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Abstract: Green manufacturing has become a new production mode for the development and
operation of modern and future manufacturing industries. The flexible job shop scheduling problem
(FJSP), as one of the key core problems in the field of green manufacturing process planning, has
become a hot topic and a difficult issue in manufacturing production research. In this paper, an
improved multi-objective wolf pack algorithm (MOWPA) is proposed for solving a multi-objective
flexible job shop scheduling problem with transportation constraints. Firstly, a multi-objective flexible
job shop scheduling model with transportation constraints is established, which takes the maximum
completion time and total energy consumption as the optimization objectives. Secondly, an improved
wolf pack algorithm is proposed, which designs individual codes from two levels of process and
machine. The precedence operation crossover (POX) operation is used to improve the intelligent
behavior of wolves, and the optimal Pareto solution set is obtained by introducing non-dominated
congestion ranking. Thirdly, the Pareto solution set is selected using the gray relational decision
analysis method and analytic hierarchy process to obtain the optimal scheduling scheme. Finally,
the proposed algorithm is compared with other algorithms through a variety of standard examples.
The analysis results show that the improved multi-objective wolf pack algorithm is superior to other
algorithms in terms of solving speed and convergence performance of the Pareto solution, which
shows that the proposed algorithm has advantages when solving FJSPs.

Keywords: flexible job shop scheduling problem; multi-objective wolf pack algorithm; transportation
time; maximum completion time; energy consumption

1. Introduction

The manufacturing industry is an important part of the modern economy and an
important symbol with which to measure a country’s comprehensive national strength.
While the manufacturing industry is moving forward, a series of problems such as energy
depletion, environmental pollution and global warming have become the focus of attention
in the world today, and the manufacturing industry is facing the new challenge of green
transformation. Green manufacturing, as a new modern manufacturing model that com-
prehensively considers environmental impacts and resource consumption, aims to reduce
the negative impact of manufacturing on the environment and improve resource utilization.
As the most basic production unit in the manufacturing industry, job shops play an irre-
placeable role in the manufacturing industry. Reasonable workshop scheduling can make
the conversion of products more efficient and maximize the utilization of resources, so as
to reduce the cost of enterprises and improve production efficiency. As an extension of the
traditional job shop scheduling problem (JSP), the FJSP is one of the core issues in the field
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of green manufacturing process planning. Since it was proposed, it has become a classic NP
hard combinatorial optimization problem in computer science and operations research [1].
In the beginning, FJSP tended to focus on single-objective optimization for minimizing
maximum completion time, economic cost, energy consumption, total delay time, and total
overrun time [2–4]. With the continuous development of the manufacturing industry and
the continuous optimization of product performance, focusing solely on single-objective
optimization can no longer meet the development requirements of today’s manufacturing
industry. Therefore, the research on multi-objective flexible job shop scheduling problems
(MOFJSP), which is a deeper step compared to FJSP, has become a hot topic in the industry.

For MOFJSP, many scholars have improved the traditional intelligent algorithms such
as Genetic Algorithm (GA), Ant Colony Algorithm (ACO), Particle Swarm Algorithm
(PSO) and Artificial Bee Colony Algorithm (ABC). For example, An et al. [5] established
a multi-objective mathematical model to minimize the maximum completion time, total
delay time, total production cost and total energy consumption, and proposed a hybrid
multi-objective evolutionary algorithm based on the Pareto elite storage strategy to solve it.
Zheng et al. [6] proposed a fruit fly collaborative multi-objective optimization algorithm to
solve green scheduling with the objective of minimizing the maximum completion time
and minimum total carbon emissions. Luo et al. [7] used an improved multi-objective
Gray Wolf algorithm for optimization, with minimizing the maximum completion time
and total energy consumption as the optimization objective. Wu et al. [8] optimized from
the aspect of operations management, with minimizing the maximum completion time,
energy consumption and machine switching times as the optimization objectives, and
adopted an improved Non-Dominated Sorting Genetic Algorithm (NSGA-II) for optimiza-
tion. Zhao et al. [9] took minimizing the maximum completion time, energy consumption
and noise as the optimization objectives of the multi-objective mathematical model, and
embedded the improved simulated annealing algorithm into the imperialist competition
algorithm to overcome the premature convergence problem of the imperialist competition
algorithm. Hasani et al. [10] introduced the NSGA-II to solve the multi-objective mathe-
matical model aiming at production cost and energy consumption. Zhu et al. [11] designed
a gray wolf algorithm with a new coding method and job priority repair mechanism for
MOFJSP with priority constraints. Caldeira et al. [12] proposed a multi-objective discrete
Jaya algorithm to optimize the flexible job shop, with minimizing the maximum completion
time, total machine workload and key machine workload as optimization indicators. Chen
Kui et al. [13] established a flexible job shop scheduling model considering transportation
time, proposed a hybrid discrete particle swarm optimization algorithm for optimization,
and introduced a competitive learning mechanism and random restart algorithm to avoid
premature algorithms. Huang et al. [14] proposed an improved NSGA-III algorithm, which
introduced the reference-based niche selection mechanism to improve the diversity of the
algorithm, and was used to solve the MOFJSP with the goal of minimizing the maximum
completion time, total machine load, maximum machine load and machine energy con-
sumption. Mehdi et al. [15] used a mixed integer linear programming model to solve
the green flowshop scheduling problem with the objective of minimizing the maximum
completion time and total carbon emissions. Chen et al. [16] proposed an improved non-
dominated sorting genetic algorithm to solve the hybrid process shop scheduling problem
under time-of-use and step tariff system with the optimization objective of minimizing
the maximum completion time with respect to the total shop energy consumption. Liu
et al. [17] established a multi-objective mathematical model of flexible workshop with
crane transportation constraints to minimize the maximum completion time and energy
consumption, and optimized the model by combining a genetic algorithm with a firefly
swarm optimization algorithm. However, with the deepening complexity of the math-
ematical model of MOFJSP, the traditional intelligent optimization algorithm often has
some disadvantages in solving MOFJSP, such as slow running speed and fast algorithm
convergence, and is easy to fall into local optimization in the iterative process. With the
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continuous updating of the new intelligent algorithm, it provides a new idea for solving
the MOFJSP problem more efficiently.

