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Abstract: Automatic program repair has drawn more and more attention since software quality is
facing increasing challenges. In existing approaches, the unlimited search space is considered to be
the main limitation in finding the correct patch. So how to reduce the search space to improve the
efficiency of automatic program repair remains a problem to be solved. In this work, we represent a
similarity-based and location-awareness-based automatic program repair (SLARepair). SLARepair
takes the similarity between codes as important search information. The search space is further
subdivided by the location-awareness strategy to improve search efficiency. In addition, to better
guide the search process, a new fitness function is designed for genetic programming, which brings
notable improvements. Moreover, the patch verification time is further reduced by utilizing the test
case prioritization approach combined with test case filtering. Extensive experiments demonstrate
that our SLARepair outperforms the state-of-the-art approaches on the Defects4J benchmark and
achieves competitive performances.

Keywords: automatic program repair; code similarity; location awareness

1. Introduction

Automatic program repair is an important tool in software maintenance to improve
software quality. Traditional debugging is typically done by developers, but it is a time-
consuming and laborious process. Although several approaches have been proposed to
support automatic program repair, the current automatic program repair techniques are
still in the development stage in terms of available research results.

Automatic program repair based on heuristic search is the most widely studied. This
technology finds the correct patch in the potential search space according to some heuristic
information. Weimer et al. [1–3] first applied genetic programming to automatic program
repair in 2009 and formally proposed GenProg [2] in 2012. This approach, combined with a
genetic programming algorithm, restricted the influence of program semantic constraints,
achieving good repair results. This groundbreaking work has prompted many researchers
to explore the automatic program repair approach. Oliveira et al. [4] proposed a new
code modification representation for further optimization of genetic algorithms. The code
modification representation used in the original GenProg method treats the code and
the modification as two separate parts that do not interfere with each other. The code
representation proposed by Oliveira et al. encodes the mutation operator and the code
element corresponding to the operator on the same chromosome. The advantage of this
representation is that the mutation stage can reuse the previous code operations. It is more
flexible than traditional genetic algorithms and can improve the patch generation capability
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of repair tools. Yuan et al. [5–7] similarly optimized the representation in the genetic algo-
rithm. They represent the code patches as triples to encode the modified location, modified
operation type, and reused code elements on the code, respectively. In the patch verification
phase, they remove the test cases that are not related to the current patch and the patches
that are excluded by setting rules in advance to speed up the verification efficiency. The
experimental results show that their method generates about four times more patches than
GenProg. However, Le et al. [8] argued that software bugs recur in different applications
and that previous bug fixing history can provide effective guidance for fixing patches, so
they introduced a third-party data source (i.e., historical repairs) to optimize GenProg. The
authors proposed a new bug fixing technique, HistoricalFix, which introduces third-party
bug fixing history data to provide better guidance for patch generation than the previous
genetic algorithm. For verification on 90 bugs in the Defects4J [9] dataset, GenProg can only
fix 1 bug correctly, while HistoricalFix can fix 23 bugs correctly. Another stream of recent
research focuses on optimizing the code elements used in the patch generation process.
SimFix [10], an automatic repair tool to search for similar codes in projects through program
structure and semantic features, achieved good results.

Although the above approaches have achieved progress, search-based automatic
program repair still has two major problems: (1) The number of correct patches is small, but
the search space involved is large. This usually results in low repair efficiency and repair
failure. (2) Search information often cannot guide the search process correctly. It consumes
a lot of time and produces many plausible patches that pass test cases but are incorrect.

To tackle these problems, we propose SLARepair, an automatic program repair ap-
proach based on location awareness and code similarity. In order to reduce the search space,
SLARepair adopts a location-awareness strategy to further subdivide the search space.
Specifically, we limit the repair ingredient used to generate the patch to the buggy program
itself based on the redundancy assumption [11]. The search space for repair ingredients is
divided into classes, packages, and applications, from small to large. A heuristic algorithm
preferentially finds repair ingredients in the smallest search space. If no suitable repair
ingredients are found, the search space is gradually expanded. This strategy limits the size
of the search space to a certain extent so that the search algorithm can quickly find suitable
repair ingredients. Compared with the approaches that have been proposed, SLARepair
can effectively alleviate the problems caused by the large search space.

For the patch generation process, SLARepair uses code similarity as heuristic informa-
tion to guide the search process. Recent research shows that the more similar a program is
to a buggy program, the more likely it is to contain correct repair. To this end, we design
a new fitness function for the genetic programming algorithm to select high-quality off-
spring populations. It combines the code similarity and the number of failed test cases for
subvariant programs to calculate the fitness value. The population selected by SLARepair
is more likely to contain the correct repair than other approaches. In addition, we utilized a
test case prioritization method combined with test filtering to further reduce the time spent
on patch verification.

The main contributions of this paper are as follows:

- An approach for automatic program repair based on code similarity and location-awareness
is proposed. It improves repair efficiency by further subdividing the search space.

- A new fitness function is used to calculate the similarity between candidate patches
and the original individuals to guide the search process.

- A new test case prioritization approach combined with test case filtering reduces patch
verification time.

- Experimental results on Defects4J show the effectiveness of SLARepair, which outper-
forms the compared approaches.
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2. Background

Automatic program repair involves automatically finding a solution to bugs without
manual operation and using a certain program specification to automatically convert the
buggy program into a program variant that satisfies the specification. Automatic program
repair can be transformed into a search problem of finding the correct patch in a potential
search space. Genetic programming [12] is a heuristic search method that can effectively
represent the evolution process of programs. Automatic program repair typically uses
genetic programming to search for the correct program patch. Many studies have shown
that the more similar a program is to a buggy program, the more likely it is to contain the
correct code. Therefore, code similarity is gradually used as an important heuristic to guide
the search process for program repair.

