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Abstract: Multi-objective task graph scheduling is a well-known NP-hard problem that plays a
significant role in heterogeneous distributed systems. The solution to the problem is expected to
optimize all scheduling objectives. Pretty large state-of-the-art algorithms exist in the literature
that mostly apply different metaheuristics for solving the problem. This study proposes a new
hybrid algorithm comprising an improved multi-objective differential evolution algorithm (DE)
and Pareto-front neighborhood search to solve the problem. The novelty of the proposed hybrid
method is achieved by improving DE and hybridizing it with the neighborhood search method.
The proposed method improves the performance of differential evolution by applying appropriate
solution representation as well as effective selection, crossover, and mutation operators. Likewise,
the neighborhood search algorithm is applied to improve the extracted Pareto-front and speed up the
evolution process. The effectiveness and performance of the developed method are assessed over
well-known test problems collected from the related literature. Meanwhile, the values of spacing and
hyper-volume metrics are calculated. Moreover, the Wilcoxon signed method is applied to carry out
pairwise statistical tests over the obtained results. The obtained results for the makespan, reliability,
and flow-time of 50, 18, and 41, respectively, by the proposed hybrid algorithm in the study confirmed
that the developed algorithm outperforms all proposed methods considering the performance and
quality of objective values.

Keywords: evolutionary computation; optimization; processor scheduling; pareto optimization;
heuristic algorithms

1. Introduction

Multi-objective optimization problems comprise some contradicting objectives to be
optimized simultaneously when increasing one of them is the cause of decreasing the
others [1-3]. To deal with this type of problem, multi-objective optimization algorithms
(metaheuristics) are widely applied by researchers, according to recent studies in the
literature [4,5]. Multi-objective metaheuristics attempt to find a set of solutions for balancing
the trade-off between the problem objectives. Therefore, the goal of metaheuristics is to
extract a set of non-dominated solutions, Pareto-front, that optimize all objectives of the
problem [6,7]. A non-dominated solution has at least one better objective and no worse
objective than all other solutions [2,6]. A sample Pareto-front for minimization of a bi-
objective problem is indicated in Figure 1. The represented Pareto-front comprises seven
non-dominated and nine dominated solutions out of a total of 16 solutions [8].

Multi-objective task graph scheduling is an NP-hard problem that plays a significant
role in the heterogeneous distributed systems. In a task graph scheduling problem, the
goal is to distribute all tasks of an acyclic graph (parallel program) over the processors
in such a way that all the objective functions are optimized. The solution to the problem

Appl. Sci. 2023, 13, 8537. https:/ /doi.org/10.3390/app13148537

https://www.mdpi.com/journal/applsci


https://doi.org/10.3390/app13148537
https://doi.org/10.3390/app13148537
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8207-2387
https://doi.org/10.3390/app13148537
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13148537?type=check_update&version=1

Appl. Sci. 2023,13, 8537

2 0f23

is expected to optimize all the scheduling objectives, such as flow time, reliability, etc.,
simultaneously [9,10]. A detailed problem definition is presented in Section 2.
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Figure 1. Non-dominated and dominated solutions.

A pretty wide range of developed algorithms may be found in the literature to solve
the task graph scheduling problem, which indicates the great importance of the problem in
engineering applications. The state-of-the-art algorithms in the literature mostly apply soft
computing methods and metaheuristics for solving the problem [11-14]. For instance, SGA
and EP methods were developed by authors in [14], as were MOGA and MOEP methods
applied in [15]. Moreover, HEFT-NSGA, MFA, weighted sum MOEP, hybrid algorithms,
and a multi-agent system were developed in [8,16-18], respectively. It can be seen that in
the majority of state-of-the-art literature, a simple metaheuristic or weighted-sum method
has been used. State-of-the-art methods are listed in Section 3. Likewise, Section 3 includes
several new evolutionary algorithms proposed in recent literature.

This paper provides a novel hybrid method comprising the improved multi-objective
differential evolution (MODE) method and variable neighborhood search (VNS) to schedule
task graphs in distributed systems [19]. The novelty of the proposed hybrid method is
achieved by improving MODE and hybridizing it with the VNS approach. The proposed
method improves the performance of MODE by applying appropriate solution representation
as well as effective selection, crossover, and mutation operators. Likewise, the VNS algorithm
is applied to improve the extracted Pareto-front, speed up the evolution process, and increase
the power of determining more promising parts of the search space. In the modified version
of MODE, the selection operator is more effective due to applying roulette-wheel selection
based on dominance rankings instead of fully random selections. The number of solutions
dominating a solution is known as dominance rank, and consequently, the better solutions
will have lower ranks. Therefore, the lower ranks are arranged to occupy larger parts of the
roulette wheel to increase their selection chance (probability). Likewise, effective mutation
and crossover operators are proposed in this paper to speed up the evolution process and
increase the driven Pareto-front quality. A more promising portion of the search space is
found in a novel proposed mutation because both task order and processors are modified
without breaking the feasibility of the solution. Details of the innovative mutation and
crossover operators are given in Section 4. In the modified MODE, non-dominated solutions
found so far, Pareto-front, are kept in the archive and updated at the end of each MODE
loop. Meanwhile, the proposed method applies a variable neighborhood search mechanism
(VNS) over the archive after it is updated. This technique allows for more exploration and
exploitation of the solutions in the archive to make them more accurate. However, to prevent
time-consuming VNS, it is applied over a maximum of 10 solutions in the archive, and there
are ten iterations of the inner loop. A description of the VNS method is given in Section 4.

