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Abstract: Thermal imaging is a cutting-edge technology which has the capability to detect objects in
any environmental conditions, such as smoke, fog, smog, etc. This technology finds its importance
mainly during nighttime since it does not require light to detect the objects. Applications of this
technology span into various sectors, most importantly in border security to detect any incoming
hazards. Object detection and classification are generally difficult with thermal imaging. In this paper,
a one-stage deep convolution network-based object detection and classification called retina net is
introduced. Existing surveys are based on object detection using infrared information obtained from
the objects. This research is focused on detecting and identifying objects from thermal images and
surveillance data.

Keywords: thermal imaging; CNN; retina net; classification; neural network

1. Introduction

Thermal imaging, a technology which enables objects to be identified even in the dark,
is a leading-edge technology of great importance. As this technology is mostly used at
nighttime in order to increase visibility, thermal images are fused with color images. A
technology that augments the features of thermal images with saliency maps is proposed
in [1] where the maps are generated using PICA-Net and R3-Net. This is used especially
in pedestrian detection during the daytime. To achieve this objective a region-based
convolution neural network (CNN) is trained. A CNN-based detection algorithm for
pedestrians is proposed, which is a very useful method to detect human movements in
video surveillance. The pedestrian detection algorithm, YOLO (You Only Look Once)
detector is combined with AMBS saliency feature map in this process [2]. Another method
of training the YOLO convolution network with one dataset among the available ones is
presented in [3]. This network is trained with a COCO dataset which has outperformed the
existing methods.

Comparing the parameters of the proposed model with existing models helps re-
searchers improve their direction of research in a significant way. One such comparison is
made in [4], where a model that is custom trained with some images taken from a video
is compared with the existing YOLOv3. One can have a comparison of two models here.
Counting the number of persons in each frame rather than only detecting the person be-
comes important in some applications. Thus, algorithms must be developed in such a way
that they count the number of people. Gomez et al. proposed such an algorithm based on
convolution neural networks [5].
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Earlier, the creation of systems related to image processing was particularly restricted
to expansion related to interfacing of a user in whichever programs most firms are engaged.
These circumstances have been crucially changed with the arrival of Windows OS when
most developers converted to resolving issues related to image processing. However, it did
not lead to the main improvement in resolving functions in recognizing faces, numbers of
cars, road signals, the investigation of images related to remote and medical, etc. All these
endless issues are resolved by the trial-and-error method with the help of many engineers
and scientists and is very time-consuming. Present-day technical solutions are very costly;
thus, a function related to converting designs is based on the tools in software to solve
issues of intelligence and prepare them methodically. In the image-processing domain,
the necessary kit of tools would support analysis, recognizing an image and its previous
information, which is not known all along. The improvement and implementation made
by a normal programmer would be significantly improved. It is just like how the Windows
toolkit provides support for creating interfaces to solve many issues.

Recognizing an object is to narrate a group of computer vision assignments, which
involves actions, such as identification of objects in digital photos. Classification of an
image deals with actions, such as prediction of the class of a single object in a particular
image. Localization of an object means identifying the location of single or multiple objects
in a particular image and drawing an abounding box on all sides. Detecting an object will
combine these two functions and will localize and classify a single or multiple objects in a
particular image. Generally, “object recognition” means “object detection”. It is a challenge
for beginners to differentiate among various computer-related vision tasks.

Classification of an image also deals with allocating a label known as class to a
particular image, but localization of an object is made by drawing a bounding box on every
side of one or more objects in a particular image. Detection of an object is an exciting task
which fuses both assignments and will draw a bounding box on all sides of an object in an
image and will assign a class label. Finally, all these issues are known as object recognition.
Object recognition means a group of connected tasks used to identify an object in a digital
input frame. Hybrid classifier is a family of methods that address localization of an object
and recognizing tasks. It was invented for the performance of a model. OFSA-OKF [6,7] is
implemented to recognize an object which is outlined for speedy and real-time applications.

2. Literature Survey

Thermal imaging finds an extensive application during nighttime, primarily proving
its usefulness in securing national borders. Because of the lack of visible light, certain object
features become challenging to track. As a solution, a CNN trained on visible images is
adapted for thermal image tracking. An ensemble tracker based on correlation filter is
proposed in [6], which has the capability of convolutional features extended for multiple
layers rather than a single layer.

