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Abstract: The problem of axially symmetric TM-wave diffraction from a bicone conjoined with an
open-ended conical cavity is analysed rigorously. The scatterer is formed by the perfectly conducting
semi-infinite and truncated semi-infinite conical surfaces; the spherical termination of an internal
area of the truncated cone creates the open-ended cavity. In this paper the certain physical aspects of
diffraction which are known to cause mathematical difficulties are considered. It includes an accurate
analysis of the wave-mode transformation phenomena at the open end of the cavity, as well as a study
of wave radiation from the cavity into the biconical waveguide. The primary outcome of this paper
is a precise treatment of the wave diffraction problem mentioned above using new techniques and
establishing new properties of resonance modes’ penetration into the biconical waveguide region.

Keywords: bicone; conical cavity; analytical regularization; rigorous solution

1. Introduction

The progress of wave diffraction simulation for determining the coupling between the
radiating elements in radiophysics, optics, and acoustics often relies on the availability of
solutions to canonical problems. This paper considers the bicone conjoined with an open-
ended conical cavity formed by a perfectly conducting semi-infinite cone and a truncated
one with an internal spherical termination. Variations in its geometric parameters make it
possible to simulate wideband antennas, reference measurement probes, and verification
antennas, which are the canonical area of applying the biconical surfaces [1–4]. Nowadays,
an interest in bicones is associated with the design of nanoprobes and their application
in nanotechnologies [5–7]. The main reason for their application is TEM wave excitation
in the coaxial biconical region and the electromagnetic energy concentration near the
conical vertices [6]. If, for example, the semi-infinite biconical shoulder degenerates into
the plane, this structure becomes a model of the functional elements of an optic near-field
microscope [6,7]. This structure includes the flat “preparation” desk illuminated by an
open-ended conical waveguide and the remote sensing TEM wave “detector” created by
the biconical area. When the truncated semi-infinite cone degenerates into the plane with a
semi-spherical cavity, we arrive at the model of the cavity-like defect [8] detected by the
conical probe [9]. This structure also has the potential to be applied for modeling of the
absorbent properties of scattering surfaces [10–12].

Since the scatterer under consideration consists of fragments of canonical surfaces in
a spherical coordinate system, this study aims to rigorously solve a corresponding wave
diffraction problem. Such a solution correctly takes into account the wave interaction
between the different scattering elements of a biconical structure and can be used to verify
modern software packages and approximate approaches. For our study, we modified the
well-known mode-matching technique; the modification involves transformations that
allow the fields singularity at the edges to be explicitly taken into account.

The canonical results of wave diffraction from finite/truncated biconical scatterers
have been obtained using field representations through the series of the normal waves
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of subdomains and application of traditional mode matching for seeking the unknown
complex amplitudes of the scattered modes. In the literature, studies of wave diffraction
from biconical structures are mainly focused on bicones formed by finite conical shoulders,
or finite and semi-infinite ones. As a rule, they consider bicones formed by a hollow cone
and closed by a spherical cap or partially filled by the dielectric. The general scheme of
usage of the mode-matching method and its application for solving various problems of
wave diffraction from bicones, as well as an analysis of the earlier works in this direction,
was given in [13] and later in [14,15]. The solution of wave diffraction problems for
particular cases of biconical scatterers is given via the Wiener–Hopf technique, which
involves a Kontorovich–Lebedev integral transform [16]. Despite the simplicity of mode
matching and its physical validity, the mode-matching series is the singular cause of
the field singularity at the edges. Therefore, it needs to be taken into account. In our
previous study, an explicit inversion of the mode-matching singularity was proposed for
finite/truncated conical and biconical scatterers [17–25]; this technique is generally called
an analytical regularization procedure. The main reason for such processing is to guarantee
an accurate solution to the problem which satisfies all the necessary conditions, including
the edge condition, for any geometrical and frequency parameters except the spectrum
points. The basic principles of this powerful tool are presented in [26–29]. The application of
this method for an accurate analysis of the spherical and simple sphere-conical cavities has
been applied in [29–31]. It is worth noting that the well-known open-ended parallel-plate
waveguide cavities have been studied rigorously using the Wiener–Hopf technique [32].
This technique has also been applied to analyse open-ended cylindrical and spherical
cavities [33–35]. Various directions of analytical regularization methods are developed
in [36–39], and references therein.

In this paper, we developed an analytical regularization technique to accurately study
wave diffraction from a new geometry. Our study includes alternative techniques for deriv-
ing the constitutive equations, establishing the correlation between them, and proposing
a new general method to seek the sets of regularizing operators that explicitly invert the
singular part of the problem. We also derive an approximate solution for the small size of
the cavity hole and an approximate expression to determine the perturbation of the cavity
spectrum. Using numerical calculations, we study the near and far fields for the wideband
parameters of our problem.

2. Statement of the Problem

Let us consider, in a spherical coordinate system (r, θ, ϕ), a perfectly conducting
biconical scatterer conjoined with an open-ended conical cavity Q = Q1

⋃
Q2, where Q1 is

the semi-infinite cone and Q2 is the truncated semi-infinite one with an internal spherical
termination; the termination forms an open-ended conical cavity:

Q1 : {r ∈ (0, ∞); θ = γ1; ϕ ∈ [0, 2π)},

Q2 :
{
(r, θ, ϕ) | r ∈

{
(a1, ∞); θ = γ2 − 0
(a1, c1); θ = γ2 + 0

}
, θ = γ2

} ⋃
ϕ∈[0,2π)

{(r, θ, ϕ) | r = c1; γ2 ≤ θ ≤ π}.
(1)

Here, γ1 and γ2 are the generating angles; a1 and c1 are the radial coordinates of
the cavity aperture and the spherical termination, respectively, c1 > a1; γ2 > γ1 and
γ1(2) 6= π/2. The biconical scatterer and its particular cases are shown in Figure 1.

Let the bicone Q be excited axially symmetric by the TM-wave, produced by an electric
dipole located on the symmetry axis. The time factor e−iωt is suppressed throughout this
paper. Since the incident modes are independent of the azimuth angle ϕ, then, as follows
from Maxwell’s equations, only the three nonzero field components Er, Eθ , and Hϕ(r, θ) are
excited [40]. The electric field components are expressed in terms of Hϕ by

Er = − (iωεr sin θ)−1 ∂θ(sin θHϕ), Eθ = (iωεr)−1∂r(rHϕ) , (2)
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where ε is the dielectric permittivity of the medium.

(a)

(b) (c)

Figure 1. An axially symmetric bicone with an open-ended conical cavity; (a) general view; (b) sphere-
conical cavity over the plane (r, θ-plane); (c) conical probe over the semi-spherical cavity (r, θ-plane).

Taking into account the axial symmetry of the initial problem, let us formulate the
mixed boundary value problem to determine the Hϕ-field diffracted from Q as

∇2Hϕ − (r sin θ)−2Hϕ + k2Hϕ = 0, (3)

(sin θ)−1 ∂θ

[
sin θ(Hϕ + Hi

ϕ)
]
= 0

if r, θ ∈ {r ∈ (0, ∞), θ = γ1} ∪ {r ∈ (a1, ∞), θ = γ2 − 0} ∪ {r ∈ (a1, c1), θ = γ2 + 0}
(4)

and
r−1∂r[r(Hϕ + Hi

ϕ)] = 0

if r, θ ∈ {r = c1, θ ∈ [γ2, π]}.
(5)

Here, k = ω
√

εµ is the wave number; µ is the magnetic permeability; ∇2 is the axially
symmetric Laplace operator in the spherical coordinate system;

∇2 = ∂2
rr + 2r−1∂r + (r2 sin θ)−1 ∂θ(sin θ ∂θ);

Hi
ϕ is the known magnetic component of the incident field, and Hϕ + Hi

ϕ = Ht
ϕ is the

total field.
We search for the solution of the mixed boundary value problems (3)–(5) in the class

of functions that satisfy the Silver–Muller radiation condition [41]
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lim
r→∞

r
[
⇀
e r ×~H + Z−1~E

]
γ1≤θ≤γ2

= 0 ·~eθ , (6)

where ~H = (0, 0,~eϕ Hϕ), ~E = (0,~eθEθ , 0), Z =
√

µ/ε is the medium wave resistance, and
the energy limitation condition is [42]∫

V

(
ε|~E|2 + µ|~H|2

)
dv < ∞. (7)

Here, V is any finite volume of integration, dv = r2 sin θdrdθdϕ. This condition, in
our case, is reduced to the fulfilment of the Meixner condition at the edge of Q. In order
to fulfil the radiation condition and prevent the arrival of waves from infinity, we assume
that k = k′ + ik′′, k′ > 0, k′′ ≥ 0. Due to these two additional conditions, the diffraction
problems (3)–(5) are properly posed.