Apart from the fact that DE is a straightforward optimization method, it is also
robust and powerful. Like many other optimization methods, DE operates based on some
parameters and several operators. The aim of optimization methods is to explore a high-
quality PF in an acceptable time, preventing early convergence to avoid local optimal
solutions. It is obvious that the quality of operators as well as the solution representation
scheme affect the ability of DE to find better PF and speed up convergence. Therefore,
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there is a rich literature to improve the performance of DE [20]. Likewise, hybridizing
DE with other methods is another way to add more power to DE in discovering better
PFs [21-23]. In our proposed method to optimize the well-known scheduling problem,
not only operator improvement but also hybridization are applied to have a robust hybrid
system to deal with objective functions (makespan, reliability, and flow time).

Evaluation of the proposed hybrid method’s effectiveness and performance against
well-known benchmarks gleaned from cutting-edge literature. In addition, the values
of spacing and hyper-volume metrics are calculated. Furthermore, the Wilcoxon signed
method is applied to carry out pairwise statistical tests over the obtained results. The
proposed method exceeds all the state-of-the-art methods in terms of performance and
quality of objective values, according to all findings and test results.

As future works, different optimization problems, e.g., task scheduling in cloud comput-
ing, digital twins, and the internet of things [24-26], can be solved by the proposed method.
In addition, it is planned to replace the MODE algorithm with recently proposed optimization
methods mentioned in Section 3 and see how they affect the performance of the system [27-29].

The remaining parts of the study are divided into five sections: The full definition
of the multi-objective task graph scheduling problem is provided in Section 2. Likewise,
Section 2 defines the objectives of the problem and related equations in detail. In Section 3,
the most recent approaches to scheduling multi-objective task graphs are briefly discussed.
In addition, some recent robust metaheuristics are reviewed in this section. Section 4
contains a description of the suggested unique hybrid technique in details. The section also
represents the flowcharts and algorithms applied in the proposed system. The algorithm
settings and experimental findings are reported and discussed in Section 5 to prove the
high performance of the proposed hybrid system. Finally, Section 6 illustrates the study’s
findings as well as a few potential future research projects.

2. Multi-Objective Task Graph Scheduling Problem

In a multi-objective task graph scheduling problem, all the tasks of a directed acyclic
task graph representing a parallel program are distributed over a fully connected hetero-
geneous distributed system in order to minimize the Makespan (total completion time),
minimize the average flow time, and maximize the reliability. Instead of the reliability
maximization, the reliability index is minimized in the literature. A task graph comprises
some nodes representing the tasks and some directed edges indicating inter-processor
communications [30]. The edges are weighted based on the communication cost between
the processors when the tasks at the two ends of the edges are performed on different
processors. The communication cost turns to zero if the tasks are executed on the same
processor [30]. A sample task graph comprising 19 tasks is presented in Figure 2 including
the name and time for each task [8,30]. The tasks are uniquely named by t followed by a
number, and the number in the box on the right side of each task number is the task time.

Figure 2. Sample Task Graph.

The goal of the task graph scheduling problem is to find an optimal schedule that
maps tasks to the processors in a distributed system in order to optimize all the objectives.
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Task graph scheduling problem is formulated as below [11-14]:
Min f = [f1, f2, f3] M

In Equation (1), f1, f> and f3 state the objective functions where f; indicates the total
scheduling completion time that is known as Makespan. The value of f; is computed
as below.

fr = max;C;(s) ©)

Cj (s) in Equation (2) is the time that processor p; finishes the execution and becomes
idle. Consequently, max; C; (s) indicates the completion time of the last processor in schedule
s. The symbol ‘s” denotes the scheduling and it points to the scheduling represented by
solution representation scheme in Figure 3.

to t2 ts f1 12 ts ts fua || tas || taz || fo fuo || ts ir fag || f15 || tae || far || f1s

PP PP PP PP PP PefPePoj|P2||Po| P PPt

Figure 3. A sample solution for graph given in Figure 2.

Total processor p; completion time is computed as Equation (3).

Ci(s) = Lica(js) (st + wij) 3)

In Equation (3), all the tasks assigned to a processor p; belong to a set denoted by
0(j, s). Likewise, start and finish times of the task v; on processor p; are denoted by st;; and
wjj respectively. In other words, wj; is the time processor p; finishes executing task v;.
Second objective in Equation (1), f, indicates the average flow-time that is computed
as Equation (4).
iCi(s
f = aft(s) = Z’ij) )

The value of aft(s) in the schedule s is the summation of all completion times divided
by | P| (number of processors).

f3 in Equation (1) denotes the value of the reliability index. It is important to notice
that the reliability index minimization is equivalent to the reliability maximization [11,12].
There is a possibility for the processors to fail during the execution but failure of a processor
does not affect the other processors. Probability of successfully performing all the tasks on
processor p; is computed as Equation (5).

Pgucc(s) = e_/\jcj(s) (5)

In Equation (5), A; is the processor p;’s failure rate. Eventually, Probability of success-
fully performing a schedule s is calculated as Equation (6).

Psyce = eizj AiCj(s) (6)

Likewise, the communication reliability between the processors p;; and p;, is computed

as Equation (7).
VIVl g o e

Run(V, ) = e~ Am T ?)

In Equation (7), the set of tasks is denoted by V and the rate of communication failure
rate between processors p;; and pj, is denoted by A,;;,. Meanwhile, s;,,, and Sin indicate that
tasks i and j have been mapped to processors p,; and p;,. The value of s;;, is 1 if task i has
been scheduled to processor m. Likewise, ¢;; is the communication cost between task i and j.
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The Reliability index of schedule s is calculated as Equation (8). The number of the
tasks is denoted by 1 V1.