Long wave infrared sensor (LWIR), as the name itself implies, could sense objects
within the range of the invisible IR spectrum. Target detection and false alarm rates are
improved using LWIR sensors in the work presented in [7]. The effectiveness of combining
a CNN with background modeling for human detection is proposed and demonstrated by
Shahid et al. [8]. Improved Gaussian average and human classification using CNN is only
performed for foreground objects in real time. The technique to detect in real time humans
among images, which are thermal and built by background modeling, CNN, is explained
in [8]. Object detection using retina net gives prominently better results compared with
the other existing methods. The temporal characteristics of an image add an advantage in
extracting the features of a particular image more accurately [9]. When a sequence of images
is used, rather than a single image, 21.4% improvement in performance is achieved. When
a long-range image is to be detected, the number of pixels on the target image obviously
becomes less as the distance increases. Zhang et al. presented a resolution method that was
proposed as a solution to address this issue. The method not only increases the resolution
of the image but also enhances the baseline quality of inputs for object recognition. The
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system was tested using two datasets that included pedestrians and six distinct types of
vehicles [10].

A research study [11] that focuses on techniques and systems implemented on Rasp-
berry Pi covers various aspects, including machine learning models, feature extraction
techniques, and datasets. The recognition and detection of humans using thermal im-
ages, videos, and the utilization of different wavelengths are expanding, creating a de-
mand for research in the field of machine vision, deep learning, and domains, such as
infrared. Researchers in thermal imaging commonly show interest in detecting humans
and exploring techniques that combine thermal imaging with images captured at different
wavelengths [12]. The writers will estimate pixel-level images combining infrared and
RGB images to refine the detectors of pedestrians built on CNN, which will work during
the day or night and that are useful for video surveillance, autonomous vehicles, and
advanced driver-assistance systems (ADAS). In [13], the authors reported a model based
on a nine-layer CNN called self-learning soft max which utilizes the near-infrared images
to identify the pedestrians. Many samples were collected for testing the CNN-based model
and found that this model provides better results in terms of pedestrian recognition and
accuracy. Imran et al. [14] introduced a narrative descriptor of saliency awareness known
as SSDI, which means stacked saliency difference image, to design spatial–temporal, local,
and global movement data to human action recognition (HAR) among infrared images of
infrared. Here they used a four-stream deep framework built on CNN and RNN, known as
RNN designs, and obtained a result of 83.5% on the dataset of InfAR [15] and a baseline
result of 75.17% with the suggested dataset IITR-IAR [14]. The use of CNN to detect
humans, their recognition, and classification of action are discussed in [16–20].

The Caltech pedestrian dataset [21,22] introduced as a benchmark for pedestrian de-
tection, surpasses existing datasets in terms of scale and includes various videos, such
as low-resolution images and videos captured from moving vehicles. The availability of
this dataset opens new research possibilities. Alternatively, Viola et al. [23] introduced
a novel framework for object detection that significantly contributes to three key areas:
image representation, learning algorithm, and cascading classifiers. Their approach yields
superior results compared to other object detection methods. A state-of-the-art classifica-
tion and detection model based on deep neural networks was proposed by Szegedy [24]
which utilizes the computing resources to the core of an inside network, producing better
results. In [25,26], the authors introduced the concept of pedestrian detection using deep
convolution neural networks, while Teju [6] proposed object detection using OFSA and
even object tracking using an optimal Kalman filter [7].

3. Materials and Methods

Classification of an object is a major problem in computer vision [27]. Design is tasked
by localizing objects in a thermal image and at the same time dividing them into various
groups. Here, we will implement a hybrid retina net, which is a popular detector that is
accurate and runs fast. Retina net utilizes a feature called pyramid network to effectively
detect objects at various scales and introduces a new loss called focal loss function to reduce
the issue of utmost foreground–background class imbalance [28].