2.1. Heuristic Search

Heuristic search is also called informative search. It uses the heuristic information of
the problem itself to guide the search, thereby the scope of the search and reducing the
complexity of the problem. Common heuristic search algorithms include genetic algorithms,
particle swarm algorithms, ant colony algorithms, simulated annealing algorithms, genetic
programming, gene expression programming, etc. In the automatic repair of bugs, the
complexity of the program makes it difficult to be encoded, let alone expressed in the form
of a fixed-length bit string, which makes the individual heuristic search algorithm with a
non-tree structure unable to effectively represent the evolution process of the program. Due
to its flexible individual representation, genetic programming can well guide the evolution
process of such complex individuals.

2.2. Search Space

The search space consists of three parts. Wherein the suspicious space provides
location information for the buggy program. The operation space consists of a series of op-
erators, such as insertion, replacement, and deletion. The ingredient space consists of repair
ingredients extracted from the buggy program [2,13–15] or other related programs [15,16].
When repairing a program bug, it is preferred to locate the buggy location information from
the suspicious space, then select the appropriate operator from the operation space, and
finally use the repair ingredient to generate a program patch. Furthermore, existing repair
methods [2,13,14,17,18] show that the redundancy hypothesis, i.e., limiting the ingredient
space to the buggy program itself, can achieve good repair results.

2.3. Genetic Programming

Genetic programming [12] is a search method inspired by biological evolution that
is essentially an extension of the classical genetic algorithm for programming problems.
Unlike genetic algorithms, individuals in genetic programming are computer programs
rather than bit strings. In order to facilitate the variation and crossover of individual
programs, individuals in genetic programming are generally represented as abstract syntax
trees of computer programs. The program’s statement or control flow structure corresponds
to the nodes of the syntax tree, while crossover and mutation are based on the syntax tree.
However, in the current genetic programming algorithm, the complexity of individual
programs makes it difficult for the fitness function to accurately describe the strengths
and weaknesses of individuals, so the computing resources consumed by each individual
program are also difficult to control. In addition, the size of the search space for the correct
candidate depends on the size of the program itself. If the target program is large and
complex, the search space is almost unlimited. The application of genetic programming to
the field of automatic program repair has made great progress in recent years.
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2.4. Code Similarity Analysis

Program code similarity analysis is used to measure the degree of similarity between
two program codes by certain detection means. Code similarity analysis is mainly applied
to program replication detection. In recent years, it has also been applied to automatic
program repair, which indicates that similarity analysis plays an important role in the repair
process. In CapGen [15], the three similarities of the code context are analyzed and the
candidate patches are ranked according to the similarity size. Yokoyama et al. [19] showed
that the search space can be reduced by code similarity to find the correct patch. In real
repair, the correct patch and the buggy program often have high code similarity. When the
code similarity between the candidate patch and the original buggy program is higher, the
patch is closer to the correct patch. Therefore, code similarity can be used as important
information to guide the patch search process.

3. Our Approach

In this section, we make an introduction to the overall framework. For solving the
large search space and improving low repair efficiency, we propose automatic program
repair based on code similarity and location awareness.

Our approach contains three stages: fault localization, patch generation, and patch
verification, as shown in Figure 1.

In the fault localization phase, we obtain a list of suspicious bug statements through
the location approach. Then, we use the suspicious list to filter and prioritize the test cases.
Finally, we reconstruct the processed test cases to form a new set of test cases.

In the patch generation phase, we use two sources of repair components: source code
and historical code. The longest common subsequence (LCS) algorithm is used to select
codes from two repair components to form an initial population, and candidate patches are
generated through mutation and crossover.

In the patch verification phase, we verify each candidate patch through test cases and
calculate its similarity to the original program. Then, we calculate the fit value of each
individual patch and select a new generation group based on the fit value. Repeat the
above steps until a patch that passes all test cases is generated. Finally, we performed
overfitting tests on the patches that passed all test cases.
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3.1. Fault Localization
3.1.1. Fault Localization Tool

For the fault location, SLARepair uses an available spectrum-based approach called
Ochiai. It computes the suspicious value of a program entity (p) as follows:

susp(p) =
ne f (p)√

n f × (ne f (p) + nep(p))
(1)
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Among them, nep represents the number of successful test cases of covered program
entity p, and ne f represents the number of failed test cases of covered program entity p, and
n f represents the sum of the number of failed test cases of covered program entity p and
non-covered program entity p. The larger the suspicious value, the more likely it is a buggy
program.