P P v v
fo = rel(s) = L, AiCi() + Ly Ko Ko ot Amnsinsinci ®

All the objectives f1, f» and f3 are conflicting; hence the optimal values of them cannot
be achieved in a single solution [11-13]. Therefore, a set of non-dominated solutions,
Pareto-front, is extracted for the multi-objective task graph scheduling problem.

3. Related Studies

In this part, the most recent approaches to the multi-objective task graph scheduling
problem are briefly reviewed.

In [14], several algorithms were applied to a bi-objective (Makespan and reliability
index) Gaussian elimination graph with 18 nodes by Chitra et al. They also evaluated
the performance of the algorithms using the randomly generated graphs. the standard
genetic algorithms (SGA) and evolutionary programming (EP) were applied by the authors,
and they used a weighted-sum approach to combine the objectives into one objective.
Moreover, the authors applied the multi-objective GA (MOGA) [30,31] and multi-objective
evolutionary programming (MOEP) [32,33], and outcomes illustrated that the MOEP
provides better distribution in Pareto-front than SGA, EP, and MOGA. Carrying out the
comparison only between the GA and EP as well as using very small graphs can be taken
into account as constraints in the study.

Chen et al. [17] suggested the HEFT-NSGA method to optimize the Makespan as well
as the reliability index in the multi-objective task graph scheduling. Evaluations were
carried out using some application graphs and random task graphs. the authors compared
the outcomes with the Heterogeneous Earliest Finish Time (HEFT) method [34] and Critical
Path GA (CPGA) [35] to illustrate that HEFT-NSGA extracts better solutions.

The multi-objective mean field annealing (MFA) is another metaheuristic used by
Lotfi et al. [11] for solving the task graph scheduling problems. The authors evaluated their
introduced method against the NSGAII [36] and MOGA [31] metaheuristics, and outcomes
proved that the MFA extracts better Pareto-front in comparison to NSGAII and MOGA.
The constraint of the study is that only very small graphs have been used for evaluation.

To solve the three-objective task graph scheduling problem, Chitra et al. [12] consumed
the weighted sum GA [37], weighted sum MOEP [32], evolutionary programming (EP) [38,39],
and MOGA [31] methods over a Gaussian elimination graph. There are no metrics calculations
and no comparisons with state-of-the-art algorithms in the study.

For the bi-objective task graph scheduling problem, Eswari and Nickolas [40] proposed
a firefly-based algorithm for optimizing Makespan and reliability solutions. In addition,
comparisons and evaluations were done against modified GA (MGA) [41] and bi-objective
GA (BGA) [42]. The findings indicated that the firefly method performs faster than MGA
and BGA. Using a weighted-sum approach to merge objective values is the limitation of the
suggested method. Likewise, no statistical analysis or metrics calculation can be found in [40].

Chitra et al. [14] merged multi-objective metaheuristics with a simple local search
method to solve the bi-objective scheduling problem. SPEA2 and NSGAII metaheuristics
were compared in their pure and hybrid versions.

Lotfi [8] proposed a strategy to combine six metaheuristics to solve two- and three-
objective task graph scheduling problems. According to the proposed strategy, six meta-
heuristics collaborate and cooperate together to improve a shared population. The common
population is divided into the subpopulations to be improved by metaheuristics, and all
non-dominated solutions found so far are kept in a common archive. Also, each meta-
heuristic has its own local archive to keep non-dominated solutions during individual
execution. Evaluations were done over different task graphs and compared to most of the
state-of-the-art methods. Consequently, the evaluation results showed that the proposed
ensemble method outperformed all considered competitors.
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Likewise, there is a wide literature on new evolutionary algorithms that have been
recently proposed by researchers [43—46].

Yanjiao et al. suggested the NSGA-II-WA algorithm to enhance the NSGAIII standard.
When it comes to the evolution strategy and weight vector modification, their suggested
NSGA-II-WA outperforms NSGAIII [43]. The suggested approach adds a discriminating
condition, which speeds up the procedure without affecting performance. The effectiveness
of the NSGA-II-WA in terms of convergence and distribution was tested by the authors
using the DTLZ benchmark set [43].

In 2017, Xiang et al. introduced the VAEA (Vector Angle-Based Evolutionary Algo-
rithm), which is based on angle decomposition [44]. Without the use of reference points,
VAEA can adjust search space variety and convergence. The maximum vector-angle-first
theory, used by VAEA, ensures that the solution set is wide and uniform. The findings of
the authors’ evaluation of VAEA using numerous objective benchmarks showed that VAEA
effectively tunes convergence and diversity.

Cheng et al. suggested the RVEA (Reference Vector Guided Evolutionary Algorithm)
in 2016 [46], which is based on reference vector guidance. RVEA tunes the weight vectors
in accordance with objective functions dynamically. The authors compared the RVEA to
five cutting-edge techniques and found that RVEA is efficient and effective.

Due to the wide range of state-of-the-art works in literature, it is useful to categorize
the developed methods in terms of algorithm type and the problem type they are solving.
The first categorization can be carried out in terms of the problem type, which is bi-objective
or three-objective task graph scheduling problems. Likewise, the second organization is
done based on the algorithm type, which can be either single-objective or multi-objective
optimization approaches. The algorithms can also be either improved versions or hybrid
types. Table 1 represents the categorization of state-of-the-art methods. Three recently
proposed evolutionary algorithms are also considered in the table.

Table 1. Classification of the current methods in the literature.