The Wolf Pack Algorithm (WPA) is a pack intelligence optimization algorithm that
simulates the division of labor and collaboration of wolves in nature to capture prey [18],
with strong global search capability and computational robustness, and is used to solve
problems such as multi-distribution center vehicle path [19], Traveling Salesman Problem
(TSP) [20], and unmanned helicopter route path planning [21]. However, for workshop
scheduling problems, there are still fewer WPA-related applications involved. In this
paper, an improved Multi-Objective Wolf Pack Algorithm (MOWPA) is designed to solve
the Multi-Objective Flexible job shop green scheduling mathematical model with the
optimization objectives of minimizing the maximum completion time and minimum energy
consumption, and generate the Pareto optimal solution set. The gray relational decision
analysis method and Analytic Hierarchy Process (AHP) are introduced to select the Pareto
solution set, and a new scheme is proposed to effectively solve the multi-objective flexible
job shop problem. The contribution of this article can be summarized in three aspects: (1) In
order to be more in line with actual production and processing, FJSP is extended according
to the definition of FJSP, and a MOFJSP with transportation constraints is established. (2) An
improved multi-objective wolf swarm algorithm is designed. The crossover and mutation
operations of the genetic algorithm and pox crossover operations are introduced to improve
the three intelligent behaviors of the wolf swarm algorithm. To comply with the multi-
objective problem constraints, the WPA update method is designed and combined with
non-dominated congestion ranking to solve the optimal Pareto solution set. (3) In order
to facilitate the decision-maker to better select a scheduling scheme, this paper introduces
the gray relational decision analysis method and analytic hierarchy process to calculate
the Pareto solution set, and the decision-maker selects a scheduling scheme that is more
consistent with the workshop processing according to the calculation results.

The framework of the rest of the paper is as follows. In Section 2, a brief description
of the FJSP definition is given and a mathematical model of MOFJSP with transportation
constraints is developed based on the problem definition and constraints. In Section 3, an
improved multi-objective wolf pack algorithm is proposed and a detailed description of
the algorithm if solving MOFJSP is given. In Section 4, simulation tests and analyses are
conducted. A method for selecting the Pareto solution set is introduced in conjunction
with an actual job shop. Additionally, a comparison between the MOWPA algorithm and
the NSGA-II algorithm is performed to further validate the effectiveness of the proposed
method. Finally, Section 5 summarizes the entire text.

2. Problem Description and Modeling
2.1. Problem Description

The FJSP problem can be described as follows: n workpieces are processed on m
machines. Each workpiece has multiple processing processes, and each process can be
executed on more than one machine. All processes of n workpieces are scheduled on
m machines according to a specified processing sequence. The processing time and en-
ergy consumption values of the processes vary depending on the selected processing
machines [22]. The following assumptions are made to establish the mathematical model:

(1) Each workpiece must be processed in the previous process before it can be processed
in the next process;

(2) Each process of each workpiece can only be processed on one machine;
(3) The workpiece will not be interrupted during processing;
(4) At the same time, each machine can only process one workpiece, and each workpiece

can only be processed by one machine;
(5) At the initial moment, all workpieces and machines are ready;
(6) For the first process of each workpiece, transportation time and energy consumption

are not considered;
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(7) The idle start time of each machine is the end time of the last process, and the idle end
time is the start time of the first process;

(8) During the transportation of workpieces, problems such as transportation failures are
not considered.

To establish the mathematical model for the maximum completion time and total
workshop energy consumption, the following symbolic descriptions are provided, as
presented in Table 1.

Table 1. Symbol descriptions.