Figure 2 is an example of fault localization, which comes from the JFreechart project
(Chart12) of the Defects4J [9] benchmark. After the code is located, it is determined that the
fault location is line 145. In the subsequent process, SLARepair will search for program
patches around this line of code.
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3.1.2. Test Filtering

Figure 3 shows the test filtering process, which is used to speed up patch verification.
During the process of fault localization, we record all the code line numbers covered by the
test case during its execution. If a positive test case does not pass likely-buggy statements
that may include bugs in fault localization, this positive test case is most probably not
related to this bug statement. Therefore, this positive test case can be filtered out during
the patch verification process. This approach can significantly accelerate the evaluation of
patch candidates during the patch repair process.
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3.1.3. Test Case Prioritization

Figure 4 shows the test case prioritization process. The test cases are divided into
10 groups, and the sorted test cases make it easier to identify invalid patches. The test cases
are divided into 5 to 20 groups. Experimental tests showed that the most effective results
could be obtained when the test cases were divided into 10 groups. If all the test cases pass,
the variant is a trusted patch and enters patch overfitting verification. If the i group of test
cases fails, the test verification is stopped, the corresponding indexvalue is added by one,
and the 10 groups of test cases are reordered. Finally, we perform a new round of patch
validation according to the updated test case prioritization.
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3.2. Patch Generation

The task of the patch generation phase is to find potential candidate patches for the
buggy code. At this stage, SLARepair uses code similarity information to guide the search
process of genetic programming. The longest common subsequence algorithm is used
to calculate the similarity between codes. At the same time, we combine the location-
awareness strategy to more effectively improve search efficiency. Figure 5 is an example
of a candidate patch generated by SLARepair for the fault in Figure 2. The green line is a
candidate patch.
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3.2.1. Longest Common Subsequence

Considering the efficiency of repairing algorithms and the complexity of buggy pro-
grams, we chose the longest common subsequence (LCS) algorithm to measure the simi-
larity between the codes. LCS can take into account both the attribute characteristics and
structural characteristics of the program in the process of repairing bugs. Program charac-
teristics are represented by identifiers in the program. Program identifiers include common
operators, keywords, standard method names, and user-defined identifiers. The attribute
characteristics of the program are obtained by classifying and collecting the identifiers
in the program. The structural characteristics of a program are captured by the order in
which identifiers appear in the program. The LCS algorithm calculates the similarity by
comparing the program characteristics. The sequential identifier sets of the two program
segments are respectively deleted with zero or more identifiers, but the order of the remain-
ing identifiers is not changed. The resulting longest strictly increasing sequence is called
the longest common identifier subsequence.
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The longest common subsequence (LCS) algorithm is used to measure the similar-
ity between codes at the character level. For two sequences Xi = (x1, x2, . . . , xi) and
Yj =

(
y1, y2, . . . , yj

)
, the following recurrence relation is used to calculate the LCS length:

(1) when i = 0 or j = 0, the LCS length of Xi and Yj is zero.
(2) when xi = yj, the LCS of Xi and Yj is the LCS of Xi−1 and Yj−1 plus the LCS of xi

(or yj);
(3) when xi 6= yj, the LCS of Xi and Yj is the longer of the LCS of Xi−1, Yj and the LCS

of Xi, Yj−1.
Assuming that c[i][j] represents the length of the LCS of Xi and Yj, the following

calculations are performed:

c[i][j] =


0 i = 0 or j = 0

c[i− 1][j− 1] + 1 i, j > 0 and xi = yi
max(c[i− 1][j], c[i][j− 1]) i, j > 0 and xi 6= yi

(2)

3.2.2. Genetic Programming Based on Code Similarity

In this section, we give an automatic program repair approach for genetic program-
ming based on code similarity as follows:

(1) Localization process: First, use the fault localization tool to obtain a list of suspicious
locations. Then, the suspicious locations are screened according to the preset minimum
and maximum suspicious location numbers. Finally, combine these suspicious locations
into a suspicious space.

(2) Population initialization: The initial population is created by means of code simi-
larity, where each individual program has the same suspicious space.

(3) Mutation process: First, a parent variant is selected from the current population
by fitness value. Then, different suspicious locations and operators are selected from the
suspicious space and the operation space, respectively. Next, set the ingredient space
and select the fixing ingredient. Finally, create a program variant and repeat the process
until you exceed the specified number of mutations. Among them, operators and repair
ingredients are selected by uniform random selection. The method of weighted random
selection is adopted for the selection of suspicious locations. The probability calculation for
each suspicious location is shown in Formula (3):

Pw(sli) =
svi

n
∑

j=1
svj

(3)

where sli represents the ith suspicious location. svi represents the suspicious value of the
ith suspicious location. n is the total number of suspicious positions. Pw(sli) represents the
probability of selecting the suspicious location sli.

(4) Crossover process: First, a child variant and a parent variant are randomly selected.
Second, select a modified suspect location in the suspect space of the variant. Then, truncate
the node corresponding to the suspect location on the two variants of the abstract syntax
tree and swap the subtree. Finally, repeat the above steps until the maximum number
of mutations is reached. This is a non-standard version of the crossover, and the reason
for this crossover is that some mutations can cause irreparable damage to the program’s
functionality, which provides a way to preserve the original functionality of the program.
Crossover of the nodes of the abstract syntax tree can effectively prevent the generation of
code that does not conform to the compilation rules.

(5) Selection process: First, stop the fix and output the patch if a variant passes all
test cases; otherwise, record the number of failed test cases. Then, the fitness values of the
variants are calculated based on similarity and the number of failed test cases. Finally, repeat
the procedure until all the variants have been verified and a new generation population is
selected according to the fitness value. In this paper, automatic program repair is regarded
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as a minimization problem. A program variant with a lower fitness value has a higher
probability of being selected. The fitness function is shown in Formula (4):

Fitness (vi) =
| {t ∈ T | (vi) Faling (t)} |

Simvi (vi, v0)
(4)

where Fitness(vi) represents the fitness function of the variant vi. vi and v0 respectively
represent the ith program variant and the original program. T stands for test case set, t
stands for test case, and Failing(t) stands for failed test case; Simvi (vi, v0) represents the
similarity between the program variant vi and the original program v0. Simvi (vi, v0) is
shown in Formula (5):

Simvi (vi, v0) =

n
∑

i=1
Simsli

n
(5)

where sli represents the ith suspicious location. Simsli
represents the similarity between

the variant vi and the code area where the original program v0 is located in the suspect
location sli.