Single-Objective

Method Title Algorithm (Applying Mlitllg-oorl;t]ﬁ::we Bl-o,lPéeSthe Three:r(;lgectlve Rl\?flii)necre
Weighted-Sum)
SGA v X v X [15]
EP v X v X [15]
Hybrid GA i X v X [15]
EP V X X v [12]
GA V X X v [12]
MOGA X Vv Vv v [14,31]
MOEP X v v v [14,32]
HEFT v X v v [17,34]
CPGA i X Vv v [17,35]
HEFT-NSGA X v v v [17]
MFA X i X v [11]
FA Vv X v X [13]
MGA v X v X [42]
BGA v X v X [41]
MOO+Local
Search X % v X [151]
Ensemble System X Vv Vv Vv [8]
NSGA-II-WA X v v v [43]
VAEA X Vv Vv v [44]
RVEA X v v v [46]
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The single-objective optimization algorithms use the weighted-sum method to be
able to optimize more than one objective [47-49]. The reported results show that most of
the multi-objective optimization methods outperform the single-objective and weighted-
sum approaches.

4. The Proposed Hybrid Method

Efficiently solving the multi-objective multiprocessor scheduling problem is of great
importance in engineering applications. The reason is that the task graph is the representa-
tion of a parallel program running over multiprocessors in distributed systems. Decreasing
the total execution time and optimizing other objectives of the problem play a remarkable
role in distributed systems, and this is the reason why the problem has been widely solved
by many different approaches up to now and is still going on. The new hybrid method
that combines the improved MODE algorithm [19,50,51] and VNS methodology [52,53] is
described in this part. According to [51], DE is a simple, effective, and robust algorithm for
solving global optimization problems. Many research efforts have been made to improve
DE and apply it to different practical problems. Differential evolution is able to search a
very large space of candidate solutions, and its biggest advantage is stability. Since the
DE is simple, robust, and stable, it was selected as the main method to be hybridized with
another fast and efficient search technique called VNS. Applying the pure MODE algorithm
is not promising; the selection, crossover, and mutation operators in MODE are therefore
modified and improved in this paper. The dominance rank to be used in the selection part
affects the performance in a good way. Likewise, to increase the performance, MODE has
been hybridized with a fast and robust VNS. These are the motivations for this paper to
merge MODE and VNS in order to reach a reliable and robust method. With regard to
selection, crossover, and mutation operators, the suggested hybrid technique makes use of
a modified MODE. All non-dominated solutions found so far, Pareto-front, are kept in an
archive, which is updated at the end of each cycle in MODE.

The population is randomly initialized at the beginning of the proposed method. A
solution (scheduling) is represented in the suggested way as an array including two rows
and n columns, in which n is the total number of tasks in the graph. As an example, Figure 3
provides a random schedule for the graph seen in Figure 2. The t; symbol is used to point
the task number assigned to processor p; explained in Section 3. Hence, each column in
array indicates the assignment of task f; to processor p; e.g., the second column illustrates
that t; has been assigned to pj.

The procedure depicted in Algorithm 1 is used to randomly initialize the population.
While the tasks are determined based on the topological ordering, the processors are
chosen at random. The ability of this algorithm to provide diverse, legitimate, random
solutions—solutions that differ in terms of task ordering and processors—is one of its
advantages. The algorithm retains a list of all ready tasks to be done, called ReadyTasks,
and it selects tasks at random one by one from this list to generate solutions. If all of a task’s
parents have previously been completed, the task is ready to be executed. For this, the
algorithm gives each job a parent counter and decrements it whenever a parent is executed.
In this manner, when the parent counter reaches zero, a task is added to the ReadyTasks
list. The Successors of a task ¢; in the algorithm is the set of its children on task graph e.g.,
the successors of t; on graph shown in Figure 2 are {ty, tg, to, t1o}.

The proposed hybrid method for tackling the mentioned problems is shown in Figure 4.
As can be seen in the flowchart, the system continues to operate in successive sessions
until the termination requirements are satisfied. The system first determines the values
of each objective using the formulae and explanations from Section 2. The algorithm
for calculating a schedule’s makespan is shown in Algorithm 2. The AT[t;] and FT[t;]
variables in the algorithm represent the readiness of each task to begin execution and
its completion, respectively. Also, the P[p;] records when the processor p; will be free.
Moreover, | P| and |T| stand for the number of processors and tasks, respectively. The
value of communication_time (t;, ¢;) also indicates the cost of communication between
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the processor executing f; and the processor executing t;. It should be noted that if both
processors are same, the communication cost will be zero. Finally, the maximum P[p;] for
all processors is considered to determine the makespan of the schedule.

Algorithm 1: Schedule Initialization Algorithm

Schedule-Initialization (schedule [1 ... 2][1 ... n], V, P) // V is the set of tasks, //P is the set of
processors
For all Tasks t; € V in task graph
ParentsCount [f;] = number of ¢; parents in task graph
ReadyTasks = {t; € V | ParentsCount [t;] = 0} // Prepare the ready tasks to execute
j=1
While (ReadyTasks set is not Empty)
Choose a Task t; from the ReadyTasks set randomly
Add t; to Schedule [1][/]
Choose a Processor p from the ProcessorList randomly
Add p to Schedule [2][/]
j=j+1
For all Children ¢; € {Successors of #}
ParentsCount [t;] = ParentsCount [#;] — 1
if (ParentsCount [t;] == 0)
Add t; to ReadyTasks set

The dominance rank of each solution is determined in the following phase, where
s is the number of solutions that are dominating it. The lower rank value indicates the
better quality of the answer. Dominance rank values are used in roulette wheel selection, in
which good solutions are more likely to be selected than poor solutions. The roulette wheel
selection mechanism selects the solutions according to the size of the region they occupy
on the wheel. Hence, the value of dominance ranks is changed in such a way that big
values show better ranks. To do this, all dominance ranks are subtracted from the biggest
dominance rank.