3. Fields Representation

Let us split the area surrounding the biconical scatterer Q into three canonical sub-
regions as (see Figure 1a)

D1 : {r ∈ (0, a1), θ ∈ (γ1, π)}, D2 : {r ∈ (a1, c1), θ ∈ (γ2, π]}, D3 : {r ∈ (a1, ∞), θ ∈ [γ1, γ2)}. (8)

Here, for further convenience, the coordinate ϕ ∈ [0, 2π) is omitted in the notation.
Since the unknown Hϕ component satisfies Equation (3), we apply for the solution the

method of separation variables and represent it using eigenfunctions in the appropriate
domains Dl(l = 1, 2, 3), determined in (8) as H(l)

ϕ = ∑
(

H(l)
ϕ

)
n
, where

(
H(l)

ϕ

)
n

is a normal
magnetic TM-mode in a spherical coordinate system [43];(

H(l)
ϕ

)
n
=

iωε√
sr

[
g(l)n Iηn(sr) + t(l)n Kηn(sr)

]
Φ(l)

ηn−1/2(cos θ). (9)

Here, Iηn(sr) and Kηn(sr) are modified Bessel and Macdonald functions; the indices

ηn and unknown coefficients g(l)n and t(l)n (n = 1, 2, 3, . . .) are to be determined from the
problem solution.

In order to satisfy the energy limitation and the radiation conditions, we accept that
t(l)n ≡ 0 for l = 1 and g(l)n ≡ 0 for l = 3. The eigenfunctions Φ(l)

ηn−1/2(cos θ) (n = 1, 2, 3, . . .)
are determined in the regions Dl from the solution of Sturm–Liouville problems for the
differential equation

_
∆θ Φ(l)

ηn−1/2(cos θ) = − (η2
n − 1/4)Φ(l)

ηn−1/2(cos θ), (10)

where
_
∆θ= (sin θ)−1 ∂θ(sin θ ∂θ)− (sin θ)−2

is the Beltrami operator. We consider here the limited solution of Equation (10), which
satisfies the boundary condition (4) that is taken in the form

(sin γ)−1 ∂θ

[
sin γ Φ(l)

ηn−1/2(cos γ)
]
= 0 (11)

with γ = γ1 if l = 1, and γ = γ2 if l = 2, 3.
Let us represent them as

Φ(1)
zn−1/2(cos θ) = ∂θ Pzn−1/2(− cos θ)

γ1≤θ≤π

,

Φ(2)
µn−1/2(cos θ) = ∂θ Pµn−1/2(− cos θ)

γ2<θ≤π

,

Φ(3)
νn−1/2(cos θ) = Ψνn−1/2(cos θ).

γ1≤θ<γ2

(12)
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Here, ηn = µn(νn, zn); Pη−1/2(± cos θ) and ∂θ Pη−1/2(± cos θ) = ± P1
η−1/2(± cos θ)

are the Legendre and the associated Legendre functions of the first order, respectively [44];

Ψνn−1/2(cos θ) =


(sin θ)−1, n = 1,

∂θ [Rνn−1/2(cos θ)], n > 1,
(13)

where

Rνn−1/2(cos θ) = Pνn−1/2(cos θ)Pνn−1/2(− cos γ1)− Pνn−1/2(− cos θ)Pνn−1/2(cos γ1) . (14)

Taking into account the relationship

(sin θ)−1 ∂θ

[
sin θ ∂θ Pη−1/2(± cos θ)

]
= − (η2 − 1/4)Pη−1/2(± cos θ) (15)

we find that the functions (12) satisfy the boundary condition (11) if their indices are
determined from the solution of transcendental equations as

Pzn−1/2(− cos γ1) = 0,

Pµn−1/2(− cos γ2) = 0,

Rνn−1/2(cos γ2) = 0.

(16)

The roots of these equations are real and in view that Pη−1/2(± cos θ) = P−η−1/2(± cos θ)
are arranged symmetrically above zero on the number axis [45]. In order to satisfy the
Meixner condition at the vertex of the cone, we consider the sets of the positive roots
{µn}∞

n=1, {νn}∞
n=1, and {zn}∞

n=1 that are arranged in growing sequences; the set of the
positive roots of the transcendental equation Rνn−1/2(cos γ2) = 0 starts from ν1 = 1/2 and
νn 6= n− 1/2 for n = 2, 3, 4, . . . .

Without loss of generality, the bicone Q is excited by the TM-modes produced by the
vertical dipole that is located at the axis of symmetry {0 ≤ r < ∞; θ = π} in the conical
region D1. For further convenience, we represent the incident field in the form of the total
field of the vertical dipole in the conical region limited by the semi-infinite conical surface
Q1 [22]:

H(i)
ϕ =

iωε√
sr

∞

∑
n=1

An∂θ [Pzn−1/2(− cos θ)]

{
Izn(sr0)Kzn(sr), r > r0,
Kzn(sr0)Izn(sr), r < r0.

(17)

Here,

An =
2A(0)znPzn−1/2(cos γ1)/

√
sr0

cos(πzn)∂z[Pzn−1/2(− cos γ1)]
,

A(0) = π Ie
r hZ/r0, 0 < r0 < a1, Ie

r is the electric current, and h is the length of the dipole.
Let us represent the total magnetic field in each of the sub-regions (8) as

Ht
ϕ(r, θ) =

iωε√
sr



H(i)
ϕ (r, θ)

√
sr

iωε
+

∞
∑

n=1
x(1)n ∂θ [Pzn−1/2(− cos θ)]

Izn (sr)
Izn (sa1)

, (r, θ) ∈ D1,

∞
∑

n=1
∂θ [Pµn−1/2(− cos θ)]

[
x(2;1)

n
Kµn (sr)

Kµn (sa1)
+ x(2;2)

n
Iµn (sr)

Iµn (sa1)

]
, (r, θ) ∈ D2,

∞
∑

n=1
x(3)n Ψνn−1/2(cos θ)

Kνn (sr)
Kνn (sa1)

, (r, θ) ∈ D3.

(18)

Here, x(1)n , x(2;1)
n , x(2;2)

n , and x(3)n are unknown expansion coefficients. It should be
noted that according to the relations (11), (13), and (16), the representation (18) satisfies the
boundary conditions (4) as well as the radiation and energy limitation conditions. In order
to satisfy the Meixner condition at the aperture’s edge, we search the unknown expansion
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coefficients in the class of sequences x(1)n , x(2;1)
n = O(n−2), and x(3)n = O(n−3/2) for n→ ∞.

The asymptotic behaviour of the unknowns x(2;2)
n is to be determined.

4. Mode-Matching Series Equations

Using the boundary condition (5) and representation (18), we arrive at the relation as

x(2;2)
n = x(2;1)

n Υµn(ω), (19)

where

Υµn(ω) = −
Kµn(sc1)Iµn(sa1)

Kµn(sa1)Iµn(sc1)

[
1 + 2sc1K′µn(sc1)/Kµn(sc1)

1 + 2sc1 I′µn(sc1)/Iµn(sc1)

]
. (20)

Considering the asymptotic properties of the modified Bessel and the Mcdonald
functions and representation (20), we find that x(2;2)

n = O(n−2(a1/c1)
2n) if n→ ∞.