3.2.3. Location-Awareness Repair

The location-awareness repair approach further subdivides the search space for repair
components. Based on the concepts of package and class in a Java program, we divide the
code in the buggy program into three types: Code that belongs to a class; code that belongs
to the package; and code that belongs to the entire application. According to different
code sources, three ingredient space types are constructed: Class (Cl), package (Pkg), and
application (App). When the ingredient space is class, package, or application, the search
space for the fixing ingredient is class, package, or the entire application where the suspect
location code resides.

Further narrowing the ingredient space from Application to Class or Package can
effectively improve the search efficiency, but the correct repair ingredient may not exist in
the class or package. Therefore, location-awareness repair does not discard any kind of
ingredient space, but gradually expands the search scope of the repair ingredient. Figure 6
shows the changing process of the ingredient space in location-awareness repair. We first
try to search in the minimum ingredient space, and gradually expand the search scope if
the correct patch is not generated within the limited conditions. It can be seen from the
figure that after the ingredient space expands from Class to Package, we give up searching
for repair ingredients in Class and search for other repair ingredients in Package. Therefore,
location-awareness repair can improve repair efficiency and accuracy simultaneously.
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3.3. Patch Verification

The patch verification phase is used to verify the validity of the patch. It usually
requires two processes: test case testing and overfitting testing. A test case is passed when
a candidate patch passes all test cases in the test suite. A patch is tested for overfitting by
means of a patch overfitting test.

We will briefly describe the execution of our method. First, a reasonable patch and a
buggy program are input to our method, and the method modified by the patch is marked.
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Then, some of the input-output pairs can be caught by detecting the bytecode of these
methods in the buggy program and running positive test cases. Assuming that we will end
up with k such pairs, using Set PA = {(In1, Out1), (In2, Out2), . . ., (Ink, Outk)}. From the
hypothesis, it seems that all input-output pairs reflect the correct program behavior. We
put these inputs In1, In2, . . ., Ink into the appropriate methods in the patch program. A set
of outputs is obtained and recorded. If there is a difference between the two sets of inputs,
then we can conclude that the plausible patches fail the overfitting test.

The candidate patches shown in Figure 5 pass the test case test and the overfitting test,
which are called correct patches. After analysis, the patch is equivalent to the manual patch.

4. Empirical Study

In this section, we will explain the research questions, the datasets of bugs used, the
evaluation standards, the experimental setup, and the experimental results.

4.1. Research Questions

To conduct a general evaluation of SLARepair, we set the following research questions
in this study:

RQ1: Does SLARepair really work better than GenProg’s automatic program repair?
RQ2: How does the SLARepair repair method compare with other existing advanced
repair methods?

4.2. Datasets of Bugs

An effective evaluation of the effectiveness of an automatic program repair approach
relies on high-quality benchmark datasets. To evaluate proposed techniques, researchers
need to create datasets or rely on publicly available bug datasets. The latter is critical to
advancing research in the field of automatic program repair because the publicly available
datasets can better reproduce the experimental process and facilitate comparison between
different methods. Therefore, Defects4J [9] was used as the experimental object to evaluate
our approach. Defects4J is a database and extensible framework provided by JUST et al. at
the University of Washington, USA. It provides real bugs to enable reproducible studies in
software testing research. This benchmark has been widely used in software-engineering
related fields, including automatic program repair [20].

This study selects Defects4J 1.5.0 and involves 4 projects: JFreeChart, Apache Com-
mons Lang, Apache Commons Math, and Joda-Time. We exclude the Closure Compiler
project because the test cases in the Closure Compiler are organized in an unconventional
way, using a custom test format rather than the standard JUnit test format. Table 1 shows
the statistical data for 224 real bugs in 4 projects.

Table 1. Defects4J contains statistics of bugs.

Subject Subject Id Bugs KLOC Test Cases

JFreechart Chart 26 96 2205
Commons Lang Lang 65 22 2245
Commons Math Math 106 85 3602

Joda-Time Time 27 28 4130

Total 224 231 12,182

4.3. Evaluation Standard

Based on existing research, the following three evaluation standards were used as
repair capability measurements for different repair methods in this paper: (1) The number
of repairable bugs; (2) the time consumption of successful repair; (3) the total number of
candidate patches to be generated for successful repair. In the above evaluation standards,
the number of repairable bugs and the time consumption of a successful repair can directly
reflect the accuracy and efficiency of the repair approach. The total number of candidate
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patches that need to be generated to successfully repair an item can indicate how difficult
it is for the repair method to generate the correct patch. A study [21] pointed out that for
an intelligent search algorithm with randomness, its search ability can be measured by
the number of fitness evaluations in the search process. Specific to the repair method in
this paper, the total number of candidate patches generated can effectively represent the
number of fitness evaluation times. Therefore, the rest of this section focuses on discussing
the repair capabilities of SLARepair using the above three evaluation standards.

4.4. Experimental Setup

The experimental setup for GenProg [2] and SLARepair in this paper was the same.
The minimum suspicious value and maximum suspicious value of suspicious statements
are set to 0.5 and 50, respectively, in the fault localization phase. In addition, this paper
follows the existing practice of setting the maximum repair time budget for each bug at
90 min.

