1580 and 1595 cm−1, which are associated with a solid with Lewis’s acid sites. Said acidity
is attributed to the presence of hafnium atoms within the pores of the SiO2 [15,30]. Both
materials exhibited peaks at 1544, 1637, and 1490 cm−1 corresponding to Brönsted-type
acid sites and Lewis-Brönsted-type acid sites [30]. Catalyst 12SHf/SiO2 exhibited very
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strong acid sites compared to catalyst 3.6Hf/SiO2, as the amount of pyridine retained could
still be observed at temperatures above 400 ◦C.
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3.9. Catalytic Activity
Ethanol Dehydration

Ethanol was used as a model molecule to determine the acid-base nature of SiO2,
3.6Hf/SiO2, and 12SHf/SiO2. The dehydration reaction of ethanol was carried out in
an inert atmosphere. Dehydration can be performed through two possible pathways:
(1) intra-molecular dehydration to produce ethylene, (2) intermolecular dehydration to
generate diethyl ether, and and others like dehydrogenation of the alcohol to produce
acetaldehyde [31,32], and as a result, a reaction selectivity parameter depending on the
relative number of active site types in the catalyst is obtained. Table 3 summarizes the results
of the ethanol dehydration reaction with selectivity to ethylene and diethyl ether at different
temperatures. SiO2 did not show catalytic activity as it lacks acid sites, as demonstrated in
the potentiometric titration test with n-butylamine (Figure 8). When hafnium is present
in the silicate alcohol decomposition is favored, however, at low temperatures ethanol
conversion is lower than 50% with a tendency to form diethyl ether, conversely, when the
reaction temperature is increased, selectivity of alcohol conversion to ethylene is increased
as reported in literature [31,33]. According to the results obtained by titration with n-bta
and pyridine adsorption, 12SHf/SiO2 contains very strong acid sites. Therefore, they are
responsible for ethanol dehydration at low temperatures. At 300 ◦C ethanol conversion
was 100% with selectivity to ethylene. It should be noted that, in alcohol dehydration
processes, the reaction temperature is a key factor to consider since a slight change in this
operating variable can significantly affect the selectivity of the alcohol dehydration reaction.
In the present study, no products generated by ethanol dehydrogenation were identified,
confirming that hafnium-modified silicates either lack basic sites or are too weak to carry
out a dehydrogenation reaction. On the other hand, the ethanol dehydrogenation reactions
were carried out for 3 h, the catalysts showed good thermal stability in the course of the
reaction, and no deactivation by organic carbon deposition was observed.
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Table 3. Catalytic activity of the materials.

T = 300 ◦C T = 325 ◦C T = 350 ◦C

Catalyst XA * (%) SC=
2

** (%) SE *** (%) XA (%) SC=
2

(%) SE (%) XA (%) SC=
2

(%) SE (%)

SiO2 0 0 0 0 0 0 0 0 0

3.6Hf/SiO2 50 86 14 80 96 4 94 99 1

12SHf/SiO2 100 100 0 - - - - - -

* Conversion. ** Selectivity to ethylene. *** Selectivity to diethyl ether.

Additionally, the catalytic behavior of methanol dehydration was studied, which can
decompose intramolecularly or intermolecularly depending on the reaction conditions
and the type of catalyst [34]. Methanol dehydration reaction requires catalysts with strong
acid sites, and as observed in the pyridine adsorption-desorption tests (Figure 9) and
ethanol dehydration tests (Table 3), 3.6Hf/SiO2 and 12SHf/SiO2 have very strong acid sites
suitable for catalyzing decomposition reactions of said molecule. Figure 10a shows ethanol
conversion over catalyst 3.6Hf/SiO2 at 340 ◦C, with 30% ethanol conversion and dimethyl
ether as the main product. The reaction was carried out for 240 min without deactivation
of the material. Catalyst 12SHf/SiO2 exhibited higher methanol conversion, up to 70%,
but selectivity to dimethyl ether was lower compared to 3.6Hf/SiO2. This is attributed
to a decrease in the number of very strong acid sites in 12SHf/SiO2 over the course of
the reaction, resulting in lower selectivity to the formation of hydrocarbon compounds
(Figure 10b) [35]. This reduction in acid sites is attributed to coke deposition on the catalyst
surface, however conversion reaction and selectivity to dimethyl ether remained stable for
200 min.
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Figure 10. Methanol dehydration: (a) 3.6Hf/SiO2 and (b) 12SHf/SiO2 at 340 ◦C.

4. Conclusions

Mesoporous silicon oxide with a structure similar to MCM-41 was prepared from
sodium silicate, and its surface acidity was modified by adding 3.6 wt.% hafnium as well
as sulfate ions. However, the introduction of sulfate ions from sulfuric acid caused the
hexagonal structure, which is characteristic of MCM-41 materials, to collapse as evidenced
by X-ray analysis at low angles. However, synergy between sulfate ions and hafnium
was evidenced by the high catalytic activity obtained in the decomposition of ethanol and
methanol. These materials showed resistance to deactivation during the reaction, making
them a good option for the decomposition of bio-alcohols into high-value-added products.
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