In order to find the unknown expansion coefficients in (18), we use the mode matching

of the tangential total fields Ht
ϕ and Et

θ on the spherical surface
_
S : {r = a1, γ1 ≤ θ ≤ π},

which covers the circular aperture of a truncated cone. This leads to the functional (series)
equations that are defined on θ ∈ [γ1, π] with the associated Legendre functions kernel.

Since the series representing the Eθ field is singular at the edge as Eθ(r, θ) = O(
_
ρ
−1/2

),

where
_
ρ is the relative distance to the edge in the local coordinate system, the series are not

absolutely convergent on
_
S ; their sums depend on the order of summation. Therefore, we

depict the mode-matching series in the form of the limit transition as

lim
N→∞

N
∑

n=1
P1

zn−1/2
(− cos θ)

[
x(1)n + Ān

Kzn(sa1)

Kzn(sr0)

]
(r,θ)∈D1

=


lim

P→∞

P
∑

p=1
x(2)n P1

µp−1/2
(− cos θ)

[
1 + Υµp(ω)

]
, (r, θ) ∈ D2, p = 1, . . . P,

− lim
K→∞

K
∑

k=1
x(3)k Ψνk−1/2(cos θ), (r, θ) ∈ D3, k = 1, . . . K;

(21)

lim
N→∞

N
∑

n=1
P1

zn−1/2
(− cos θ)

[
x(1)n

I′zn(sa1)

Izn(sa1)
+ Ān

K′zn(sa1)

Kzn(sr0)

]
(r,θ)∈D1

=


lim

P→∞

P
∑

p=1
x(2)p P1

µp−1/2
(− cos θ)

[
K′µp(sa1)

Kµp(sa1)
+ Υµp(ω)

I′µp(sa1)

Iµp(sa1)

]
, (r, θ) ∈ D2, p = 1, . . . P,

− lim
K→∞

K
∑

k=1
x(3)k Ψνk−1/2(cos θ)

K′νk
(sa1)

Kνk (sa1)
; (r, θ) ∈ D3, k = 1, . . . K.

(22)

Here, N = P + K, the prime denotes a derivative with respect to the argument. For
further convenience, we introduce the new notation as

Ān = An Izn(sr0)Kzn(sr0) and x(2)n = x(2;1)
n .

Equations (21) and (22) are the desirable series equations of our problem. It is worth
noting that the rules of the limit transition in (21) and (22) will be determined using the
Meixner condition at the aperture’s edge.

It is well known that there are different ways to reduce the mode-matching equations to
the infinite system of linear algebraic equations (ISLAE) using the orthogonality properties
of the eigenfunctions. As a result, we arrive at different kinds of the ISLAE. In order to
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carry out the analytical regularization, we choose the ISLAE acceptable for the extraction
of the singular part of their matrix operators.

5. The ISLAE of the First Kind

5.1. Equations with the Unknowns {x(1)n }∞
n=1

In order to reduce the series Equations (21) and (22) to the ISLAE, we use the orthog-
onality properties of the associated Legendre functions P1

µp−1/2(− cos θ) on the interval
γ2 < θ ≤ π as well as the orthogonality of the biconical ones Ψνk−1/2(cos θ) for γ1 ≤ θ < γ2,
and derive the representation of the associated Legendre function P1

zn−1/2(− cos θ) in the
regions mentioned above as

P1
zn−1/2(− cos θ) = q(zn, γ2)


lim

P→∞

P
∑

p=1

ᾱ(µp, γ2)

µ2
p − z2

n
P1

µp−1/2(− cos θ), γ2 < θ ≤ π,

lim
K→∞

K
∑

k=1

α(νk; γ1, γ2)

ν2
k − z2

n
Ψνk−1/2(cos θ), γ1 ≤ θ < γ2,

(23)

where

q(zn, γ2) = (z2
n − 0.25)Pzn−1/2(− cos γ2),

ᾱ(µp, γ2) = −
2µp

(µ2
p − 1/4)∂µPµp−1/2(− cos γ2)

,

α(νk; γ1, γ2) =


{ln[tg(γ2/2)ctg(γ1/2)]}−1, k = 1,

2νk

(ν2
k − 1/4)∂νRνk−1/2(cos γ2)

, k > 1.

(24)

It is shown in [19] that series (23) are absolutely and uniformly convergent in the
appropriate regions and tend to the function P1

zn−1/2(− cos θ) if P, K → ∞.
Let us substitute the expression (23) into the left-hand side of Equations (21) and (22).

Then, from each of them, we obtain a couple of series equations with P1
µp−1/2(− cos θ)

and Ψνk−1/2(cos θ) kernels that are valid in the intervals γ2 < θ ≤ π and γ1 ≤ θ < γ2,
respectively. As far as the series (22) are not absolutely convergent, we use the finite
number of terms in the series, and, using the linear independence of any finite sets of kernel
functions, we reduce the problem to a finite system of linear algebraic equations equating
to zero the terms with the same eigenfunctions. As a result, we arrive at

N

∑
n=1

{
xn

µ2
p − z2

n
+

Ānq(zn, γ2)

µ2
p − z2

n

Kzn(sa1)

Kzn(sr0)

}
= x(2)p

1 + Υµp(ω)

ᾱ(µp,γ2)
, p = 1, . . . P, (25)

N
∑

n=1

{
xn

µ2
p − z2

n

I′zn(sa1)

Izn(sa1)
+

Ānq(zn, γ2)

µ2
p − z2

n

K′zn(sa1)

Kzn(sr0)

}

=
x(2)p

ᾱ(µp, γ2)

[
K′µp(sa1)

Kµp(sa1)
+ Υµp(ω)

I′µp(sa1)

Iµp(sa1)

]
, p = 1, . . . P,

(26)

N

∑
n=1

{
xn

ν2
k − z2

n
+

Ānq(zn, γ2)

ν2
k − z2

n

Kzn(sa1)

Kzn(sr0)

}
= −

x(3)k
α(νk; γ1, γ2)

, k = 1, . . . K, (27)

N

∑
n=1

{
xn

ν2
k − z2

n

I′zn
(sa1)

Izn (sa1)
+

Ānq(zn, γ2)

ν2
k − z2

n

K′zn
(sa1)

Kzn (sr0)

}
= −

x(3)k
α(νk; γ1, γ2)

K′νk
(sa1)

Kνk (sa1)
, k = 1, . . . K. (28)
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Here, for further convenience, we introduce the new notation as

xn = x(1)n q(zn, γ2). (29)

Taking into account that q(zn, γ2) = O(n3/2) if n → ∞, we find that xn = O(n−1/2).
Therefore, in order to obtain the solution of Equations (25)–(28) in the above mentioned
class of sequences, we are going to find the rule for letting N, P, and K tend to infinity and
represent the mathematical technique that guarantees obtaining this. For this purpose, let
us exclude the unknowns x(2)p and x(3)k from the right-hand part of Equations (25)–(28) and
reduce them to a finite system of linear algebraic equations in the form

N

∑
n=1

xn

µ2
p − z2

n

{
sa1W[Kµp Izn ]sa1

Kµp(sa1)Izn(sa1)
+ Υµp(ω)

sa1W[Iµp Izn ]sa1

Iµp(sa1)Izn(sa1)

}
= f (1)µp , p = 1, . . . , P. (30)

N

∑
n=1

xn

ν2
k − z2

n

sa1W[Kνk Izn ]sa1

Kνk (sa1)Izn(sa1)
= f (2)νk , k = 1, . . . , K. (31)

where

f (1)µp =
N

∑
n=1

Ānq(zn, γ2)

µ2
p − z2

n

Kzn(sa1)

Kzn(sr0)

[
sa1W[Kzn Kµp ]sa1

Kzn(sa1)Kµp(sa1)
+ Υµp(ω)

sa1W[Kzn Iµp ]sa1

Kzn(sa1)Iµp(sa1)