Later on, the archive is updated with recently found non-dominated solutions, accord-
ing to the flowchart in Figure 4. This phase also uses dominance rank values, in which
it inserts all solutions with dominance rank zero into the archive and then removes all
solutions in the archive dominated by the newly inserted one.

Algorithm 2: Makespan Calculation

Makespan-Calculation (Schedule [1 ... 2][1 ... n], ExecutionTime [], CommunicationTime [])
//ExecutionTime is the tasks execution time
//CommunicationTime is the cost of edges between task pairs
P[1IPIT={0}, AT[1... ITI]={0}, FT[1... ITI]={0}
/1P| and | T| are the number of processors and number of tasks respectively
//Plpil is the time at which processor pi becomes idle
// ATl[t;]is the time that ti would be ready to execute
// FTlt;lis the finish time of taskt;
fori=0to Tl
t; = Schedule [0][{]
P [Schedule [1][7]] = max (AT [t;], P [Schedule [1][7]] + ExecutionTime(t;))
FT[t;] = P [schedule [1][i]]
for all Tasks t; € Successors(t;) in the task graph
temp = FT [t;];
if (schedule [1][{] is not same as processor assigned to )
temp = temp + Communication_time (f;, £;)
AT [tj] = max (temp, AT [t]-])
Makespan =Max (P [1... |PI])
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Initialize the Population (Pop) with size of Popsize and Archive as a Empty set

A4

Submit the
Archive as Result

:i Objectives Evaluation: Calculate the objectives values

AV

Calculate Dominance rank for all Solutions in Pop:
Jfor i=1 to PopSize
DominanceRank (Solution, ) = Number of solutions in Population dominating Solution,

v

Update the Archive:
fori=1 to PopSize
if ( DominanceRank (S()Iuli()n/_ ) =0) Then Add S()Iulion/ to Archive

Remove all Dominated solutions from Archive

Apply Neighborhood Search
Technique on Archive

For each Snlurion»\ in Pop l<

Termination
Criteria satisfied?

Select three + different solutions

for i=1 to PopSize
DominanceRank (Solutionl ) = Maximum DominanceRank -
DominanceRank (Solulion’ )
Jori=11to3
PopSize
Sum = zDominanceRank(soluliom )
k=1

k=1
R=Random (0,Sum)
F=DominanceRank (Solution )
While ( R2F )

k=k+1

F=F + DominanceRank (So[uliank)

Rl = Solution )

v
Apply Crossover on R, and R according to Crossover rate:
[4, B] = Crossover (R,, R;)
If (A dominates B) Then C=A
else if (B dominates A) Then C=B
else C= (4 or B) by Random
v

Apply Crossover on R, and C according to Crossover rate:
[A4, B] = Crossover (R, C)
1If (A dominates B) Then C—A
else if (B dominates A) Then C=B
else C= (4 or B) by Random
v

Apply Crossover on Solutionx and C according to Crossover rate:
[4, B] = Crossover (Solution_, C)
If (A dominates B) Then C=A
else if (B dominates A) Then C=B
else C = (4 or B) by Random

If ( C dominates So/utioné) Then Replace So/ulions by C

AV

Apply Mutation over Solution_ according to Mutation rate:
[A] = Mutation (Solution )
If (A dominates Solution_) Then Replace Solution by A

Figure 4. Proposed Hybrid Method.

In the next step, the VNS method is used across archives to further leverage the greatest
solutions so far discovered. In this manner, the non-dominated solutions in the archive are
modified and improved. Algorithm 3 shows the pseudocode for the VNS algorithm. The
suggested hybrid method applies the VNS methodology over a maximum of 10 solutions
in the archive and iterates the inner loop 10 times to prevent time-consuming VNS. The
definition of the neighborhood structure N in the VNS algorithm results in a moderately
significant alteration of the solution.



Appl. Sci. 2023,13, 8537

10 of 23

Algorithm 3: VNS method

VNS (Archive) // Archive consists of all non-dominated solutions found so far
Define a neighborhood structure // It is a modification way to change a solution
// The modification is performed using the mutation operator presented in Figure 9
While (VNS has not been applied on 10 solutions)
Choose a random solution X from archive
fork=1to 10
Generate a solution Y from X using the structure N
for p=1to 3 // Local Search is applied on solution Y
Generate a new solution Z from Y by changing 3 processors randomly
if (Z dominated Y)
Copy ZtoY
if (Y dominates X)
Copy Y to X

The hybrid algorithm then has an inner loop that uses the DE to perform the explo-
ration task. For each solution among the population, the loop iterates the following steps
again. Three potential solutions are chosen in the first stage using a roulette wheel selection
method while considering the dominance rank values. Since the roulette wheel selection
mechanism gives more chances to the bigger values, it will more likely select the solutions
with a higher dominance rank. To prevent this, all dominance rank values are subtracted
by the biggest dominance rank in the population. This way, the rank of the worst solution
becomes zero, and for the other solutions, the higher dominance rank indicates a better so-
lution. Therefore, the selection step chooses three random solutions for each solution in the
population so that better solutions have a better chance of being selected. In Figure 4, the
algorithm is presented. To identify the final solution C, the crossover operator is then used
over three solutions that were arbitrarily chosen in the following three steps. Then solution
i is replaced by solution C if the solution C dominates solution i. Crossover operators are
implemented in a way that results in workable solutions. Only processors are used for this
two-point crossover. In this manner, only the processors are joined, and the order of the
jobs is maintained because tasks follow a topological order and any random combination
would break the feasibility of the solution. Meanwhile, the crossover operator is applied
according to the crossover rate, which has been defined between 0 and 1. Algorithm 4
indicates the crossover algorithm. In the algorithm, random (0, 1) generates a uniformly
distributed random number in the interval (0, 1). Likewise, Cutpointl and Cutpoit2 should
be generated under the condition that Cutpointl must be smaller than Cutpoit2.