For location-awareness repair specific to SLARepair, the maximum search time for
SLARepair in each ingredient space was set at 30 min.

4.5. Experimental Result
4.5.1. RQ1: Does SLARepair Really Work Better Than Genprog’s Automatic
Program Repair?

Table 2 summarizes the GenProg and SLARepair repair performance on Defects4J.
GenProg has successfully repaired 25 bugs on Defects4J, with a success rate of 11.2%.
SLARepair can repair 43 bugs with a success rate of 19.2%. SLARepair improves repair
accuracy by 72% compared with GenProg, mainly because code similarity information in
SLARepair can better guide the whole search process. Due to the lack of code similarity
guidance information, GenProg failed to generate a valid patch for the remaining 18 bugs
within a limited time or iteration.
Table 2. Overview of GenProg and SLARepair repair performance on Defects4J.

Subject Id Bugs
Bug Id

GenProg SLARepair

Chart 26 C1,C3,C5,C7,
C13,C15,C25

C1,C3,C5,C7,C12,C13,
C15,C19,C25,C26

Lang 65 - L7,L10,L22,L24,L27,L39

Math 106

M2,M5,M8,M28,M40,M49,M50,
M53,M70,M73,
M80,M81,M82,
M84,M85,M95

M2,M5,M8,M20,M28,
M32,M39,M40,M49,M50,

M53,M56,M60,M64,M70,M71,
M73,M74,M78,M80,M81,M82,

M84,M85,M95

Time 27 T4,T11 T4,T11

total 224 25 43

In order to further compare the repair efficiency of SLARepair and GenProg, Table 3
displays the specific running time and the number of candidate patches generated for
the 25 bugs that can be repaired by both SLARepair and GenProg. It takes at least 3 min
and at most 57.6 min for SLARepair to successfully repair a bug, with a total time of
491.1 min and an average time of 19.6 min. GenProg needed at least 7.8 min and at most
85.9 min to successfully repair a bug, which took a total of 1114.8 min and an average of
44.6 min. Compared with GenProg, SLARepair reduced the total repair time by 55.9%
and the average repair time per bug by 56.1%. As above, from the point of view of patch
generation, SLARepair reduces the total number of patch generations by 51%, and the
average number of patch generations per bug can be reduced by 50.8%. Therefore, in
the case that both repair methods can successfully repair, SLARepair improves the repair
efficiency by at least 50% compared with GenProg. On the other hand, the time spans of
SLARepair and GenProg on the 25 bugs are 54.6 min and 78.1 min, respectively, while the
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time spans of the number of candidate patches are 92 and 131 respectively. This shows that
the difficulty of repair can vary greatly for different bugs.

Table 3. Comparison of repair efficiency of SLARepair and GenProg on repairable bugs.

Subject Bug Id Approach Time (min) Candidate
Patches

Reduced Repair
Time

Reduced Candidate
Patches

Chart

C1
SLARepair 6.1 11

46.0% 62.1%GenProg 11.3 29

C3
SLARepair 10.0 23

70.6% 67.6%GenProg 34.0 71

C5
SLARepair 8.7 21

48.8% 47.5%GenProg 17.0 40

C7
SLARepair 9.6 21

41.5% 38.2%GenProg 16.4 34

C13
SLARepair 12.1 19

51.0% 44.1%GenProg 24.7 34

C15
SLARepair 16.7 42

51.9% 48.8%GenProg 34.7 82

C25
SLARepair 15.8 21

52.6% 47.5%GenProg 33.3 40

Math

M2
SLARepair 29.5 18

60.4% 55.0%GenProg 74.5 40

M5
SLARepair 18.2 11

73.0% 82.8%GenProg 67.3 64

M8
SLARepair 21.9 12

40.0% 20.0%GenProg 36.5 15

M28
SLARepair 28.0 18

67.4% 62.5%GenProg 85.9 48

M40
SLARepair 57.6 30

32.0% 31.8%GenProg 84.7 44

M49
SLARepair 49.0 34

26.2% 24.4%GenProg 66.4 45

M50
SLARepair 8.0 15

63.0% 25.0%GenProg 21.6 20

M53
SLARepair 18.1 14

78.9% 78.5%GenProg 85.9 65

M70
SLARepair 51.4 24

38.7% 35.1%GenProg 83.8 37

M73
SLARepair 19.4 16

76.4% 83.7%GenProg 82.1 98

M80
SLARepair 3.0 19

77.3% 76.3%GenProg 13.2 80

M81
SLARepair 4.8 26

79.7% 25.7%GenProg 23.6 35

M82
SLARepair 21.6 68

63.4% 51.4%GenProg 59.0 140

M84
SLARepair 22.5 67

44.7% 39.1%GenProg 40.7 110

M85
SLARepair 20.1 103

52.7% 29.0%GenProg 42.5 145

M95
SLARepair 23.6 45

53.7% 50.0%GenProg 51.0 90
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Table 3. Cont.