Generally, computer vision is a transdisciplinary domain of ML and AI and is con-
cerned with automatic extracting, analyzation, and understanding the important data from
an image. With the rapid advancement of technology, there has been a significant increase
in the amount of digital information associated with videos and images. In the machine
vision domain, precepting and analyzation of images which are thermal poses a crucial
challenge for computers compared to humans. Hence, classification of images is done
using human intervention. Thermal-imaging information is done solely for the purpose of
training and testing. The next images are divided with the help of patterns obtained from
earlier stages. The obtained outcomes vary with the found patterns and depend fully on
the understanding of the person who will do the classification. The proposed architecture
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of deep learning that performs images classification will use multiple layers in a hybrid
neural network to obtain the latest features from dataset images.

Figure 1 depicts the proposed structure for the classification of an object. This structure
utilizes a grayscale image as an input image with a size of 28 × 28. Layer 1 of the CNN
applies 32 filters upon input images in which every size of the image is 3 × 3, generating
32 feature maps which are 26 × 26 in size. Layer 2 applies 64 filters, which are 3 × 3 in size,
generating 64 feature maps, which are 24 × 24 in size. Layer 3 is the max pooling layer
and is utilized to down sample an image up to 12 × 12 with assistance of the subsampling
window, which has the size of 2 × 2. The fourth layer consists of 128 fully connected
neurons and utilizes the sigmoid activation function for image classification, producing an
image as its output.
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Figure 1. Proposed architecture for object classification.

Figure 2 illustrates the architecture of the proposed method. In a feed-forward neural
network, each hidden layer is composed of neurons that are connected to the previous
layer. The final network layer is fully connected and is used to perform image classification.
Typically, input image has a size of 28 × 28 × 1 (28 pixels wide, 28 pixels high, and 1 color
channel). Consequently, the first hidden layer of the network consists of 784 weights
(28 × 28 × 1) corresponding to each input pixel.
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Managing a large number of weights becomes challenging as the size of the input
images increases. For example, images with dimensions of 400 × 400 × 3 would require
480,000 weights (400 × 400 × 3) to fully connect a layer. In such cases, a fully connected
layer may not scale well due to the massive number of weights involved. Alternative
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techniques, such as CNNs, are often employed for handling larger image sizes [29]. CNNs
utilize weight-sharing and local receptive fields, which significantly reduce the number of
parameters compared to fully connected layers, making them more suitable for processing
larger images. The architecture of CNN has a different planning compared to the normal
neural networks. One of the benefits is it can have as input different sizes [30]. Convnet
layers have neurons which have 3 measurements, such as width, height, and depth. Here,
depth indicates the third measurement of activation volume and not the depth of a complete
neural network, which indicates entire network layers. The input image is 32 × 32 × 3 in
size and has volume of dimensions of 32 × 32 × 3, which are width, height, and depth.

Our proposed system uses neural networks for implementation. This is the same as
normal neural networks that are built with neurons, which had learnable weights and
biases. Each neuron will perform dot product by getting little input and by utilizing bias as
it accompanies non-linearity. This entire convent indicates different score function, coming
from raw pixels on a single side to another side class score.

They had a loss function called SoftMax on the final layer, which is a completely
associated layer. Here, the intake is images to convent, which permits encrypting some
features in the design. All the features will perform the forward function more efficiently
for performing and mostly decrease the quantity of parameters among a network. The
main aim of the classification of an image is to take the features out of rough images.

3.1. Data Collection

The data was collected in many slot periods during wintertime using the FLIR Thermal
Cam P10 LWIR camera of thermal imaging and arranged using a tripod with height of
140 cm with a standard 24◦ × 18◦ FOV (field of view) lens, also by FLIR 7◦ FOV Telephoto
Lens (P/B series) [31]. Additionally, the sensor in the camera takes thermal resolution,
which is 320 × 240 pixels and is scaled up to 1280 × 960 pixels with an exterior recorder
of video. To measure the distance, we utilized view ranger implementation [32], which is
inserted on a CAT S60 [33] GPS-equipped smartphone. Detection using correlation filters is
discussed in [34] and Infrared detection on image patch tensor model is explained in [35].

3.2. Algorithm

The below procedure discusses the steps of how to train and test the FLIR dataset
to perform image classification. In traditional neural networks, each neuron is connected
to all neurons in the preceding layer. However, in real time, this becomes impractical for
higher-dimensional inputs, such as images. As an example, input volume is the size of
32 × 32 × 3, and the receptive field is 5 × 5.