Symbols Definitions

Parameters

N Workpieces
J Working sequence

M Machines
Oi,j The j-th process of the i-th workpiece
Ti,j,k Processing time of Oi,j on machine k

Ti(j−1) jmk
Time for transporting N from machine tool Mm to machine tool Mk
between operation Oi,j−1 and Oi,j of workpiece N

Ui,j,k
Integer variable, takes 0 or 1 if Oi,j is processed on machine k,
otherwise 0

Pk
c Machining power of machine tool k

Pk
idle Standby power of machine tool k

Pi(j−1) jmk
Power for transporting N from machine tool Mm to machine tool Mk
between operation Oi,j−1 and Oi,j of workpiece N

Variables

Si,j,k Starting processing time of Oi,j at machine k
Fi,j,k Oi,j end processing time on machine k
Ci Completion time for workpiece i
Tk

c Machining time of machine tool k
Tk

idle Standby time of machine tool k
Ek Total energy consumption of machine tool k
Ek

c Machining energy consumption of machine tool k
Ek

idle Standby energy consumption of machine tool k
Etrans Total transportation energy consumption

2.2. Mathematical Model Building

Workshop energy consumption comprises machine tool energy consumption and trans-
portation energy consumption. In Figure 1, which represents a simplified model of the input
power of a machine tool during the machining process [23], the energy consumption of a
single piece of equipment can be divided into four states: starting state, processing state,
no-load state, and stop state. During equipment start-up and shut-down, there is a significant
fluctuation in power, but the duration is short. Frequent start–stop operations can negatively
impact the machine’s lifespan and processing quality. Typically, a machine performs only one
start–stop operation, which is not the primary factor affecting energy consumption. Hence, it
is not considered in the model. Consequently, only the processing state and no-load state of a
single equipment are taken into account when considering energy consumption.

The machining energy consumption is determined by the machining power and
machining time of the machine tool.

Ec =
m

∑
k

Ek
c =

m

∑
k

Pk
c × Tk

c (1)

The no-load energy consumption is generated by the idling state of the machine tool
before the workpiece is processed, and is determined by the no-load time and no-load
power of the machine tool.

Eidle =
m

∑
k

Ek
idle =

m

∑
k

Pk
idle × Tk

idle (2)
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During the entire processing process, workpieces need to be transported from one
machine tool to another for processing, necessitating transportation. Assuming a constant
transportation power, the transportation time is determined by the distance between the
two machine tools. The transportation energy consumption can be calculated as the product
of the transportation power and the transportation time.

Etrans =
n

∑
i=1

q

∑
j=1

Ti(j−1) jmk × Pi(j−1) jmk (3)

The total energy consumption of the workshop is thus obtained as:

E = Ec + Eidle + Etrans =
m

∑
k

Pk
c × Tk

c +
m

∑
k

Pk
idle × Tk

idle +
n

∑
i=1

q

∑
j=1

Ti(j−1) jmk × Pi(j−1) jmk (4)

A multi-objective mathematical model is established with the maximum completion
time f 1 and total energy consumption of the workshop f 2.

min f1 = C = max
1≤i≤n

Ci

min f2 = E
(5)

The constraints are as follows:

Si,j ≥ Fi,j−1 + Ti(j−1)jmk (6)

m

∑
k=1

Ui,j,k = 1, i ∈ N (7)

Fi,k ≤ Si′,k, i ∈ N, i′ ∈ N, k ∈ M (8)

Ci = Fi,q (9)

where Equation (6) indicates that the start time of the process of the workpiece is greater
than the end time of the previous process plus the transportation time of the workpiece
operation; Equation (7) indicates that each process can only be processed on one machine;
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Equation (8) indicates that the machine can only start processing the next workpiece after
finishing processing one workpiece; Equation (9) indicates that the processing time of the
workpiece is the completion time of the last process, q is the final process of the workpiece.
The specific operation is shown in Figure 2.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 19 
 

( 1) ( 1)
1 1

=
qm m n

k k k k
c idle trans c c idle idle i j jmk i j jmk

k k i j
E E E E P T P T T P− −

= =

= + + × + × + ×    (4) 

A multi-objective mathematical model is established with the maximum completion 
time f1 and total energy consumption of the workshop f2. 

1 1

2

min max

min
ii n

f C C

f E
≤ ≤

= =

=
 (5) 

The constraints are as follows: 

, , 1 ( -1)i j i j i j jmkS F T−≥ +
 (6) 

, ,
1

1,
m

i j k
k
U i N

=

= ∈
 

(7) 

, ', , 'i k i kF S i N i N k M≤ ∈ ∈ ∈， ，  (8) 

,i i qC F=
 (9) 

where Equation (6) indicates that the start time of the process of the workpiece is greater 
than the end time of the previous process plus the transportation time of the workpiece 
operation; Equation (7) indicates that each process can only be processed on one machine; 
Equation (8) indicates that the machine can only start processing the next workpiece after 
finishing processing one workpiece; Equation (9) indicates that the processing time of the 
workpiece is the completion time of the last process, q is the final process of the workpiece. 
The specific operation is shown in Figure 2. 

 
Figure 2. Constraint Description Gantt Chart. 

3. Improved Multi-Objective Wolf Pack Algorithm Design 
The WPA is an intelligence optimization algorithm inspired by the behavior of 

wolves preying on their prey. The WPA algorithm abstracts three intelligent behaviors: 
wandering behavior, calling behavior, and siege behavior. In the algorithm, the head wolf 
represents the best wolf, and a wolf pack renewal method is employed to retain the best 
wolves and eliminate the inferior ones [24]. Originally designed for solving continuous 
function optimization problems, WPA has been found to suffer from the drawbacks of 
falling into local optima and premature convergence. To address these limitations and 

Figure 2. Constraint Description Gantt Chart.