Subject Bug Id Approach Time (min) Candidate
Patches

Reduced Repair
Time

Reduced
Candidate

Patches

Time
T4

SLARepair 8.9 23
47.3% 36.1%GenProg 16.9 36

T11
SLARepair 6.5 12

16.7% 14.3%GenProg 7.8 14

average SLARepair 19.6 29
56.1% 50.8%GenProg 44.6 59

total
SLARepair 491.1 713

55.9% 51.0%GenProg 1114.8 1456

In order to compare the repair efficiency more intuitively and discuss the differences
between different bugs, we drew a bar graph of the execution time of the two repair
methods and the number of candidate patches generated based on the data in Table 3, as
shown in Figure 7. Among them, the horizontal axis in Figure 7a,b represents the bug
Id, and the vertical axis represents the running time (unit: minutes) and the total number
of candidate patches. In Figure 7a, it can be clearly observed that the running time of
SLARepair is significantly reduced compared with GenProg. In Figure 7b, the change in the
number of candidate patches shows the same law as in Figure 7a. Figure 7 intuitively shows
that SLARepair’s repair ability is better than GenProg’s. In Figure 7a,b, the running time
and the number of candidate patches generated are quite different between different bugs,
which shows that the difficulty of repairing each bug is very different. This phenomenon
will exist even in different buggy versions of the same software project. For example, in
the Math project, there are 16 different buggy versions from M2 to M95, and the time
consumption and the number of candidate patch generations will also fluctuate greatly.
One of the reasons for this phenomenon is that the faults in the Defects4J bug dataset
come from actual development, and the Math project has been developed for 11 years,
so there are certain differences in the software composition of different versions of Math
faults. Another reason for this phenomenon is that the bug program in Defects4J is very
complicated and the program scale is large, which leads to different costs for repairing
different bugs even in the same software project. The above reasons show that in the actual
industry, the automatic repair of software faults is a discrete problem with weak regularity.

It can be seen from the above that the repair ability of SLARepair is far better than
that of GenProg, and the improvement of this repair ability comes from the guidance of
code similarity information and the location-awareness repair. Code similarity information
can enable SLARepair to search for the correct patch faster based on the original genetic
programming, which is reflected in the fact that SLARepair can successfully repair with
fewer candidate patches. Another reason why SLARepair has better repair capabilities
is that the location-awareness repair approach greatly reduces the ingredient space. In
order to verify the improvement of the location-awareness repair approach for repairing
capabilities, we run SLARepair with the search scope of the repair ingredient limited to
application, package, and category according to the description of location-awareness
repair and calculate the specific repair time. For applications, the maximum time settings
on packages and classes are 30 min, 60 min, and 90 min, respectively. Considering the
cost of the experiment, we only experimented on the location-awareness repair capability
of SLARepair on the Math project, and the experimental result is an average of 20 runs.
Figure 8 shows the time consumption of each Math bug in different ingredient spaces in
the form of a histogram, where the horizontal axis represents the ingredient space type and
the vertical axis represents the repair time (unit: minutes). It can be seen from the figure
that as the ingredient space shrinks from application to class, the repair time is declining,
which shows that location-awareness repair can effectively improve the repair efficiency of
SLARepair. In particular, in Figure 8d,j, the time consumption of the package is higher than
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the application. This is because, in the actual repair process of the M20 bug and the M50
bug, too many complex invalid patches were generated in the package space during the
actual repair process, resulting in excessive verification time. From Figure 8, we can also see
that in some of the bugs, SLARepair cannot find the correct patch in a certain search space.
For example, bugs M39, M40, M49, M70, and M74 cannot find effective patches in the class
space. This is because the repair ingredients needed to repair these bugs are in a larger
space or the time required to find the correct repair ingredients exceeds 30 min. The bugs
M56, M71, and M78 cannot find effective patches in the application space. This is because
the ingredient space is too large and the repair time exceeds the pre-set 90 min. The most
special thing is that M60 can only be repaired correctly within the scope of application,
because the correct repair ingredients only exist in another package. For the above special
cases, the search space is automatically expanded when the location-awareness repair approach
cannot complete the repair in a smaller search space. Therefore, SLARepair’s location-awareness
repair capabilities can improve repair efficiency while ensuring repair accuracy.
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4.5.2. RQ2: How Does the SLARepair Repair Method Compare with Other Existing
Advanced Repair Methods?

We chose the popular repair methods jKali [22], Nopol [23], CapGen [15], and Sim-
Fix [10] to compare with this study, where jKali is the Java implementation version of the
Kali [24] repair method on Defects4J. The experimental data of jKali and Nopol are based
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on the display of Martinez et al. in [22]. Martinez et al. verified the actual repair effect
of jKali and Nopol on Defects4J under the same hardware and software conditions. The
experiment uniformly uses the 180-min operating limit, so the experimental data in [22] is
more authentic and credible. The experimental results of CapGen and SimFix come from
their corresponding research papers, in which the upper limit of CapGen repair time is
90 min and the upper limit of SimFix repair time is 300 min. As shown in Table 4, SLARepair
can successfully repair 43 bugs out of 224 bugs in Defects4J, with a success rate of 19.2%. In
other repair methods, a maximum of 35 bugs can be repaired. Therefore, the repair ability
of SLARepair is superior to these repair methods.

Table 4. Comparison of the number of bugs repaired by SLARepair and the existing four methods.