]
, (32)

f (2)νk =
N

∑
n=1

Ānq(zn, γ2)

ν2
k − z2

n

Kzn(sa1)

Kzn(sr0)

sa1W[Kzn Kνk ]sa1

Kzn(sa1)Kνk (sa1)
, (33)

W[ fν ϕµ]x = fν(x)ϕ′µ(x)− f ′ν(x)ϕµ(x) is the Wronskian.
Let us introduce a growing sequence of the roots {µp}∞

p=1 and {νk}∞
k=1 for the second

and third transcendental Equation (16) as

{ξq}∞
q=1 = {νk}∞

k=1

⋃
{µp}∞

p=1. (34)

Next, in Equations (30) and (31), we pass to the limit N, P, K → ∞ (N = P + K) and
arrange the ISLAE according to the sequence (34). Let us represent this equation in the
matrix form as

(A11 + B11)X = F. (35)

Here, X : {xn}∞
n=1 is the unknown vector, A11 : {a(1,1)

qn }∞
q,n=1 and B11 : {b(1,1)

qn }∞
q,n=1 are

infinite matrices with the elements

a(1,1)
qn =

sa1W[Kξq Izn ]sa1

(ξ2
q − z2

n)Kξq(sa1)Izn(sa1)
; (36)

b(1,1)
qn =


0, ξq ∈ {νk}∞

k=1,

sa1W[Iξq Izn ]sa1 Υξq(ω)

(ξ2
q − z2

n)Iξq(sa1)Izn(sa1)
, ξq ∈ {µp}∞

p=1,
(37)

F : { fq}∞
q=1 is the known vector;

{ fq}∞
q=1 ≡ { fξq}

∞
q=1 = { f (1)µp }∞

p=1
⋃
{ f (2)νk }

∞
k=1. (38)

Note that Equation (35) is the desirable equation that we will investigate. An alter-
native way to solve our problem is to reduce it to linear algebraic equations with the
unknowns {x(2)n }∞

n=1, {x(3)n }∞
n=1. In order to determine the correlation between these two

methods, let us derive the alternative ISLAE for our problem.
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5.2. Equations with the Unknowns {x(2)n }∞
n=1 and {x(3)n }∞

n=1

Let us consider the representation of the associated Legendre functions of the form

Ψνk−1/2(cos θ), γ1 ≤ θ < γ2

0, γ2 < θ ≤ π

 = q̃+(νk, γ2) lim
N→∞

N

∑
n=1

α̃(zn, γ1, γ2)

ν2
k − z2

n
P1

zn−1/2(− cos θ), γ1 < θ ≤ π, (39)

0, γ1 ≤ θ < γ2

P1
µp−1/2(− cos θ), γ2 < θ ≤ π

 = q̃−(µp, γ2) lim
N→∞

N

∑
n=1

α̃(zn, γ1, γ2)

µ2
p − z2

n
P1

zn−1/2(− cos θ), γ1 ≤ θ ≤ π, (40)

where k, p = 1, 2, 3, . . .;

q̃+(νk, γ2) = π sin γ2Ψνk−1/2(cos γ2),

q̃−(µp, γ2) = π sin γ2P1
µp−1/2(− cos γ2),

α̃(zn, γ1, γ2) =
znPzn−1/2(cos γ1)Pzn−1/2(− cos γ2)

cos(πzn)∂t[Pt−1/2(− cos γ1)] t=zn

.

(41)

Here, we use the orthogonality properties of the associated Legendre functions
P1

zn−1/2(− cos θ) over the interval γ1 ≤ θ ≤ π to obtain these expressions [46]. It is
worth noting that series (39) and (40) are formal because the asymptotic behaviour of the
moduli of their terms decays as n−1 if n → ∞. Therefore, we substitute series (39) and (40)
into the right-hand side of Equations (21) and (22), taking into account the finite numbers
of their terms. Then, let us form the homogeneous series equations concerning kernel
functions P1

zn−1/2(− cos θ) and equate the coefficients to zero. Therefore, we arrive at the
finite linear algebraic system as

K

∑
k=1

y(3)k
ν2

k − z2
n
+

P

∑
p=1

y(2)p

µ2
p − z2

n

[
1 + Υµp(ω)

]
=

1
α̃(zn, γ1, γ2)

[
x(1)n + Ān

Kzn(sa1)

Kzn(sr0)

]
, (42)

K
∑

k=1

y(3)k
ν2

k − z2
n

K′νk
(sa1)

Kνk (sa1)
+

P
∑

p=1

y(2)p

µ2
p − z2

n

[
K′µp(sa1)

Kµp(sa1)
+ Υµp(ω)

I′µp(sa1)

Iµp(sa1)

]

=
1

α̃(zn, γ1, γ2)

[
x(1)n

I′zn(sa1)

Izn(sa1)
+ Ān

K′zn(sa1)

Kzn(sr0)

]
.

(43)

Here, n = 1, 2, 3, . . . , N; N = K + P;

y(3)k = −x(3)k q̃+(νk, γ2), (44)

y(2)p = x(2)p q̃−(µp, γ2). (45)

Taking into account that q̃+(νk, γ2) = O(1) and q̃−(µp, γ2) = O(p1/2) if k, p → ∞,

we find that y(3)n , y(2)n = O(n−3/2). Let us exclude the unknowns x(1)n from the right-hand
part of Equations (42) and (43). Then, we pass to the limit N, P, K → ∞ (N = P + K) and
arrange the unknowns according to the sequence (34). This leads to the ISLAE

(C11 + D11)Y = Φ. (46)

Here, Y :{yq}∞
q=1 is the unknown vector,
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yq =


y(3)k , ξq ∈ {νk}∞

k=1,

y(2)p , ξq ∈ {µp}∞
p=1,

(47)

C11 : {c(1,1)
nq }∞

n,q=1, D11 : {d(1,1)
nq }∞

n,q=1 are infinite matrices with the elements

c(1,1)
nq =

sa1W[Kξq Izn ]sa1

(ξ2
q − z2

n)Kξq(sa1)Izn(sa1)
; (48)

d(1,1)
nq =


0, ξq ∈ {νk}∞

k=1,

sa1W[Iξq Izn ]sa1 Υξq(ω)

(ξ2
q − z2

n)Iξq(sa1)Izn(sa1)
, ξq ∈ {µp}∞

p=1,
(49)

Φ : {ϕn}∞
n=1 is the known vector;

ϕn =
An

α̃(zn, γ1, γ2)

Izn(sr0)

Izn(sa1)
. (50)

Here, r0 < a1.
Note that correlation between Equations (35) and (46) directly follows from the expres-

sions of the matrix elements (36), (37), (48), and (49), respectively:

C11 = AT
11, (51)

D11 = BT
11, (52)

where the upper mark “T” denotes the transposed matrix. The solution of Equations (35) and (46)
allows us to determine all the necessary unknown coefficients for the expression (18). In
order to obtain their solutions in the desirable class of sequences, we reduce them to the
ISLAE of the second kind using the procedure of analytical regularization.

6. Analytical Regularization

In this section, we analyse the asymptotic properties of the matrix operators (36), (37),
(48), and (49), derive the regularizing operators, and formulate an initial problem in terms
of the ISLAE of the second kind. We introduce two types of regularization procedures,
namely, right- and left-hand side ones.