Algorithm 4: Crossover

Crossover (Parentl [1... 2][1... n], Parent2 [1... 2][1... n])
R =random (0, 1) // Generate a random number between 0 and 1 for Crossover Rate
If (R < CrossoverProbability)
Cutpointl = RandomNumber (1, n)
Cutpoint2 = RandomNumber (1, n)
For i = 1 to Cutpointl
Swap (Parentl [2][] and Parent2 [2][7])
For i = Cutpoint2 to n
Swap (Parentl [2][i] and Parent2 [2][i])

The mutation operator is applied to the solution I in the inner loop’s final step. The
sequence of the jobs is also changed by the suggested approach for the mutation operator.
The algorithm selects a point on the solution between 1 and the number of tasks randomly.
The order of the jobs is then kept unchanged up until that random point, but after that point,
the order is changed arbitrarily. The adjustment is implemented using the procedure shown
in Algorithm 1, in which the remaining portion of the solution is randomly generated after
the given point. The benefit of the suggested mutation is that the solution created by this
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operator is altered in terms of both tasks and processors, which causes the algorithm to hop
through the search space and find better solutions. The algorithm also picks a few CPUs
and switches them at random. In Algorithm 5, the mutation algorithm is displayed.

Algorithm 5: Mutation

Mutation (Schedule [1 ... 2][1... n], V) // V is the set of tasks
NewSchedule = Schedule // NewSchedule is mutated version of Schedule
For all Tasks t; € V in task graph //Count the number of parents for each task
ParentsCount [f;] = number of ¢; parents in task graph
ReadyTasks = {t; € V | ParentsCount [¢;] = 0} // Prepare the ready tasks to execute
ReadyCount = Number of tasks in ReadyTasks set
p =0, pp = 0, cutpoint = RandomNumber (1, n)
q = Random (1, cutpoint) // After cutpoint, the order of tasks will be changed randomly
While (ReadyCount >=0)
SelectCount = Number of tasks in ReadyTasks set
SelectList = ReadyTasks
If (SelectCount > 1)
pp=pp+1
If (pp >=q) // if it is after cutpoint, the next task is selected randomly amongst ready tasks
s = Random (1, SelectCount)
t = SelectList (s) //choose a task from ready tasks randomly
Remove f from ReadyTasks
ReadyCount = ReadyCount — 1
p=p+1
NewSchedule [1][p] = ¢
Else // if it is before cutpoint, the next task is selected from Schedule
p=p+1
t = Schedule [1][p]
ReadyCount = ReadyCount — 1
For all Children ¢; € {Successors of ¢}
ParentsCount [c;] = ParentsCount [¢;] — 1 //decrement the number of parents by

one
If (ParentsCount [c¢;] == 0)
Add c; to ReadyTasks set //add new ready tasks to ReadyTasks set
For i =1 to 3 //exchange the processors three times
R1 = Random (1, n);
R2 = Random (1, n);
SWAP (NewSchedule [2] [R1] and solution [2] [R2]);

If the termination requirements are not met when the inner loop is terminated, the
hybrid method moves on to the next session. Otherwise, the extracted archive is submitted
as the best Pareto front found so far.

5. Results and Discussion

The evaluation of the developed algorithm is carried out in this section by taking
well-known benchmarks from the related literature. Whereas applying the pure MODE
algorithm is not promising, this paper modifies it in terms of selection and crossover op-
erators. The dominance rank used in the selection part significantly affects performance.
Likewise, to increase performance, MODE is hybridized with a fast and robust neighbor-
hood search technique. Consequently, the results become promising enough to extract
high-quality solutions.

5.1. Parameter Values

The values of all parameters regarding the MODE algorithm are given in Table 2.
In our Matlab® implementation, the generation size and processor number are adjusted
according to the literature. Population size and generation size are two effective parameters
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influencing time complexity. The values of these parameters are set similarly to the state-of-
the-art methods to make the comparison fair. As it can be seen in Table 2, the population
size and generation size are set to 200 and 300, respectively. It is worth mentioning that
the VNS technique does not add much additional time complexity to the hybrid method
because the small and fast version of VNS is applied. As a result, the suggested hybrid
strategy is more effective considering the quality of the Pareto front.

Table 2. Parameters values.

Algorithm Parameter Values
[Pop | Scaling_Factor ~ #of Generations PC PM
MODE
200 0.5 300 0.8 0.4

5.2. Performance Evaluation Using Bi-Objective Benchmarks

To evaluate the performance, two well-known metrics are calculated. Since the op-
timal PF (Pareto-Front) is unknown for the benchmarks, it is not possible to compute all
the metrics. The spacing metric is computed as follows to evaluate the diversity of the
PF [14]. Likewise, the hypervolume metric evaluates the convergence and spread of PF [31].
Meanwhile, in the evaluations, one of the recently proposed algorithms, NSGA-II-WA, and
the ensemble method proposed in [8] are taken into account as competitors. The Gaussian
Elimination Graph (GE) is the first benchmark, which is shown in Figure 5.