Table 1 discusses Hybrid Neural Network Algorithm. In a convolutional layer, each
neuron is connected to a 5 × 5 × 3 region in input volume, resulting in a total of 75 weights
(and an additional +1 bias parameter). The number of interconnections along the depth
axis is equal to 3, representing the depth of the input volume. To address the computational
complexity associated with such large networks, hybrid neural networks employ a tech-
nique called parameter sharing. This technique allows the network to share weights across
different regions or layers, effectively reducing redundancy and optimizing the overall
efficiency of the network.

By sharing parameters, the network can leverage the inherent structure and patterns
in the data, leading to improved generalization and reducing the risk of overfitting. This
parameter-sharing strategy is particularly beneficial in convolutional neural networks
(CNNs) used for image-processing tasks. In the context of image classification, the utiliza-
tion of parameter sharing and convolutional layers allows CNNs to effectively capture
local patterns and spatial hierarchies present in images. This results in more compact and
efficient models that can accurately classify images across various classes.
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Table 1. HDNN Algorithm.

Require
Size of the Batch 128
Number of Classes 2
Number of Epochs 5

Require Input Image Dimension 28 × 28

Step #1
Load images of input from
FLIR dataset with optimal
feature vector

Step #2 Take variable exploration X = test data set (100, 28, 28, 1)
Train dataset (600, 28, 28, 1)

Step #3 Create and compile the
network design

Step #4 Train the network using
prepared dataset

3.3. Classification

Retina net is a type of single-stage detector that addresses the challenge of class imbal-
ance between the foreground and background in object detection. There are 2 techniques
which retina net utilizes. The first one is the use of a feature pyramid network (FPN) back-
bone, which is built on top of a CNN. The FPN is responsible for extracting convolutional
feature maps from the entire input image, allowing for multi-scale feature representation.
The second technique is focal loss, which serves as a specialized loss function. Focal loss is
designed to effectively handle the class imbalance problem by assigning higher weights to
challenging examples and reducing the impact of easily classified examples. This helps
to improve the overall performance of the detector, particularly for objects that are rare or
difficult to detect. FPN is constructed on the uppermost CNN and is in charge of extracting
convolutional feature maps from the complete image. By utilizing (focal loss/retina net
changes weights with the loss function/focus on difficult/misclassified illustrations), which
refines the accuracy of prediction. ByResNet (FPN) as the foundation to extract features,
2 subnetworks to classification, bounding-box regression, retina net has attained this recent
stage in technological development and obtained the best performance.

Consider a building block where the output vector y is calculated as the function F
and applied to the input vector x with Kalman weighted factors {KWi} and then added to x:

y = F(x, {KWi}) + x (1)

where:

• x and y represent the input and output vectors of the layers.
• The function F(x, {KWi}) represents the residual map that needs to be learned.

F = W2 σ(KW1x) (2)

• The function F + x is implemented using a shortcut connection, which involves element-
wise addition.

Note that the parameters W1 and W2 are weight matrices, and K represents the
Kalman weighted factors. The expression KW1x indicates the intermediate result obtained
by applying the weight matrix W1 to the input vector x with the Kalman weighted factors.
The resulting vector is then passed through the ReLU activation function and further
transformed by the weight matrix W2. The inclusion of the element-wise addition with the
input vector x allows for the residual network to learn the residual mapping, facilitating
the optimization process and enabling the network to effectively handle degradation issues.
This approach provides flexibility in the structure of the residual function F, allowing for
the incorporation of multiple layers and enhancing the expressiveness of the network. The
utilization of residual connections and the element-wise addition operation on the feature
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maps, channel by channel, further enhances the capabilities of convolutional layers within
the network. This framework offers a powerful tool for learning complex features and
addressing various challenges in deep learning tasks. The ReLU activation function (σ) is
applied to the output of F, and biases are excluded to simplify the code.