6.1. Regularizing Operators

At the first stage in the regularization process, we estimate the asymptotic properties
of the matrix operators A11 : {a(1,1)

qn }∞
q,n=1 and B11 : {b(1,1)

qn }∞
q,n=1. Due to the asymptotic

behaviour of the modified Bessel and Macdonald functions as

Iη(z) ≈
1

Γ(η + 1)

( z
2

)η
, Kη(z) ≈

Γ(η)
2

( z
2

)−η

if η >> |z| and K1/2(z) =
√

π/(2z) e−z, where Γ(η) is the Gamma function, we find that

a(11)
qn =

1
ξq − zn

+


O({ξqzn(ξq − zn)}−1), zn, ξq >> |sa1|,

O((sa1/2)2), |sa1| → 0; q > 1, n ≥ 1
(53)

and, taking into account the definition of the function K1/2(z), we obtain

a(1,1)
1n =

1
1/2− zn

+
sa1

1/4− z2
n
+ O((sa1/2)2). (54)
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The asymptotic estimation of the matrix elements (37) if q, n >> |sa1| is as follows:

b(1,1)
qn ≈


0, ξq ∈ {νp}∞

p=1,

1− 2ξq

1 + 2ξq

(a1/c1)
2ξq

ξq + zn
, ξq ∈ {µp}∞

p=1.
(55)

Note that the asymptotic estimations of the matrix elements (48) and (49) directly
follow from the expressions (53)–(55) based on the relations (51) and (52).

Let us introduce the operator formed by the main parts of the asymptotic (53) as

A1 :
{

a(1)qn ≡ a(1)(ξq, zn) =
(
ξq − zn

)−1
}∞

q,n=1
, (56)

and the inverse operator that was introduced earlier in [17,19]

A−1
1 :

{
τ
(1)
kq ≡ τ(1)(zk, ξq) =

〈{
[M−(ξq)]

−1
}′

M′−(zk)(zk − ξq)

〉−1
}∞

k,q=1

. (57)

Here,
A−1

1 A1 = I, (58)

A1A−1
1 = I, (59)

I is the identity matrix;

M′−(zk) = ∂z[M−(zk)], {[M−(ξq)]
−1}′ = ∂ξ

{
[M−(ξq)]

−1
}

,

where M−(ν) is determined from the factorization of the even meromorphic function M(ν),
which is regular in the strip ∏ : {|Re(ν)| < 1/2} with simple zeroes and poles at ν = ±zk
and ν = ±ξ j that are located at the real axis outside of the Π;

M(ν) = M+(ν)M−(ν) =
Pν−1/2(− cos γ1) cos(πν)

(ν2 − 1/4)Pν−1/2(− cos γ2)Rν−1/2(cos γ2)
, (60)

M+(ν) and M−(ν) are split functions which are regular in the overlapping half-planes
Re(ν) > −1/2 and Re(ν) < 1/2, respectively; M(ν) = O(ν−1) and M+(ν) = M−(−ν) =
O(ν−1/2) if |ν| → ∞ in the regularity region;

M±(ν) =
2A0(γ1, γ2)e∓νχ

∞
∏

k=1
(1± ν/zk)e∓ν(π−γ1)/(kπ)

(1± ν/(1/2))
∞
∏

k=1
(1± ν/µk)e∓ν(π−γ2)/(kπ)

∞
∏

k=1
(1± ν/νk+1)e∓ν(γ2−γ1)/(kπ)

, (61)

where

A0(γ1, γ2) = i
[

P−1/2(− cos γ1)

P−1/2(− cos γ2)[P−1/2(cos γ2)P−1/2(− cos γ1)− P−1/2(− cos γ2)P−1/2(cos γ1)]

]1/2

,

χ =
π − γ2

π
ln

π − γ2

π
+

γ2 − γ1

π
ln

γ2 − γ1

π
− π − γ1

π
ln

π − γ1

π
.

(62)

The asymptotic estimates for matrix elements (57) are given by the formula

τ
(1)
k q =

k,q→∞
O
(

ξ−1/2
q z1/2

k {zk − ξq}−1
)

. (63)
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Taking into account the expressions (51), (56), and (57), let us introduce the transposed
matrices

C1 = AT
1 and C−1

1 = (A−1
1 )T as

C1 :
{

c(1)nq ≡ c(1)(zn, ξq) = a(1)qn =
(
ξq − zn

)−1
}∞

q,n=1
, (64)

C−1
1 :

{
τ
(2)
kn ≡ τ(2)(ξk, zn) = τ

(1)
nk =

〈{
[M−(ξk)]

−1
}′

M′−(zn)(zn − ξk)

〉−1
}∞

k,n=1

. (65)

Here,
C−1

1 C1 = I, (66)

C1C−1
1 = I (67)

and
τ
(2)
k n =

k,n →∞
O
(

ξ−1/2
k z1/2

n {zn − ξk}−1
)

. (68)

Note that in the case of finite matrices, the relations (66), (67) directly follow from
(58), (59) and vice versa. For the infinite matrices, we prove the relations (66) and (67),
similar to those we used in [17,19]. For this purpose, let us represent these equalities in the
equivalent form

∞

∑
n=1

τ
(2)
kn c(1)nq = δ

q
k , (69)

∞

∑
n=1

c(1)qn τ
(2)
nk = δk

q , (70)

where δ
q
k is the Kronecker symbol.

Let us introduce the integral as follows:

Jkq =
1

2πi{[M−(ξk)]−1}′
∫

CR

dt
M−(t)(t− ξk)(ξq − t)

. (71)

Here, CR is the circular integration path in the complex plane t, the point t = 0 and R
is the centre and the radius of the circle, respectively; CR is the outline that encompasses
the simple poles of the integrand at t = zn (n = 1, 2, 3, . . .) and t = ξk if k = q. For |t| → ∞,
the integrand as a function of t tends to zero not slower than t−3/2, therefore, Jkq → 0 if
R→ ∞. Then, applying the residues theorem, we arrive at the representation (69).

Let us introduce the integral as follows

Jqk =
1

2πiM′−(zk)

∫
CR

M−(t)dt
(t− zq)(zk − t)

. (72)

Here, CR is the outline that encompasses the simple poles of the integrand at t = ξn
(n = 1, 2, 3, . . .) and t = zk if k = q. For |t| → ∞ the integrand as a function of t tends
to zero not slower than t−5/2, therefore, Jkn → 0 if R → ∞. Then, applying the residues
theorem, we arrive at the representation (70).

6.2. Left-Hand Side Regularization

Next, using the ISLAE of the first kind (35) and (46) and taking into account the
properties of the operators (58) and (66), we formulate the original diffraction problem via
the ISLAE of the second kind as follows

X = A−1
1 (A1 −A11)X−A−1

1 B11X + A−1
1 F (73)
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to determine the unknown coefficients in the region D1, and

Y = C−1
1 (C1 − C11)Y− C−1

1 D11Y + C−1
1 Φ (74)

to determine the unknowns in the regions D2 and D3.
Here, as follows from (53) and (63), Equations (73) and (74) admit the solution in the

class of sequences

b(σ1) : {||
_
X || = sup

n
| _x n nσ|, lim

n→∞
| _x n nσ| = 0}, 0 ≤ σ < σ1, (75)

where
_
X= X(Y); X ∈ b(σ1 = 1/2), Y ∈ b(σ1 = 3/2).

Taking into account the relations (25)–(29) and (42)–(45), it is found that each of the
Equations (73) and (74) can be applied to the solution of our problem. As follows from
their asymptotic estimation, X and Y belong to different classes of sequences. Nevertheless,
the relation (29) as well as the relations (44) and (45) allow us to determine the unknown
coefficients for field representation (18) in the desirable class of sequences, which provide
the fulfilment of all the necessary conditions of the solution, including the Meixner condi-
tion on the edge. It is worth noting that the solution of Equation (74) can also be considered
in l2.

6.3. Right-Hand Side Regularization

Let us introduce the new unknowns
...
X,

...
Y as

X = A−1
1

...
X, (76)

Y = C−1
1

...
Y. (77)

Next, using the ISLAE of the first kind (35) and (46) and taking into account the
properties of the operators (59) and (67), we formulate the original diffraction problem via
the ISLAE of the second kind as follows

...
X = (A1 −A11)A−1

1
...
X − B11A−1

1
...
X + F (78)

and ...
Y = (C1 − C11)C−1

1
...
Y −D11C−1

1
...
Y + Φ. (79)

This is an alternative couple of the ISLAE of the second kind for the solution of
the problem.

7. Set of the Regularizing Operators

In this section, we generalize our theory and introduce a set of the regularizing
operators that can simplify the regularization procedure.