Project SLARepair jKali Nopol CapGen SimFix

Chart (26) 10 6 6 4 8
Lang (65) 6 0 7 5 8

Math (106) 25 14 21 13 14
Time (27) 2 2 1 0 1
Total (224) 43 22 35 22 31

success rate 19.2% 9.8% 15.6% 9.8% 13.8%

Figure 9 more intuitively shows the repair quantity of SLARepair and the other 4
repair methods on the Chart, Lang, Math, and Time projects. We can see that in the Chart
project shown in Figure 9a and the Math project shown in Figure 9c, the number of bugs
that SLARepair can repair is significantly higher than the other four methods. It can be
seen from Figure 9d that in the Time project, SLARepair and jKali can repair two bugs,
while the remaining three repair methods can only repair one at most. This is because
the Time project is too complex, resulting in a small number of repairable faults in the
existing repair methods. As shown in Figure 9b, SLARepair has poor repair performance
on the Lang project. The number of repairable bugs is one less than Nopol and two less
than SimFix. This is because the correct repair ingredients for most of the bugs in the Lang
project cannot be searched at the statement granularity level of the program itself, while
Nopol can synthesize patches through constraint solving at a finer program granularity,
and SimFix can also repair these bugs with the help of external repair templates.
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Figure 9. Compares the number of bug repairs on Defects4J between SLARepair and 4 repair methods.
(a) Chart, (b) Lang, (c) Math, (d) Time.

Finally, we discuss the time-consumption problem of SLARepair’s patch verification
during the repair process. We found that patch verification consumes a huge amount of
time when repairing bugs. Figure 10 shows the time-consumption situation of SLARepair’s
patch verification on 43 repairable bugs. The horizontal axis represents the bug Id, the main
vertical axis represents time (unit: minutes), and the secondary vertical axis represents the
percentage of patch verification in the total repair time. It can be seen from Figure 10 that
for most bug repairs, patch verification takes much longer than other runtimes, such as
positioning and searching. Patch verification accounts for the smallest proportion (37.4%) of
the total repair time and the largest (98.7%). SLARepair repairing a bug requires an average
of 79.4% time consumption for patch verification. The reason for this phenomenon is that
SLARepair needs to rely on the fitness function to guide the patch search process, and the
calculation of the fitness function is determined by the code similarity and the number
of passed test cases. The calculation of code similarity includes collecting the program
identifier of the buggy program and the candidate patch program at each suspicious
location and calculating the length of the longest common subsequence of the identifier,
which does not require excessive computing resources. Calculating the number of test cases
passed by the patch needs to drive the entire buggy program to execute all test cases, which
requires a lot of computing resources. On the other hand, from Table 3, SLARepair needs
to generate 29 candidate patches on average to repair a bug, which means that every time
a bug is repaired, the entire bug program needs to be driven to execute thousands of test
cases dozens of times. Therefore, patch verification consumes huge computing resources in
the repair process. This is also an important problem in all current search-based automatic
program repair methods.

In summary, the repair ability of SLARepair under the three evaluation criteria is
significantly better than the original GenProg repair method based on genetic program-
ming. On the one hand, SLARepair’s higher repair ability comes from code similarity,
which effectively guides the patch search process. On the other hand, it comes from the
reduction of the search space caused by location-awareness repair. In terms of the number
of repairable faults, SLARepair is also superior to other repair methods.
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5. Discussion

Genetic programming can find the correct patch in the potential search space. Like
Genprog [2], its main problem is that the large search space only contains a small number
of correct patches. This can lead to consuming a lot of time looking for candidate patches
or failing to search. In order to reduce the search space, we combine the search information
with code similarity to guide the repair process. Experiments show that code similarity
guides the right direction for genetic programming and significantly improves the repair
effect. Secondly, we further optimize the search space through our location-awareness
strategy. Experiments have shown that the strategy significantly improves repair efficiency.

In research question 1, it can be seen that SLARepair outperforms Genprog in repair
success rate and repair efficiency from Tables 2 and 3, Figure 7. The main reasons are three-
fold. The first point is that SLARepair combines code similarity to guide the repair process,
while Genprog uses only genetic programming. Genetic programming randomly selects
repair ingredients, which, when combined with code similarity, allows for a more efficient
selection of suitable repair ingredients. The second point is that the location-awareness
strategy makes it easier for SLARepair to find the correct patch. The improvement of the
repair ability is verified after the location-awareness strategy subdivides the search space
from Figure 8. The third point is that SLARepair uses the test case prioritization method
combined with test filtering to further reduce the time spent on patch verification.

In research question 2, we compare SLARepair with other methods. Although Cap-
Gen [15] and SimFix [10] also involve code similarity analysis, it can be seen that code
similarity analysis combined with location-awareness strategies can lead to better repair
results from Table 4 and Figure 9. At the same time, we can also see the complexity of fixing
bugs in Figure 9. Furthermore, we should also note that despite the test case prioritization
method and test filtering techniques, the patch verification process is still time-consuming.

6. Related Work

In this section, we review related work on automatic program repair. We focus on two
aspects. One is genetic programming. Genetic programming is the most efficient way to
search for the correct patch. The second is code similarity. Recent studies have shown that
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code similarity plays an increasingly important role in automatic program repair. Finally,
we compare SLARepair with other methods and analyze the advantages of our approach.