3. Improved Multi-Objective Wolf Pack Algorithm Design

The WPA is an intelligence optimization algorithm inspired by the behavior of wolves
preying on their prey. The WPA algorithm abstracts three intelligent behaviors: wandering
behavior, calling behavior, and siege behavior. In the algorithm, the head wolf represents
the best wolf, and a wolf pack renewal method is employed to retain the best wolves
and eliminate the inferior ones [24]. Originally designed for solving continuous function
optimization problems, WPA has been found to suffer from the drawbacks of falling into
local optima and premature convergence. To address these limitations and leverage the
characteristics of the MOFJSP problem, three intelligent algorithms within WPA have been
improved to expand the search range and obtain the global optimal Pareto solution set.

3.1. Encoding and Decoding

According to the discrete characteristics of the FJSP problem, a two-level coding
method is adopted, that is, the encoded individual vector is composed of two parts: process
sequencing vector and machine selection vector. Additionally, the code length of the
process layer and the machine layer are equal, so that the process code and the machine
code correspond to each other. The coding method is shown in Table 2.

Table 2. Code segment.

Process layer 1 1 2 3 3 1 2 2 3

Machine layer 1 2 2 1 2 2 2 1 3

The first row of the table represents the process order, where the number represents
the name of the workpiece and the number of times it appears represents the process of the
workpiece. For example, if “1” means workpiece 1, the first occurrence of “1” means the
first process of workpiece 1, and the second occurrence of “1” means the second process of
workpiece 1, and so on. The second row is the machine selection problem for the machining
process. The machines that can be processed by each machining process correspond to a
set of machines, and each number indicates the index of the location of its machine set.
For example, the processing machine set for process O2,1 is [M2, M4] (M2 and M4 denote
machine 2 and machine 4, respectively), and 2 means that its processing machine is the
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second position in the machine set, which is M4, indicating that process O2,1 is processed
on machine 4.

3.2. Population Initialization

The quality of the initial solution directly affects the performance of the algorithm.
Random initialization is a widely used method which ensures diversity in the initial
population but does not guarantee the quality of the solutions. In the case of MOFJSP
optimization, three rules are employed to generate the initial population: the minimization
of maximum completion time method, the minimization of energy consumption value
method, and the random generation method. The population size for each rule is set at
40%, 40%, and 30%, respectively, aiming to improve the quality of the initial solutions.

3.3. Non-Dominated Crowding Ranking

The non-dominated crowding ranking method is used to calculate the level of in-
dividuals, stratify them, and calculate the crowding degree between individuals at the
same level. This realizes the preservation of optimal solutions and elimination of inferior
solutions for wolf packs, allowing wolf packs to update the position of artificial wolves
during the iteration process. The non-dominated sorting is shown in Figure 3.
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After individual stratification, it is necessary to distinguish the individuals of the same
layer. The crowding distance is used to distinguish the advantages and disadvantages
among individuals. The formula for calculating the crowding distance of individuals is
shown in Formula (10). The individuals with larger crowding distance are far away from
other individuals. According to the crowding distance, the distribution uniformity of
solution set can be judged.

P[i]dis tan ce =
P[i + 1]• f1 − P[i− 1]• f1

f max
1 − f min

1
+

P[i + 1]• f2 − P[i− 1]• f2

f max
2 − f min

2
(10)

where P[i]distance denotes the crowding distance of an individual: P[i]• f1 and P[i]• f2
represent two objective function values of individual i; f max

1 , f min
1 denote the maximum and

minimum values of the objective function f1, respectively; f max
2 , f min

2 denote the maximum
and minimum values of the objective function f2, respectively.

3.4. Intelligent Behavior Design

For each of the three intelligent behaviors in WPA, the crossover and variation op-
erators from the genetic algorithm are incorporated to maintain the diversity of feasible
solutions and enhance the local search capability of the algorithm. Additionally, the elite
retention strategy and non-dominated ranking method are employed to improve the algo-
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rithm’s ability to seek promising solutions. Considering the encoding method and features
of FJSP, efficient crossover and mutation operations have been specifically designed to
prevent the generation of illegal solutions and ensure the validity of the solutions after
applying intelligent behaviors. The wandering behavior incorporates a double-layer muta-
tion, the summoning behavior utilizes the POX crossover [25], and the besieging behavior
incorporates a mutation operator.

Wandering behavior: take the process wandering and machine wandering in two
ways. For wandering walking, as shown in Figure 4, first, according to the process code, the
walking step length stepa1 is defined as the number of individual position vectors for the
detection wolf to walk, stepa1 process codes containing different workpieces are randomly
extracted, randomly sorted, and then the sorted codes are placed in the spare position of
the original process code in order.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 19 
 

 
Figure 4. Process wandering behavior. 

For machine code wandering operation, assuming machine wandering step 
2 =1astep , the process of any one processing machine set of no less than two machines is 

randomly selected in its corresponding machine set, as shown in Figure 5. 

 
Figure 5. Machine wandering behavior. 