Let there be a given set of even meromorphic functions

< : {
_
M (ν) =

_
Q (ν)/

_
P (ν)},

where
_
Q (ν ) and

_
P (ν) are integers, even functions of the exponential type that are not

equal to zero at ν = 0. We will denote the growing sequences of their positive simple

non-coinciding roots {_z n}∞
n=1 and {

_
ξ q}∞

q=1. Let
_
z n and

_
ξ q, as functions of indices, satisfy

the following asymptotic estimations:

| zn−
_
z n | = O(1/n), | ξq−

_
ξ q | = O(1/q) , n, q → ∞, (80)

where zn and ξq are simple zeros and poles of function (60). Taking these into account, we

form a set of couples of matrix operators =1:{
_
A1,

_
A
−1
1 } and =2:{

_
C1,

_
C
−1
1 } whose elements are

written similarly to those represented by the couples (56), (57) and (64), (65), respectively
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using the functions
_
M (ν) from <. Further, using the matrix operators (56) and (64), we

formally introduce two sets of equations

A1X = F1 (81a)

and

C1Y = Φ1, (81b)

where F1 : { f (1)q }∞
q=1, Φ1 : {ϕ

(1)
q }∞

q=1 are known vectors. Then, let us formulate the
following statement:

Statement. An arbitrary couple of operators from =1 and =2 are the regularizing ones for
the ISLAEs (35) and (46), respectively.

Proof of Statement. Let us apply the regularization procedure (73) to Equation (81) using
the operators from =1(2). This leads to the ISLAE of the second kind, which we write as:

xn +
∞

∑
p=1

b(1)np xp = η
(1)
n (82a)

and

yn +
∞

∑
k=1

b(2)nk yk = η
(2)
n . (82b)

Here,

b(1)np =
∞

∑
k=1

_
τ
(1)
nk

(
_
ξ k −ξk) + (zp−

_
z p)

(
_
ξ k −

_
z p)(ξk − zp)

,

b(2)nk =
∞

∑
p=1

_
τ
(2)
np

(
_
ξ k −ξk) + (zp−

_
z p)

(
_
ξ k −

_
z p)(ξk − zp)

,

η
(1)
n =

∞

∑
k=1

_
τ
(1)
nk f (1)k < ∞, η

(2)
n =

∞

∑
p=1

_
τ
(2)
np ϕ

(2)
p < ∞,

_
τ
(1)
np and

_
τ
(2)
np are matrix elements of the operators

_
A
−1
1 and

_
C
−1
1 , respectively.

Accounting to relations (63), (68), and (80), we establish by direct verification that
b(1)np = O(n−1/2 p−2) and b(2)nk = O(n−3/2k−2) if n, p, k → ∞ . Therefore, the solution of
Equations (82a) and (82b) exist in b(σ1 = 1/2 ) and in b(σ1 = 3/2 ), respectively, and

the couples operators
_
A1,

_
A
−1
1 and

_
C1,

_
C
−1
1 from =1 and =2 are regularizing ones for

Equations (81a) and (81b). It follows directly from this that an arbitrary couple of operators
from =1 and =2 are also regularizers for the ISLAEs (35) and (46) .

Therefore, left-hand side regularization of Equations (35) and (46) with use of the
operators from =1 and =2 leads to the equations of the second kind, which can be written
as

X =
_
A
−1
1 (

_
A1 −A11)X−

_
A
−1
1 B11X+

_
A
−1
1 F, (83)

Y =
_
C
−1
1 (

_
C1 −C11)Y−

_
C
−1
1 D11Y+

_
C
−1
1 Φ, (84)

where X ∈ b(σ1 = 1/2), Y ∈ b(σ1 = 3/2).

Let us consider an example of the function
_
M (ν) with the simple zeros

_
z n and poles

_
ξ q that coincide with the main parts of asymptotic indices zn, ξq if n, q → ∞:
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_
z n∈ {[π/(π − γ1)](n− 1/4)}∞

n= 1, (85a)
_
ξ q>1∈ {

_
ν k}∞

k=1

⋃
{
_
µ p}∞

p=1, (85b)

where
_
ν k= π k/(γ2 − γ1),

_
µ p= π (p− 1/4)/(π − γ2), and

_
ξ 1= ξ1 = 1/2. Then,

_
M (ν)

is expressed through the gamma functions as

_
M (ν) =

Γ
(

3
4
+

π − γ2

π
ν

)
Γ
(

3
4
− π − γ2

π
ν

)
Γ
(

1 +
γ2 − γ1

π
ν

)
Γ
(

1− γ2 − γ1

π
ν

)
(

ν +
1
2

)(
ν− 1

2

)
Γ
(

3
4
+

π − γ1

π
ν

)
Γ
(

3
4
− π − γ1

π
ν

) (86)

Function (86) is even and regular in the strip ∏ and tends to zero as ν −1 if | ν | → ∞;

simple zeros
_
z n and poles

_
ξ m are situated on the real axis beyond the strip ∏. This function

is elementarily factorized and written as

_
M (ν ) =

_
M+ (ν )

_
M− (ν ),

where

_
M± (ν ) = i exp{∓νχ}

Γ
(

3
4
± π − γ2

π
ν

)
Γ
(

1± γ2 − γ1

π
ν

)
(

1
2
± ν

)
Γ
(

3
4
± π − γ1

π
ν

) . (87)

Here,
_
M+ (ν) and

_
M− (ν) (

_
M+ (ν) =

_
M− (−ν)) are regular functions in the semi-

planes Re(ν) > −1/2and Re(ν) < 1/2 that decrease in infinity as ν−1/2 in the regularity
regions.

Using the functions (86) and (87) instead of (60) and (61), we find the necessary couples
of regularizing operators using the schemes represented in (56), (57) and in (64), (65).

It is worth noting that using the kernel functions (86) and (87) simplifies the formation

of the regularizing operators
_
A1,

_
A
−1
1 and

_
C1,

_
C
−1
1 . They allow for reducing the problem

to the ISLAE of the second kind, to which solutions exist in the necessary class of sequences
but their effectiveness is somewhat smaller than the initial couples of regularizing opera-
tors (56), (57) and (64), (65) because, as follows from our Statement, these new operators
explicitly invert only the main part asymptotic of the operators (56) and (64).

8. Radiation through a Small-Sized Cavity Aperture

The solution of the problem of wave penetration through a small-sized hole allows
the scattered field characteristics to be obtained in analytical form. The well-known results
in this area are presented in [47,48]. The general theory for the solution to this problem is
developed in [49]. It is worth noting that the main problem this study engages is correct
accounting for the field singularity at the aperture edge. A technique for the solution of
the problem of wave radiation from a small-sized hole of a sphere-conical cavity, which
rigorously accounted for the field singularities at the edge, was considered in [31]. Here,
we develop this technique for the solution of the problem of wave radiation from a cavity
with a small-sized hole into a biconical region. For this purpose, we take into account the
small dimension of the hole (|sa1/2| << 1). Thus, we apply the asymptotic expressions
for the modified Bessel and Macdonald functions [44] to estimate the known terms of the
Equations (73), (74) and, taking into account the resonant properties of the cavity, we derive
the approximate equations as

xk +
∞

∑
q=1

τ
(1)
kq κξq(sc1)x̃q =

∞

∑
p=1

τ
(1)
kp fp, (88)
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yk +
∞

∑
q=1

ηkqκξq(sc1)yq =
∞

∑
n=1

τ
(2)
kn ϕ̄n. (89)

Here,

x̃q =
∞

∑
n=1

xn

ξq + zn
, (90)

ηkq =
∞

∑
n=1

τ
(2)
kn

ξq + zn
=

1

{[M−(ξk)]−1}
′
M+(ξq)(ξq + ξk)

, (91)

κξq(sc1) =


2(sa1/2)2ξq

Γ(ξq)Γ(ξq + 1)

[
Kξq(sc1) + 2sc1K′ξq

(sc1)