Equation (1) is important in comparing plain and residual networks as it indicates
that there are no additional parameters or computation complexity. This allows for a fair
comparison between plain and residual networks that have the same specifications, such
as depth, width, and computational cost (excluding the negligible element-wise addition).
To ensure a fair comparison, the measurements of both the input vector x and the function
F should be the same as in Equation (1). However, if the measurements are not the same
(e.g., when changing input or output channels), a linear projection Ws can be accomplished
through shortcut connections to match the measurements.

y = F(x, {KWi}) + Wsx (3)

This additional step ensures that the measurements of the input and the residual function
match, allowing for a fair comparison between plain and residual networks. Equation (2)
represents the inclusion of the linear projection Ws through shortcut connections.

In Equation (1), we utilize a square matrix Ws. However, extensive investigations have
shown that using identity mapping is sufficient for addressing degradation issues and is
computationally inexpensive. The matrix Ws is only utilized for matching measurements
when necessary. The structure of the residual function F provides flexibility. In the present
research, F consists of 2 or 3 layers, but it is possible to have additional layers. If F has
only one layer, Equation (1) becomes a linear layer: y = KW1x + x, which does not offer
noticeable advantages (Equation (3)).

All the elements mentioned above are completely connected layers to simplify the
implementation, and this has applications in convolutional layers. The function F(x, {KWi})
indicates different convolutional layers, and the element-wise addition is performed on
two feature maps, channel by channel.

This approach allows for the combination of multiple convolutional layers in F and the
fusion of their results using element-wise addition, enabling the learning of more complex
features and enhancing the expressiveness of the network.

The features for retina net classifier are obtained from OFSA—optimized feature
selection algorithm [6], which achieved the best run time compared to the existing models.

Advantages of this retina net classifier are best feature selection, best performance
is achieved in terms of accuracy, and pruning is more efficient. Pruning is done using
weighted functions to achieve higher accuracy. Retina net utilizes a focal loss function to
address class imbalance during training. We used the behavior of retina net, but all the
features are hybrid.

4. Results

Figure 3 depicts the programmatically designed structure of the proposed neural
network, illustrating the architecture and the connections between the layers.

The classification performed here is binary classification with two classes. Some
datasets are used for testing, and some are used for training. Based on the iterations, the
outputs are as shown.

Figure 4 showcases the accuracy achieved by the proposed network during the train-
ing and testing phases. It provides insights into the network’s performance in correctly
classifying the FLIR dataset. X-axis represents the number of epochs and Y-axis represents
the accuracy.
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Figure 5 presents the loss function and the number of iterations during the training
process. It demonstrates the convergence of the network and the reduction in the loss
function over time. X-axis represents the number of iterations and Y-axis represents the
amount of loss.
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The decreasing trend of the loss function in Figure 5 signifies that the network is
effectively optimizing its parameters to better fit the training data. It indicates that the
network is improving its ability to make accurate predictions and reduce errors during the
training process.

Monitoring the loss function during training is crucial as it helps in assessing the
network’s progress and determining if further training iterations are needed. It also aids in
identifying potential issues, such as overfitting or underfitting, and guiding adjustments to
the network architecture or training strategies if necessary.

Figure 6 shows examples of positive cases where the input image contains a detected
weapon. It visualizes the input image, the detected weapon, and the corresponding
highlighted area.
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Figure 6. Weapon region detection from the input frame positive case:(a) represents input image;
(b) represents detected weapon, i.e., positive case; (c) represents detected area.

Figure 7 shows examples of negative cases where the input image contains a detected
weapon. It visualizes the input image, the detected weapon, and the corresponding
highlighted area.
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Figure 8 highlights the performance metrics of proposed HDNN. (Hybrid Neural
Network), for a specific dataset. The metrics evaluated include total frames, true positive
(TP), false positive (FP), false negative (FN), sensitivity, positive predictive value (PPV),
false alarm rate, and accuracy.
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Figure 8. Performance analysis of the proposed method.

Table 2 represents the comparison of the proposed hybrid neural network (HDNN)
with existing models. The proposed HDNN is compared with the DAG model, Haar
transform + LBP, Kalman + Haar + LMP, Gaussian mixture models (GMM), and the existing
convolutional neural network (CNN). Compared with the existing models, our proposed
HDNN outweighed all of them in terms of accuracy.