Figure 5. Gaussian Elimination Graph for size = 5.

A graph with 10 and 54 nodes was taken into consideration in [13]. Also, maintenance
and reliability were considered objectives.

The results obtained by the proposed hybrid method and five competitors (Bi-objective
GA (BGA) [42], Modified GA (MGA) [41], Firefly-based algorithm (FA) [13], NSGA-II-WA,
and Ensemble System [8]) are represented in Table 3. The results are calculated according
to the different values of CCR (1, 5, and 10). The following equation indicates the way to
compute the value of CCR:

Average Communication Cost
CCR = .
Average Computation Cost

©)

It should be pointed out that BGA, MGA, and FA methods adapt the multi-objective
problem to a single-objective problem using a weighted-sum approach, but NSGA-WA, the
ensemble method, and the proposed hybrid method extract the Pareto front. Figures 6-8
show the Pareto front extracted by the proposed hybrid method for different CCR values.
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Table 3. Obtained Objective Values.

Objective Method CCR=1 CCR=2 CCR=3
FA 458 687 1144
MGA 591 1070 1426
Makespan BGA 616 1103 1490
NSGA-II-WA 433 841 1065
Ensemble System 420 657 1069
Hybrid Method 418 642 1055
FA 9.45 74 15.48
MGA 13.17 15.93 23.54
Reliability index BGA 9.48 12.20 22.47
NSGA-II-WA 10.56 8.30 16.66
Ensemble System 8.29 6.76 14.83
Hybrid Method 8.05 6.61 13.40
221
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Figure 7. Extracted PF for CCR = 2.
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Figure 8. Extracted PF for CCR = 3.

Table 3 indicates that the proposed method produces better results than its competitors
in terms of reliability and time span. The spacing and hypervolume values are represented
in Table 4.

Table 4. Spacing and Hypervolume of obtained PF.

CCR Spacing Hypervolume
1 35.65 0.91823
2 28.90 0.883519
3 31.26 0.940621

5.3. Performance Evaluation Using Three-Objective Benchmarks

The nonparametric Wilcoxon signed rank test is carried out by following the procedure
in [44] to confirm that the results are different. In Table 5, the sum of all better ranks and the
sum of all worse ranks are represented by R+ and R—, respectively. In order to confirm the
rejection of the null hypothesis, the significance level («) and the p-values are calculated.
Consequently, due to the p-value being less than 1, the null hypothesis is rejected.

Table 5. Wilcoxon signed test results.

Method R+ R—- o p Value

FA 78 25 0.05 0.002364

MGA 62 18 0.01 0.000231

BGA 81 12 0.01 0.000843
NSGA-II-WA 71 25 0.01 0.091024
Ensemble System 61 28 0.05 0.115243
Hybrid Method 56 32 0.06 0.325524

The second experiment is done over the benchmarks reported in [15]. The proposed
hybrid method is compared to evolutionary programming, hybrid GA (HGA), GA, NSGA-
II-WA, and ensemble systems. Table 6 illustrates the obtained results and shows that the
proposed method outperforms its competitors.
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Table 6. Obtained objective values.

Objective Method Makespan Reliability Index
GA 584 14.88
EP 594 15.77
Best HGA 562 13.37
Makespan NSGA-II-WA 511 11.23
Ensemble System 471.23 8.85
Hybrid Method 468.92 8.73
GA 961 6.64
EP 964 7.19
Relosts iy HGA 1243 435
index NSGA-II-WA 680.37 4.03
Ensemble System 661.43 3.62
Hybrid Method 648.25 3.62

In addition, Table 7 confirms the rejection of the null hypothesis and the significant
differences between the results.

Table 7. Wilcoxon signed test results.

Method R+ R—- 1o p-Value

GA 62 19 0.035 0.002938

EP 49 28 0.042 0.007328

HGA 32 21 0.032 0.006401
NSGA-II-WA 41 32 0.041 0.008324
Ensemble System 44 29 0.052 0.019232
Hybrid Method 36 27 0.057 0.029351

The next evaluation is carried out based on the benchmarks and results reported in [12].
The proposed hybrid method is compared to EP, GA, NSGA-II-WA, and a system to solve a
three-objective multi-processor scheduling problem, where the objectives are makespan,
mean flow time, and reliability. Table 8 represents the results gained by three methods.

Table 8 indicates that the proposed hybrid method performs better than GA and EP.
Also, Figure 9 represents the extracted Pareto-Front consisting of 73 solutions by the proposed
hybrid method. Table 8’s values were chosen at random from the Pareto front. The derived
Pareto-front has spacing and hypervolume values of 18.32 and 0.78921, respectively.

/

Reliability

Average Flow-time 250 Makespan

Figure 9. Pareto Front found by developed hybrid method.
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Table 8. Obtained objective values.

Objective Method Makespan Reliability Index Flow Time
GA 416 372.75 7.18
EP 419 368.5 7.02

Best
Makespan NSGA-II-WA 412 325.43 6.85
Ensemble System 404.10 303.59 5.18
Hybrid Method 398.45 301.34 4.41
GA 603 280.75 5.6
Best EP 632 292 5.6
Reliability NSGA-II-WA 511.60 308.16 4.23
index Ensemble System 483.88 266.06 3.81
Hybrid Method 461.02 242.16 3.11
GA 810 281.25 3.07
EP 818 284.55 3.10
Best Average

FlowTime NSGA-II-WA 659.63 308.41 3.49
Ensemble System 502.76 276.34 2.83
Hybrid Method 502.76 258.55 2.62

The authors of [11] compared their suggested MFA approach to NSGAII using the
test graph shown in Figure 2 on four CPUs. They evaluated the problem objectives to be
makespan, mean flow time, and reliability. Table 9 illustrates the results obtained by the
developed hybrid methods: MFA, NSGAII, NSGA-II-WA, and Ensemble System.