(2) Calling behavior. The wolf pack is ranked using the non-dominated crowding 
degree ranking method, and one of the solution sets is randomly selected from the optimal 
Pareto solution set as Xleader. The POX crossover operation is then performed as follows: 
the workpiece serial numbers are randomly assigned to two non-empty and complemen-
tary sets Q1 and Q2, the workpiece serial numbers containing the set Q1 are selected from 
the parent X1, the position of each workpiece serial number is kept unchanged, and copied 
to the child X1’. The set Q2 workpiece serial numbers are selected from the parent Xleader, 
and these are inserted to the vacant positions of the child X1’ in order. Similarly, the work-
piece serial numbers from the parent Xleader containing the set Q1 are selected, while the 
position of each workpiece serial number is kept unchanged, and then copied to the child 
Xleader’. The set Q2 workpiece serial numbers from the parent X1 are selected and inserted 
into the vacant positions of the child Xleader’, in order. The POX crossover operation is 
shown in Figure 6. 

Figure 4. Process wandering behavior.

For machine code wandering operation, assuming machine wandering step stepa2= 1,
the process of any one processing machine set of no less than two machines is randomly
selected in its corresponding machine set, as shown in Figure 5.
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(2) Calling behavior. The wolf pack is ranked using the non-dominated crowding
degree ranking method, and one of the solution sets is randomly selected from the optimal
Pareto solution set as Xleader. The POX crossover operation is then performed as follows:
the workpiece serial numbers are randomly assigned to two non-empty and complementary
sets Q1 and Q2, the workpiece serial numbers containing the set Q1 are selected from the
parent X1, the position of each workpiece serial number is kept unchanged, and copied to
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the child X1’. The set Q2 workpiece serial numbers are selected from the parent Xleader, and
these are inserted to the vacant positions of the child X1’ in order. Similarly, the workpiece
serial numbers from the parent Xleader containing the set Q1 are selected, while the position
of each workpiece serial number is kept unchanged, and then copied to the child Xleader’.
The set Q2 workpiece serial numbers from the parent X1 are selected and inserted into the
vacant positions of the child Xleader’, in order. The POX crossover operation is shown in
Figure 6.
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The siege behavior is only for the process code, and the machine code can be trans-
formed accordingly. Similar to the improved wandering behavior, the siege step size is set
to stepc and defined as an integer. For example, the process code of artificial wolf Xi is [1, 1,
2, 3, 3, 1, 2, 2, 3] and its individual code number is 9. The siege step stepc will be taken as a
random number of [0, 9]. Due to the large setting of the siege step size, it is easy for the
value to jump out of the optimal solution range. Generally, the step size is set to be 1/3 to
1/2 of the number of individual codes.

The wolf pack update mechanism is achieved by using a non-dominated crowding
sorting method after conducting a siege behavior to remove the R artificial wolves with the
lowest odor concentration value (i.e., the higher objective function value) and generate R
artificial wolves. Generally R ∈ [M/(2× β), M/β], β is the population update proportion
factor, and M is the number of artificial wolves.

3.5. Algorithm Flow

To sum up, the flow chart of the MOWPA algorithm steps is shown in Figure 7, and
the details are described as follows:

Step 1: Initialize the algorithm parameters.
Step 2: Set the external file Q = ∅, calculate the objective function value of each

artificial wolf in the initial population, layer the individuals through rapid non-dominated
sorting, and update the external files set.

Step 3: Calculate the fitness value, select some of the better artificial wolves to perform
the double walk behavior of process coding and machine coding for the detection wolves,
update the location of the detection wolves and judge whether the number of walks reaches
the maximum number of walks Tmax; if so, go to step 4.

Step 4: The remaining artificial wolves are selected as the fierce wolves, and the detect-
ing wolves initiate the summoning behavior, and the POX crossover with the fierce wolves
is randomly selected among the detection wolves to calculate the prey odor concentration
value perceived by each artificial wolf and update the location of the fierce wolves.

Step 5: The detection wolf teams up with the fierce wolf to execute the siege behavior.
In this behavior, the artificial wolf position with the best fitness value for each optimized
subgoal is randomly selected as the target for the siege. After the siege behavior is com-
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pleted, each artificial wolf position is updated, the optimized objective function value is
calculated and recorded, and the Pareto better solution is obtained. The external profile set
is then updated by sorting the individuals.

Step 6: Renewing populations according to the survival of the strongest.
Step 7: Determine whether the algorithm has reached the termination condition. If

it has, output a set of optimal solutions from the Pareto optimal solution set. Otherwise,
proceed to step 3.
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4. Simulation Testing and Analysis
4.1. Test Example

In this paper, the Brandimarte example [26] is adopted as a benchmark case. However,
since the model in this study incorporates energy consumption as an index, additional
data need to be generated and extended accordingly. Random data within a reasonable
range were generated, and the corresponding values are presented in Table 3. The table
includes transportation energy consumption and transportation time, which have been
standardized to a unified dimension.

Table 3. Energy Consumption for Machine Processing.