The proposed HDNN is implemented with 512 frames, which achieved accuracy of
0.99. In the existing methods, such as GMM, Kalman Filter (HaaR + LBP), Kalman + HaaR
+ LBP, detection using aerial thermal views, detection and tracking in thermal videos using
direct acyclic graph, accuracy is low. In parameters, such as TP, FP, FN, sensitivity, PTV,
false alarm rate, the proposed HDNN gives better results.

The percentage of accurately classified instances is referred to as accuracy. The propor-
tion of true positives that are successfully identified is measured by sensitivity or recall.
The F-measure is a test accuracy metric. Precision, also known as positive predictive value,
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is a measure of the number of relevant instances found among the retrieved instances.
MCC assesses the accuracy of binary classification. The false alarm rate is calculated as the
number of false alerts divided by the total number of non-events. True positive is defined
as the positive class that was correctly predicted. True negative is defined as the negative
class that was correctly predicted. False positive is an outcome in which the model forecasts
the positive class inaccurately. False negative is an outcome in which the model forecasts
the negative class wrongly.

Table 2. Comparison of Proposed and Existing Model.

# Algorithms Total
Frames TP FP FN Sensitivity

Positive
Predictive
Value

False
Alarm
Rate

Accuracy

1 Proposed HDNN 512 440 30 42 0.99 0.966 0.036 0.99

2 Object detection and tracking in thermal
video using DAG- Directed Acyclic Graph 184 165 10 14 0.977 0.88 0.054 0.98

3 People detection and tracking from aerial
thermal views 1282 950 124 208 0.97 0.85 0.044 0.95

4 Kalman Filter (Haar + LBP) 128 102 16 10 0.95 0.89 0.032 0.92

5 Kalman + Haar + LBP 128 110 10 8 0.95 0.87 0.032 0.93

6 GMM 128 100 8 10 0.95 0.87 0.032 0.94

7 Existing CNN 512 410 60 42 0.95 0.912 0.032 0.95

5. Conclusions

In this research, we utilized a hybrid retina net for the classification of images using
thermal images from the FLIR dataset. The proposed model was trained and tested using
these thermal images. Impressively, the model achieved an accuracy of 99.5% in classifying
the objects within the thermal images.

It is worth noting that processing thermal images computationally requires more time
compared to regular JPEG images. However, by augmenting the network with additional
layers, incorporating more training data, and leveraging the power of multiple GPUs, more
accurate results can be obtained for object classification in thermal imaging.

By stacking additional layers, the network can capture more intricate features and
patterns present in the thermal images, leading to enhanced classification performance.
Moreover, training the network with a larger and more diverse dataset can further improve
the model’s ability to generalize and accurately classify objects in thermal images. Fur-
thermore, leveraging the computational capabilities of groups of GPUs can significantly
expedite the processing time for these thermal images, allowing for faster inference and
analysis. This can be particularly advantageous in real-time applications or scenarios where
quick decision-making based on thermal imaging data is crucial.

This research proposes a groundbreaking approach by utilizing a hybrid neural net-
work for detection and classification tasks using thermal imaging. The proposed technique
has demonstrated exceptional accuracy even under challenging conditions, such as extreme
changes in illumination, occlusion, and longer distances.

One notable advantage of the suggested system is that it eliminates the need for
pre-processing steps, such as image rectification and enhancement in thermal imaging.
These pre-processing steps are typically employed to improve the quality of the image
before detection and classification tasks. However, the proposed approach leverages the
optimal features inherent in the thermal images themselves, allowing for more accurate
tracking of objects without the need for extensive pre-processing. Additionally, the research
highlights that earlier feature selection methods can have a detrimental impact on the
training of CNN designs. By adopting the hybrid neural network approach, the proposed
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system overcomes this limitation and achieves superior performance in object detection
and classification tasks.

The ability to detect and classify objects accurately in thermal imaging without relying
heavily on pre-processing or post-processing techniques is a significant advancement. It
enables the system to effectively handle challenging scenarios where traditional methods
may struggle.

Overall, the utilization of a hybrid retina net along with additional layers, more
extensive training data, and the utilization of multiple GPUs offers promising avenues for
achieving precise and efficient object classification in thermal-imaging applications.
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