6.1. Genetic Programming-Based Repair Approaches

Le Goues et al. [2] proposed GenProg. The basic idea is that the code is redundant, so
the patch in the reuse project has the probability of generating the correct patch. During
the patch search process, mutation and crossover operations are used to increase the
patch search space. The population is selected by the number of test cases passed by the
patch to iterates until there is a patch that passes all test cases. This work has important
implications for automatic program repair and has prompted more researchers to explore
automatic program repair. However, GenProg is in the initial stage of the automatic repair
approach, and the content has not yet matured. Qi et al. [14] believe that the fitness
selection function in genetic programming does not play a significant role in candidate
patch selection, so random search is used instead of genetic search. It was found that the
random search consumed less time to generate the patches generated by GenProg. Oliveira
et al. [4] proposed a new code modification representation to further optimize the genetic
algorithm. They encoded the code representation method on the same chromosome with
the mutation operator and the code element corresponding to the operator. This method
can realize different mutation operations on the same code, which is more flexible than the
traditional genetic algorithm and can improve the patch generation capability of repair tools.
Mehne et al. [25] accelerated the repair process by filtering the test cases in the program, and
Sun et al. [26] improved the original GenProg repair method by optimizing the population
initialization and mutation processes of the genetic algorithm. Then, Li et al. [27] proposed
an approach that combines search-based automatic program repair techniques with a neural
machine translation-based approach, and Villanueva et al. [28] used novel search algorithms
to optimize GenProg’s search and avoid getting trapped in local optimal solutions. Because
of the limited variety and simplicity of structures in bytecode, the patch space covered
by the mutation operator is larger. In addition, bytecode modification can be run directly
on the JVM without additional compilation, so it is more efficient. The actual verification
results also show that this method is more efficient than the existing techniques.

The major difference between SLARepair and GenProg lies in the candidate patch
stage, where we improve patch generation efficiency by filtering candidate patches using
code similarity. In order to improve search efficiency, RSRepair [14] uses random search
and abandons the use of fitness functions to guide patch generation. While SLARepair
optimizes the above aspects, it also improves population initialization. The methods
proposed by Sun et al. and Villanueva et al. are to improve patch quality by optimizing the
way to guide patch generation. SLARepair not only optimizes bootstrap patch generation
but also focuses on the efficiency of patch generation.

6.2. Code Similarity-Based Repair Approaches

The previous section mainly considered the optimization of search strategy and code
modification, while this section focuses on the connection between bug code and reused
code. Ji et al. [29] proposed to fix bugs by using program fragments similar to buggy
programs in the project and implemented the bug repair tool SCRepair. SCRepair mea-
sures the syntax tree structure consistency between the buggy code and the reference
code by comparing code similarity and measuring the previous difference in code using
ChangeDistiller [30] to extract the bug code from the reference code modification operation.
The reused reference code is filtered according to predefined similarity and difference
thresholds. Lin et al. [31] found that existing techniques rarely consider the contextual
information and program structure of the generated patches, which are crucial for the eval-
uation of patch correctness as revealed by existing research. Like the above approach, ssFix,
proposed by Xin et al. [32], searches the code base for codes similar to buggy programs
as repair ingredients. SsFix applies modification operations one by one to the differences
between defective codes extracted by ChangeDistiller and similar codes, without directly
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reusing similar codes. Experiments on the Defects4J dataset show that ssFix can correctly
fix 20 bugs. Based on the ssFix theory, Jiang et al. [10] argue that code from the same project
has better reference value. SimFix uses existing patches to generate a search space S1, while
the program to be fixed forms a search space S2. A heuristic search is performed at the
intersection of these two search spaces. Wen Ming et al. [15] used the contextual informa-
tion of the AST nodes to repair the buggy programs. They used a fine-grained design to
find more correct repair components. Not only the context-aware priority of the employed
mutation operator can constrain the search space, but also the three context-aware models
can prioritize the correct patches. Motwani et al. [33] empirically assess the quality of
program fixes for real-world Java bugs. They developed JaRFly, outlined bugs, and built a
methodology and dataset for evaluating the quality of new repair technology patches for
real-world bugs. Phung et al. [34] proposed MIPI, a new method for reducing the number
of overfitting patches generated in APR. They used the similarity between the names of
patch methods and the semantic meanings of the method bodies to identify and remove
the overfitting patches generated by APR tools.

CapGen [15] only considers the frequency of the code when reusing existing code in a
project and does not even consider the characteristics of the code or the connection between
the buggy code and the reused code. To address this problem, Ji et al. [29] proposed to fix
bugs by reusing code ingredients similar to the defective code in this project. Different from
them, SLARepair and CRSearcher, by reusing not only code in the project but also code in
other projects, increase the patch search space. Compared with the SLARepair approach,
ssFix has a finer granularity of code reuse, which results in a larger patch space and a lower
accuracy rate. Phung et al. [34] exploit the similarity between the name of the patch method
and the semantics of the method body from a new perspective to reduce patch overfitting.
Unlike SLARepair, SimFix extracts code modifications that can be applied in combination and
filters and optimize candidate patches using common modifications from historical fixes.

7. Conclusions

To resolve the problem of large search spaces and low search efficiency, we propose an
automatic program repair based on code similarity and location awareness. First, in order
to improve search efficiency, SLARepair combines code similarity with guided genetic
programming. We designed a new fitness function for genetic programming to more
efficiently select suitable repair ingredients. In addition, we use a location-awareness
strategy to further reduce search space, which significantly improves repair efficiency.
Finally, we utilize the test case prioritization approach combined with test case filtering
to further reduce patch verification time. Experimental results show that SLARepair has
higher repair efficiency and accuracy than existing automatic program repair approaches.
SLARepair can repair 43 faults with a success rate of 19.2%, which is 3.6~9.4% higher than
other repair tools. Compared with GenProg, SLARepair improves repair accuracy by 72%.

In the future, we plan to study the following issues: We want to consider the automatic
repair of software faults in a multi-fault environment. The automatic program repair works
at the sentence level of the abstract syntax tree, but for some faults, the correct repair
ingredient may exist at a finer granularity (i.e., variable and expression) than the sentence.
We will continue to refine the repair granularity and use fine-grained repair ingredients to
generate patches.
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