Machine
Power M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Processing power 2 1.8 1.6 2.4 2.4 4.1 3.5 4.1 2.8 2.7
standby power 0.5 0.6 0.3 0.4 0.4 0.6 0.8 0.9 0.3 0.4
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The transport time of the workpiece in each machine is shown in Table 4. The data in
the table express the time required for the workpiece to be transported from machine n to
machine M. The transporting time was set as a random integer in the [1,5] interval. The
transporting power of the transporting equipment is fixed and its value is Ptrance = 1.89,
which is the unit time power.

Table 4. Transportation time.

Machines M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

M1 0 2 1 2 4 3 4 3 2 3
M2 2 0 2 2 3 2 3 4 4 2
M3 1 2 0 3 2 4 3 1 5 2
M4 2 2 3 0 4 4 3 4 3 2
M5 4 3 2 4 0 1 4 4 3 4
M6 3 2 4 4 1 0 4 3 2 2
M7 4 3 3 3 4 4 0 5 1 3
M8 3 4 1 4 4 3 5 0 4 1
M9 2 4 5 3 3 2 1 4 0 3
M10 3 2 2 2 4 2 3 1 3 0

The MOWPA algorithm parameters were configured according to Table 5 using MK04
as the test data. By applying the MOWPA algorithm for optimization, the maximum
completion time and workshop energy consumption values were obtained, as presented in
Table 6. The table displays 11 sets of Pareto solutions generated by the MOWPA algorithm.
Each set comprises the maximum completion time and the total energy consumption. The
energy consumption values in each set represent the corresponding energy consumption
values during the processing stages.

Table 5. Parameter of MOWPA algorithm.

Parameter Name Numerical Value

Population number 200
Iterations 100

External archive collection size 100
Maximum number of walking 10

Procedure walking step 6
Machine Walking Steps 4

Siege steps 6
Detection wolf scale factor 0.4

Update scale factor 0.3

Table 6. Pareto solution set of MOWPA.

Serial Number
Maximum Completion

Time f1

Total Workshop
Energy Consumption f2

Energy Consumption of Each Part

Transportation
Energy

Consumption

Processing
Energy

Consumption

Standby
Energy

Consumption

1 87 1332.60 359.10 856.50 117.00
2 89 1320.76 347.76 854.60 118.40
3 90 1311.08 343.98 836.50 130.60
4 91 1300.91 357.21 836.20 130.50
5 92 1270.43 334.53 828.70 107.20
6 93 1267.99 342.09 826.80 99.10
7 94 1259.91 338.31 824.60 97.00
8 95 1242.32 336.42 805.10 100.80
9 100 1219.09 323.19 765.50 130.40
10 101 1210.43 320.53 763.30 126.60
11 106 1189.47 308.07 743.80 137.60
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4.2. Selection of Pareto Optimal Solution Set

For multi-objective problems, there are multiple solutions in the resulting set of Pareto
solutions, which makes it difficult for the decision maker to select a better scheduling
solution to process the product. Therefore, in order to facilitate the decision maker to better
select an optimal scheduling solution from the Pareto solution set, a combination of AHP
and gray correlation decision analysis was used to select the Pareto solution set. First, the
weight value of each index was obtained through the analytic hierarchy process. After
obtaining the weight value of each objective, the gray correlation decision analysis method
was used to obtain the optimal solution under the current weight from a group of optimal
solutions. The advantage of combining AHP with gray correlation decision analysis is that
it not only combines the subjectivity of the decision maker to assign weights to the goal
according to the current conditions, but also quantitatively analyses the data obtained from
the optimal solution to select the optimal solution.

(1) Calculate the weight value

In order to find the weight value using the hierarchical analysis method, firstly, the
judgment matrix is established by the decision makers such as schedulers by comparing
the importance of each index and by quantifying the judgment matrix of each index. The
weights of the two indices under the maximum completion time and energy consumption
are solved according to the nine-level scale method and in combination with production
practice. If the order a21= 2, then the indices f2 (total energy consumption) are slightly
more important than the indices f1 (maximum completion time). The resulting judgment
matrix and the weights of each indicator are shown in Table 7.

Table 7. Index judgement matrix and weight value.

Indicators f1 f2 Weights ω

f1 1 1/2 1/3
f2 2 1 2/3

(2) Data normalization

The purpose of data normalization is to eliminate the difference between variables due
to different dimensions and thus eliminate the influence on the results. The normalization
method used here is shown in Formula (11).

Ni,j =
Yi,j −Ymin

j

Ymax
j −Ymin

j
(11)

where Ni,j is the matrix after Yi,j normalization and Yi,j is the raw data, representing the
j-th objective function value of the group i data, and Ymax

j and Ymin
j are the maximum and

minimum values of the j column of the original matrix Y respectively.

(3) Calculation of gray correlation coefficient

The gray correlation coefficient γi,j reflects the degree of association between the j-th
indicator of the i-th data set and the ideal value.

γi,j =
Nmin

j + ρNmax
j

Ni,j + ρNmax
j

(12)

where Nmin
j and Nmax

j are, respectively, the minimum and maximum values in the index
data group after normalization. ρ is the resolution coefficient, generally taken as 0.5.
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(4) Calculation of gray correlation degree

The gray relational degree is the product of the gray relational coefficient and the
corresponding weight. The weight value of each indicator has been obtained from the AHP.
The calculation method of the gray relational degree is shown in Formula (13).