Iξq(sc1) + 2sc1 I′ξq
(sc1)

]
, ξq ∈ {µp}∞

p=1,

0 , ξq ∈ {νk}∞
k=1,

(92)

fp = −
∞

∑
n=1

Anq(zn, γ2)
(r0/a1)

zn

2zn


1

ξp + zn
+

κξp

ξp − zn
, ξp ∈ {µp}∞

p=1,

1
ξp + zn

, ξp ∈ {νk}∞
k=1,

(93a)

ϕ̄n =
An(r0/a1)

zn

α̃(zn, γ1, γ2)
. (93b)

Let us consider the resonant excitation of a cavity with the small dimension of the
hole. Taking into account the time factor e−iωt, the real and imaginary parts of the complex
resonance frequency of an open cavity ωres = Re(ωres) + iIm(ωres) are determined as
Re(ωres) > 0 and Im(ωres) ≤ 0. Under these conditions, the resonance frequency has a
physical sense: the wave moves from the scatterer to infinity, the corresponding vibration
grows in volume and decreases with time. Let us introduce ρ̄pj = (sc1)pj = −iωµp jc1

√
εµ

(p, j = 1, 2, 3, . . .), where ωµp j is the real resonant frequency (Re(ωµp j) > 0, Im(ωµp j) = 0)
of a closed sphere-conical resonator, which corresponds to the resonant TMµp0j mode; ωµp j
is determined from the solution of the transcendental equation as

Iµp(ρ̄pj) + 2ρ̄pj I′µp(ρ̄pj) = 0. (94)

Let ρpj = ρ̄pj + ∆ρpj, (∆ρpj ≡ −i∆ωµp jc1
√

εµ, ∆ωµp j = Re(∆ωµp j) + iIm(∆ωµp j)), and
|∆ρpj| << 1. Taking into account that |ρp j| is very close to the |ρ̄pj|, we keep only the
dominant term with the index ξp = µp for the series of the ISLAE (88), (89) and rewrite
them as

xk + τ
(1)
kp κξp(ρpj)x̃p = τ

(1)
kp fp, (95a)

yk + ηkpκξp(ρpj)yp = ϕ̃k. (95b)

Here, k = 1, 2, 3 . . . ; index p corresponds to the ξp resonance mode and is fixed;

ϕ̃k =
∞

∑
n=1

τ
(2)
kn ϕ̄n.

The explicit solution of the ISLAE (95) is as follows [31]:
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xk =
τ
(1)
kp [a+ξp

+ a−ξp
κξp(ρpj)]

Dξp(ρpj)
, (96a)

yk =
ϕ̃kDξp(ρpj)− κξp(ρpj)ηkp ϕ̃p

Dξp(ρpj)
, (96b)

where, k = 1, 2, 3, . . .;

Dξp(ρpj) = 1 +
κξp(ρpj)

2ξp[M−1
− (ξp)]

′M+(ξp)
, (96c)

a±ξp
= −

∞

∑
n=1

Anq(zn, γ2)
(r0/a1)

zn

2zn(ξp ± zn)
. (96d)

Equating the denominator (96c) to zero, we arrive at an expression for the determina-
tion of the perturbation ∆ωµp j of the resonant frequency ωµp j as

∆ωµp j =

(
kµp ja1

2

)2µp

Φ(µp). (97)

Here, kµp j = ωµp j
√

εµ,

Φ(µp) =
e−iπ(µp+1/2)

c1
√

εµM+(µp)[M−1
− (µp)]

′Γ2(µp + 1)

 Kµp(ρ̄pj) + 2ρ̄pjK′µp(ρ̄pj)

d
dx

[Iµp(x) + 2xI′µp(x)]x=ρ̄pj

. (98)

Taking into account that ωres = ωµp j + ∆ωµp j, the definition of ωres, the fact that ωµp j
is real, and that ωµp j � |∆ωµp j|, we find that expression (97) correctly determines the
frequency perturbation if Im(∆ωµp j) ≤ 0; Re(∆ωµp j) can take an arbitrary sign. From
the expressions (97), it follows that ∆ωµp j depends on the truncated dimensionless radius
(kµp ja1), the opening angles γ1 and γ2, and the resonant parameter of the closed sphere-
conical resonator.

9. Numerical Analysis

All scattered field characteristics are calculated by reducing the ISLAE (73). We com-
pared the solutions with those obtained from Equations (76) and (78) and found almost exact
matching. This fact confirms the correctness of the solutions. The expressions (25)–(29)
are applied for calculation of the expansion coefficients for the field representation (18).
Based on this, we analyse the near- and far-field characteristics of our scatterer for different
geometrical and frequency parameters. For the analysis of the radiated far field (r → ∞),
we apply the asymptotic representation of Formula (18) for the region D3 as

Ht
ϕ(θ) ∼ H(θ)

eikr

r
, (99)

where the far-field pattern D(θ) = |H(θ)| is defined by

D(θ) = Z−1
√

π

2

∣∣∣∣∣ ∞

∑
n=1

x(3)n Ψνn−1/2(cos θ)

Kνn(sa1)

∣∣∣∣∣. (100)

Let the bicone Q be placed in a hypothetical environment with single electrical and
magnetic parameters and excited by the radial electric dipole of unit amplitude A(0) = 1.
Let us consider the reduced ISLAE (73) and analyse the corresponding finite N × N set
of linear algebraic equations, where N is the truncation order. In Figure 2a, we represent
the dependencies of the relative error e(N) of the near-Hϕ(r, θ)-field calculation on the
truncation parameter N for kr = ka1 + 1 and for three points θ = γ1, (γ1 + γ2)/2 and γ2,
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e(N) = 100%
∣∣∣H(N+1)

ϕ − H(N)
ϕ

∣∣∣/∣∣∣H(N)
ϕ

∣∣∣,
where H(N)

ϕ = H(N)
ϕ (r, θ) is the magnetic field, calculated using N × N set of linear alge-

braic equations.
We see from this figure that the truncation parameter must be greater than ka1, and we

chose it from the condition N = [|sa1|] + [q] with 4 ≤ q ≤ 10, where [·] denotes the entire
part. To verify the mode matching, we calculate |Hϕ| on virtual spherical surfaces, the radii
of which are somewhat greater and lower than ka1, and find an excellent adjustment of the
field behaviour on the above-mentioned virtual surfaces (see Figure 2b).

(a) (b)

Figure 2. Verification of the numerical analysis for a bicone with γ1 = 50◦, γ2 = 100◦, and kr0 = 1:
(a) dependencies of the relative error on the truncation order for near-Hϕ(r, θ)-field calculation if
ka1 = 7, kc1 = 9, and kr = ka1 + 1; (1) θ = γ1, (2) θ = (γ1 + γ2)/2, (3) θ = γ2; (b) testing the mode
matching if ka1 = 9 and kc1 = 10; (1) kr = ka1 + 0.01, (2) kr = ka1 − 0.01.

Figure 3a,b, shows the far field of the scatterers with a wide biconical region
γ2 − γ1 ≥ 80◦. Curves 1 and 2 in this figure show the field distributions for differ-
ent positions of the cavity termination. Curve 3 corresponds to the far field for the scatterer
without an internal diaphragm. We observe in Figure 3 the effective far-field radiation along
the semi-infinite conical surface Q1. The field oscillations in this figure can be explained
by the interference of the multiple waves scattered from the biconical waveguide surfaces,
illuminated by the edge waves of the open cavity and the dipole.

In order to study the resonance properties of our scatterer, we analyse the dependencies
of the modulus of the magnetic far field at the conical surface θ = γ1 on kc1. The value
|H(θ = γ1)| is proportional to the jr component of the far electric current density at the
semi-infinite conical surface. Its analysis allows us to understand how the field radiated
from the resonant volume penetrates the biconical area.

Let us consider a bicone with wide conical (π − γ2 = 60◦) and narrow biconical
(γ2 − γ1 = 31◦) regions formed by a cone Q1 with γ1 = 89◦ and a truncated one with
γ2 = 120◦ (see Figure 1b). This geometry can be considered as a simple model of a
nano-probe with the resonance volume over the plane.