Table 9. Obtained objective values.

Objective Method Makespan Reliability Index Flow Time
NSGAII 62 25 53
MFA 59 25 51

Best
Makespan NSGA-II-WA 54 25 51
Ensemble System 52 21 53
Hybrid Method 50 22 51
NSGAII 65 24 49
Best MFA 61 24 50
Reliability NSGA-II-WA 61 24 49
index Ensemble System 59 19 46
Hybrid Method 60 18 47
NSGAII 65 24 49
MFA 61 24 50
Best Average

FlowTime NSGA-II-WA 59 24 47
Ensemble System 59 21 43
Hybrid Method 58 21 41

It can be seen that the proposed method outperforms MFA and NSGAIIL The Pareto
front extracted by the proposed hybrid method is represented in Figure 10. In addition, the
derived Pareto-front has spacing and hypervolume values of 42.12 and 0.96547, respectively.
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Figure 10. Pareto Front extracted by proposed hybrid method.

The results of the final assessment are provided in [17]. The HEFT [34] and CPGA
algorithms [35] were contrasted with the recommended technique, HEFT-NSGA [17].
Findings are presented on the Fast Fourier Transformation and Gaussian Elimination
graphs [54-56]. The FFT graph is shown in Figure 11. Schedule Length Ratio (SLR), another
comparative parameter taken into account in [19], is computed as follows:

Makespan

SLR = :
Toyecpyy, min(cost(v7))

(10)

where CP stands for the graph’s critical path, which is focused on minimizing computing
costs. The minimal computing costs of tasks on the critical path are added up to form SLR.
The best algorithm is one that has the lowest SLR. The reliability values for the proposed
hybrid technique over the Gaussian Elimination graph on four processors are shown in
Figure 12 for the HEFT, CPGA, HEFT-NSGA, and HEFT-NSGA algorithms.

()
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Figure 11. FFT Graph.

Figure 13 shows the Makespan, SLR, and reliability values for HEFT, CPGS, and
HEFT-NSGA methods and depicts hybrid methods over the FFT graph.
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Figure 12. Makespan (a), SLR (b) and Reliability index (c) of CPGA, HEFT, HEFT-NSGA and
proposed Hybrid method for Gaussian Elimination Graph.
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Figure 13. Makespan (a), SLR (b) and Reliability index (c) of CPGS, HEFT, HEFT-NSGA and proposed
Hybrid method for FFT Graph.

6. Conclusions

This article offers a novel hybrid approach to the multi-objective problems of multi-
processor scheduling in heterogeneous contexts. The proposed method relies on a strategy
to combine a modified version of the MODE method with a variable neighborhood search
technique. The novelty of this study is to modify the differential evolution method and com-
bine it with neighborhood search to increase the ability to notice more promising portions
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of the search space. To create a novel method, MODE's effective selection, crossover, and
mutation operators are changed. Instead of using random selections, the selection operator
is based on dominance rank values to boost the likelihood of selecting better solutions. As
a result, superior solutions will be chosen more frequently than subpar ones in terms of
dominance. However, to maintain diversity, poor solutions have a lower chance of being
selected in this method. Crossover and mutation operators are performed according to
proposed methods to increase the power of exploration and exploitation. The proposed
novel mutation operator is done in such a way that it is able to change both task order and
processors without breaking the feasibility of the solution. In addition, a quick variation
of the variable neighborhood search strategy is used in the algorithm to get more precise
results in the archive. It can be clearly seen from Table 9 that the proposed system has
obtained 50, 18, and 41 for span, reliability, and flow time, respectively, which are better
than the other competitors in the table.

Further studies may be conducted with the use of the developed algorithm in different
scenarios for optimization problems, e.g., task scheduling in manufacturing and/or cloud
computing [57-62], as discussed in Section 3. As well, it is planned to replace the MODE
algorithm with recently proposed optimization methods, e.g., [43,44], and see how it affects
the performance of the system.
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Nomenclature List

AT[t;] Readiness of each task to begin execution

aft(s) The summation of all completion times divided by | P!
BGA Bi-objective Genetic Algorithm

CPGA Critical Path Genetic Algorithm

Gj(s) The time that processor p; finishes execution
DE Differential Evolution

EP Evolutionary Programming

FA Firefly based Algorithm

FT[t;] The Completion time of task i

GA Genetic Algorithm

GE Gaussian Elimination Graph

HEFT Heterogeneous Earliest Finish Time

Max;C;(s) Completion time of last processor in schedule s
MODE Multi-objective Differential Evolution

MOEP Multi-objective Evolutionary Programming
MFA Mean Field Annealing

MOGA Multi-objective Genetic Algorithm

MOO Multi-objective Optimization

NP Non-deterministic Polynomial

NSGAII Non-Dominated Sorting Genetic Algorithm

PF Pareto-Front

RVEA Reference Vector guided Evolutionary Algorithm

R+ Sum of all better ranks
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R— Sum of all worse ranks

SGA Standard Genetic Algorithm

Sim mapping task i to processor py

Sin mapping task j to processor p,

VNS Variable Neighborhood Search

VAEA Vector Angle-Based Evolutionary Algorithm
v(j, s) All tasks assigned to processor p;

#p The number of tasks

#t The number of processors

o Significance level

A The failure rate of processor p;

Amn The communication failure rate of processors p;; and py
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