Ri =
m

∑
j=1

γi,jwj (13)

By calculation, the data are shown in Equation (14). Where Y is the raw data, the
first and second columns correspond to the maximum completion time and total energy
consumption of the workshop, respectively. N is the normalized matrix corresponding
to the original data obtained by data normalization, γ is the gray correlation coefficient
matrix, ω is the weight matrix of the two objectives obtained by analytic hierarchy process,
ω= [0 .33, 0 .67], R is the gray correlation matrix.

Y =



87
89
90
91
92
93
94
95

100
101

1332.60
1320.76
1311.08
1300.91
1370.43
1267.99
1259.91
1242.32
1219.09
1210.43

106 1189.47



, N =



0.000
0.105
0.158
0.211
0.263
0.316
0.368
0.421
0.684
0.737

1.000
0.917
0.850
0.779
0.566
0.549
0.492
0.369
0.207
0.146

1.000 0.000



, γ =



1.000
0.826
0.760
0.704
0.655
0.613
0.576
0.543
0.422
0.404

0.333
0.353
0.370
0.391
0.469
0.477
0.504
0.575
0.707
0.733

0.333 1.000



(14)

The weight matrix ω= [0 .33, 0 .67] and the data of Equation (14) are substituted into
Equation (13) to obtain the correlation matrix R, as shown in Formula (15).

R = [0.556 0.511 0.500 0.495 0.531 0.522 0.528 0.564 0.612 0.650 0.778]T (15)

The larger the value of R, the better the effect of the corresponding solution under
this weight. From the correlation matrix R, it can be seen that the 11th group of data
has the largest correlation of 0.778, which corresponds to a maximum completion time
of 106 and a total shop floor energy consumption of 1189.47. Therefore, the scheduling
solution corresponding to the 11th group of scheduling optimization results is selected for
processing, and its scheduling Gantt chart is shown in Figure 8.
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4.3. Algorithm Performance Evaluation

The parameter settings of the MOWPA algorithm are shown in Table 5. To verify the
performance of the algorithm, this article aims to establish a multi-objective mathematical
model that considers transportation time and energy consumption to minimize the max-
imum completion time and minimum energy consumption. MOWPA and NSGA-II are
used for solving.

The Pareto optimal solution set obtained through simulation is shown in Table 8. The
data format in the Pareto solution set column in the table is (x; y), where x represents the
maximum completion time and y represents the total energy consumption of the workshop.
From the table, It is evident that the solved range distribution exhibits greater width
and uniformity.

Table 8. Pareto solution set table for MOWPA algorithm and NSGA-II algorithm.

Test Data The Set of Pareto Solutions Obtained by MOWPA The Set of Pareto Solutions Obtained by NSGA-II

MK01
(46;525.53), (52;516.62), (58;513.43)

(47;522.11), (51;518), (45;526.91)
(44;530)

(49;546.97), (50;539.37), (51;532.77)
(52;524.79), (58;501.11)

MK02
(37;526.91), (38;519.49), (39;514.91)
(40;513.09), (41;512.51), (42;512.11)
(43;511.47), (44;510.89), (45;509.49)

(38;539.11), (39;534.44), (40;530.68)
(43;527.56), (44;522.98)

MK03
(208;3,452.10), (209;3,430.66)
(212;3,418.42), (213;3,399.43)

(215;3,384.83)

(210;3,462.53), (211;3,439.23)
(214;3,410.55), (217;3,398.75)

(218;3,375.26)

MK04

(87;1,332.6), (89;1,320.76), (90;1,311.08)
(91;1,300.91), (92;1,270.43), (93;1,267.99)

(94;1,259.91), (95;1,242.32)
(100;1,219.09), (101;1,210.43)

(110;1,189.47)

(89;1,357.97), (93;1,337.47), (94;1,313.83)
(100;1,289.51), (102;1,276.07), (104;1,259.23)

(109;1,251.44)

MK05
(180;1,632.63), (183;1,630.21)
(185;1,626.91), (186;1,624.62)

(189;1,623.4)

(182;1,669.95), (183;1,652.78)
(184;1,644.08), (186;1,625.29)

MK06

(108;1,740.01), (109;1,719.93)
(110;1,699.66), (111;1,696.25)
(112;1,689.56), (113;1,688.45)
(114;1,685.01), (115;1,683.09)

(108;1,799.12), (109;1,750.59)
(110;1,740.88), (112;1,730.54)
(113;1,720.03), (115;1,690.67)

MK07

(144;1,745.22), (145;1,738.03)
(146;1,735.03), (150;1,730.65)
(155;1,724.42), (160;1,720.72)

(162;1,719.44)

(146;1,766.53), (147;1,754.86)
(149;1,750.31), (150;1,743.33)

In order to compare the convergence performance of the two algorithms, this article
uses the widely used Coverage (C) [6] and Inverted Generational Distance (IGD) [27] in
multi-objective optimization problems as evaluation algorithm indicators. Their meanings
and formulas are as follows.