(a) (b)

Figure 3. Far-field patterns for bicone with ka1 = 12 and kr0 = 7; (a) γ1 = 50◦ and γ2 = 150◦,
(b) γ1 = 40◦ and γ2 = 120◦; (1) kc1 = 12.5, (2) kc1 = 15.5, (3) bicone without an internal termination.
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Curves 1 and 2 in Figure 4a show the dependencies of the magnetic field module
|H(θ = γ1)| for the total field and the module of the TEM mode on the parameter kc1.
Comparing these curves, we can conclude that the current density on the conical surface
θ = γ1 is almost completely induced by the TEM mode. Figure 4b shows the behaviour of
the radiating power W through the biconical area as a function of the parameter kc1, where

W =
π2

2Z
|x(3)1 |2

|Kν1(ka1)|2
ln
(

ctg
γ1

2
tg

γ2

2

)
+

π2 sin2 γ2

2Z

∞

∑
n=2

|x(3)n |2
|Kνn(ka1)|2

ν2
n − 1/4

2νn

∂

∂νn

[
Rνn−1/2(cos γ2)

]
Ψνn−1/2(cos γ2).

We see that the shapes of the far field in Figure 4a and the radiated power of the
oscillations in Figure 4b are similar, with the period approximately equal to λ/2 (λ is
the dimensionless wavelength). Therefore, we can suppose that the local maxima of the
radiation that we observe from these curves are caused by the resonant excitation of an
open cavity. We observe their sharp jumps if kc1 is close to the dimensionless resonant radii
kµn jc1 for TMµn0j modes of the closed sphere-conical resonator with the azimuthal index
n = 2 and the radial ones j = 1, . . . , 5. Parameter kµn jc1 is real and determined from the
solution of Equation (94). Numerical examples of this parameter are given in Table 1.

(a) (b)

Figure 4. Dependencies of the far-field characteristics on kc1 for a bicone with γ1 = 89◦, γ2 = 120◦,
ka1 = 4.5, and kr0 = 1; (a) (1) modulus of the total magnetic field at the conical surface θ = γ1;
(2) modulus of the TEM mode; (b) radiation power.

Table 1. Resonant radii of the axially symmetric TMµn0j mode oscillation for the closed sphere-conical
resonator with π − γ2 = 60◦.

µn/kµn jc1 j = 1 j = 2 j = 3 j = 4 j = 5

µ1 = 2.27729 3.6219 7.1526 10.4066 13.6051 16.7814

µ2 = 5.26278 6.8853 10.9012 14.3663 17.6942 20.9595

µ3 = 8.25826 10.0795 14.4705 18.128 21.5862 24.9479

Figure 5 represents the near-total-field distribution at the virtual spherical surface
{r < a1, γ1 ≤ θ ≤ π} for the different positions of the cavity termination. Curves 1 and 2
in this figure are plotted if kc1 corresponds to the maximum with kc1 = 5.66 and minimum
with kc1 = 8.28 of curve 1 in Figure 4. Comparing these curves, we observe their essential
difference in the angle sector γ1 < θ < γ2. As follows from the behaviour of curve 1
in Figure 5, the near field exceeds the maximum at the plane. Therefore, for this regime
of excitation, we can amplify the far density current on the plane surface owing to the
intensification of the TEM wave radiation and to the increase in the near field in the conical
sector (r < a1, γ1 < θ < γ2) outside of the bicone area.
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Figure 5. Near-field patterns (kr = 3.5) for a bicone with γ1 = 89◦, γ2 = 120◦, ka1 = 4.5, and kr0 = 1;
(1) kc1 = 5.66, (2) kc1 = 8.28.

Let us consider a bicone with a semi-spherical cavity (π − γ2 = 91◦) and a narrow
conical probe (γ1 = 30◦), (see Figure 1c). This geometry can be considered as a model for
detection of cavity-type defects under a plane surface using a semi-infinite conical probe.

For this structure in Figures 6 and 7, we represent the same scattering field characteris-
tics as those we have studied in the previous case. In Figure 6, the sharp jumps are also
observed if kc1 is located close to TMµn0j resonant oscillations of the corresponding closed
cavity. Unlike in the previous case, we observe in this figure the excitation of the two types
of the azimuthal resonant vibration with the indices (n = 2; j = 2, . . . , 5) and (n = 3; j = 1).
The numerical examples of kµn jc1 for the considered cavity are given in Table 2. Curves 1
and 2 in Figure 7 are calculated for the near field for kc1 = 6.68 and kc1 = 7.68 which
correspond to the maximum and minimum of the curves in Figure 6. We can observe in
these figures that the excitation of the cavity with kc1 = 6.68 increases the magnetic field
intensity at the surface of the conical probe. As follows from the dependencies represented
in Figure 6a, we see the growth of the contribution of the higher TM-modes for the far field
formation.

(a) (b)

Figure 6. Dependencies of the far-field characteristics on kc1 for a bicone with γ1 = 30◦, γ2 = 89◦,
ka1 = 4.5, and kr0 = 1; (a) (1) module of the total magnetic field at the conical surface θ = γ1;
(2) module of the TEM mode; (b) radiation power.

Figure 7. Near-field patterns (kr = 3.5) for a bicone with γ1 = 30◦, γ2 = 89◦, ka1 = 4.5, and kr0 = 1;
(1) kc1 = 6.68, (2) kc1 = 7.68.
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Table 2. Resonant radii of the axially symmetric TMµn0j mode oscillation for a closed sphere-conical
resonator with π − γ2 = 91◦.

µn/kµn jc1 j = 1 j = 2 j = 3 j = 4 j = 5

µ1 = 1.48274 2.724 6.0934 9.2921 12.4608 15.6184

µ2 = 3.46116 4.9309 8.6728 12.0119 15.2602 18.4697

µ3 = 5.43932 7.0751 11.1155 14.5925 17.9283 21.1993

The curves in Figure 8 show the typical dependencies of the radiating power on
the dimensionless truncation radius ka1 for a large spherical radius of termination. In
this figure, we observe the low frequency resonance if ka1 < 1 for different geometrical
parameters of the scatterer, and if ka1 > 4 the radiated power depends weakly on the
truncation parameter.

Figure 8. Dependencies of the radiation power on ka1 for a bicone with kc1 = 18, kr0 = 0.1;
(1) γ1 = 89◦ and γ2 = 120◦, (2) γ1 = 30◦ and γ2 = 89◦, (3) γ1 = 40◦ and γ2 = 120◦.

10. Conclusions

In this work, we have solved a new wave diffraction problem of an axially symmetric
TM-wave diffraction from a bicone formed by a perfectly conducting semi-infinite cone
and a truncated one with an internal termination. The problem is solved rigorously, using
the analytical regularization technique. The field is expressed through the conical and
biconical modes. Mode matching is applied for the derivation of the infinite system of linear
algebraic Equations (35) and (46). These systems of equations are obtained for different
groups of unknowns and represented as a special limit transition from the finite ones.
The correlations (51) and (52) between them are established. It is shown that the matrix
operators of the obtained equations allow for the selection of their singular parts, and the
corresponding inverse operators in the analytical form are obtained. These operators are
applied for the development of the analytical regularization technique and reduction of the
problem to infinite systems of linear algebraic equations of the second kind. Equations (73),
(74), (78), and (79) are the key ones. Two types of such regularizations are considered,
namely, the left- and the right-hand side regularizations. The proposed techniques are
generalized and we have shown a way to construct the set of regularizing operators for
this problem. The resonance excitation of an open-ended sphere conical cavity is analysed
analytically for a small-sized aperture of truncation. New approximate equations which
allow for the explicit solutions for this case are obtained. It is found that the resonance
excitation of the sphere-conical probe and the semi-spherical cavity can amplify the density
of the surface current, owing to the intensification of the TEM wave radiation.
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