C(F1, F2) =
|{sol2 ∈ F2|∃sol1 ∈ F1 : sol1 � sol2}|

|F2|
(16)

where F1 and F2 are the Pareto fronts by the two algorithms, respectively, and |F2| is the
size of F2. The larger C(F1, F2) is, the better the surface F1 is. For example, C(F1, F2) = 1
means that all solutions in F2 are dominated by F1, and C(F1, F2) = 0 means that there is no
solution in F1 that can dominate F2.

IGD(F1, F∗) = 1
|F∗| ∑

sol1∈F∗
min

sol2∈F1
d(sol1, sol2) (17)

where, F* is the non-dominated solution set of the first frontier, |F*| is the size of F*,
d(sol1, sol2) representing the Euclidean distance between sol1 and sol2. The smaller the
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IGD(F1, F*), the better the F1. In this paper, the F* of each example is formed by averaging
the non-dominated solution set obtained after each algorithm runs 20 times, respectively.
The results are shown in Table 9.

Table 9. Comparison results of calculation examples.

Test Data C (MOWPA, NSGA-II) IGD (MOWPA) IGD (NSGA-II)

MK01 1.00 1.2070 4.8498
MK02 1.00 1.3956 1.2903
MK03 0.60 1.1363 2.3480
MK04 1.00 3.9281 4.5960
MK05 1.00 0.5362 3.0486
MK06 1.00 3.6433 8.4704
MK07 1.00 1.5487 0.8967

Table 9 reveals that in the Brandimarte case, the solutions obtained by the MOWPA
algorithm dominate the solutions obtained by the NSGA-II algorithm in the majority of
cases. Only in the case of MK03 did there exist individual solutions in NSGA-II that are not
dominated. However, considering the overall results, it is evident that the MOWPA algo-
rithm outperforms the NSGA-II algorithm. This implies that the Pareto frontier generated
by MOWPA is superior to that of NSGA-II. Additionally, based on the IGD index, it can be
observed that the IGD value of MOWPA is consistently smaller than that of NSGA-II in
most cases. This indicates that the proposed MOWPA algorithm exhibits better convergence
performance compared to the NSGA-II algorithm.

Figure 9 illustrates the population iteration diagram of the maximum completion
time and total energy consumption values obtained using the MOWPA algorithm and the
NSGA-II algorithm with MK04 data. In Figure 9a, which displays the population iterations
for the maximum completion time, the red solid and dashed lines represent the optimal
and average values, respectively, obtained by the MOWPA algorithm. Similarly, the blue
solid and dashed lines represent the optimal and average values, respectively, obtained by
the NSGA-II algorithm. The MOWPA algorithm achieves a stable optimal maximum com-
pletion time after approximately 35 generations, while the NSGA-II algorithm achieves this
after around 25 generations. Although the MOWPA algorithm has a slower convergence
rate compared to the NSGA-II algorithm, it provides better solution accuracy. Figure 9b
represents the population iteration diagram for total energy consumption. The red solid line
and dotted line correspond to the optimal and average values, respectively, obtained by the
MOWPA algorithm. Similarly, the blue solid line and dotted line represent the optimal and
average values, respectively, obtained by the NSGA-II algorithm. The MOWPA algorithm
maintains a stable optimal solution around 52 generations, whereas the NSGA-II algorithm
exhibits more fluctuation. Overall, the MOWPA algorithm demonstrates superior speed
and precision compared to the NSGA-II algorithm in terms of both maximum completion
time and total energy consumption.
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5. Conclusions

This paper explores the multi-objective flexible job shop scheduling problem, taking
into account transportation time and energy consumption. We establish a multi-objective
mathematical model for a flexible job shop with transportation constraints, where the
optimization objectives are maximizing the maximum completion time and minimizing
total energy consumption. To address the characteristics of the MOFJSP problem, we
propose an enhanced multi-objective wolf pack algorithm as a solution approach. The
improvements include designing a coding scheme, introducing a mixed initialization
strategy, incorporating crossover and mutation operators, and applying a non-dominated
sorting method. Moreover, we extend the traditional algorithm to solve for the optimal
Pareto solution set, making it more relevant to real production scenarios. To evaluate the
importance of each index, we combine the AHP with the gray relational decision analysis
method. This approach allows us to compare the significance of different factors using AHP
and quantify their respective weights. Subsequently, we employ gray relational analysis for
decision analysis. By combining qualitative and quantitative methods, we can obtain the
optimal processing scheme from the Pareto solution set under the current weight settings.
This enables enterprises to select the optimal scheduling strategy from a variety of solutions.
To verify the algorithm’s performance, we compare the proposed algorithm with the non-
dominated sorting genetic algorithm. The comparison results demonstrate the superior
performance of the proposed algorithm in terms of solving performance and solution
distribution. It provides a better decision-making basis for flexible job shop scheduling.

However, this method can only be applied to static flexible job shop scheduling
problems. When dealing with dynamic flexible job shop scheduling problems, such as
machine failures or changes in workpiece quantities, the data needs to be reprocessed
and the calculation process is complicated. Therefore, in the future research, the solution
method of the algorithm and the accuracy and efficiency of the algorithm will be further
improved, so that it can be more in line with actual production workshop processing.
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